Research article

On pairs of equations in eight prime cubes and powers of 2

Gen $\mathbf{L i}^{1}$, Liqun $\mathbf{H u}^{2, *}$ and Xianjiu Huang ${ }^{1,2}$
${ }^{1}$ Ji luan Academy, Nanchang University, Nanchang, Jiangxi 330031, China
${ }^{2}$ Department of Mathematics, Nanchang University, Nanchang, Jiangxi 330031, China
* Correspondence: Email: huliqun@ncu.edu.cn.

Abstract

In this paper, it is proved that every pair of large positive even integers satisfying some necessary conditions can be represented in the form of a pair of eight cubes of primes and 287 powers of 2 . This improves the previous result.

Keywords: circle method; linnik problem; powers of 2
Mathematics Subject Classification: 11P32, 11P05, 11P55

1. Introduction

In 1951 and 1953, Linnik [4, 5] considered a problem related to Goldbach's problem. He proved that each sufficiently large positive even integer N can be written as a sum of two primes and k powers of 2 , namely

$$
\begin{equation*}
N=p_{1}+p_{2}+2^{v_{1}}+\cdots+2^{v_{k}} . \tag{1.1}
\end{equation*}
$$

Later in 2002, Heath-Brown and Puchta [1] showed that $k=13$ and $k=7$ under the assumption of Generalized Riemann Hypothesis. In 2003, Pintz and Ruzsa [12] obtained that $k=8$ unconditionally. Recently, Elsholtz showed that $k=12$ in an unpublished manuscript. This was also proved by Liu and Lü [11] independently.

In 2001, Liu and Liu [6] showed that each large positive even integer N was a sum of eight prime cubes and k powers of 2, namely

$$
\begin{equation*}
N=p_{1}^{3}+p_{2}^{3}+\cdots+p_{8}^{3}+2^{v_{1}}+\cdots+2^{v_{k}} . \tag{1.2}
\end{equation*}
$$

The acceptable value was improved by Liu and Lü [8], Platt and Trudgian [13] and Zhao and Ge [16].
As an extension, recently, Liu [10] considered that every pair of large positive even integers satisfying $N_{2} \gg N_{1}>N_{2}$ can be written as

$$
\left\{\begin{array}{l}
N_{1}=p_{1}^{3}+p_{2}^{3}+\cdots+p_{8}^{3}+2^{v_{1}}+\cdots+2^{v_{k}}, \tag{1.3}\\
N_{2}=p_{9}^{3}+p_{10}^{3}+\cdots+p_{16}^{3}+2^{v_{1}}+\cdots+2^{v_{k}}
\end{array}\right.
$$

He proved that (1.3) was solvable when $k=1432$. Later Platt and Trudgian [13], Zhao [15] and Liu [7] improved it to 1319,648 and 609 , respectively.

In this paper, we sharpened the above result and obtained the following theorem.
Theorem 1.1. For $k=287$, the concurrent equations of (1.3) are solvable for every pair of sufficiently large positive even integers N_{1} and N_{2} satisfying $N_{2} \gg N_{1}>N_{2}$.

We can establish Theorem 1.1 by using the Hardy-Littlewood circle method in combination with some new technologies of Hu et al. [2] and Hu and Yang [3].

2. Proof of Theorem 1.1

Now we can give an outline for the proof of Theorem 1.1.
Let N_{i} with $i=1,2$ be sufficiently large positive even integers. As in [8], in order to use the circle method, we set

$$
P_{i}=N_{i}^{1 / 9-2 \epsilon}, \quad Q_{i}=N_{i}^{8 / 9+\epsilon}, \quad L=\log _{2} N_{1}
$$

for $i=1,2$.
For any integers $a_{1}, a_{2}, q_{1}, q_{2}$ satisfying

$$
\begin{aligned}
& 1 \leqslant a_{1} \leqslant q_{1} \leqslant P_{1},\left(a_{1}, q_{1}\right)=1, \\
& 1 \leqslant a_{2} \leqslant q_{2} \leqslant P_{2},\left(a_{2}, q_{2}\right)=1,
\end{aligned}
$$

we can define the major $\operatorname{arcs} \mathfrak{M}_{g}, \mathfrak{M}_{y}$ and minor arcs $\mathfrak{m}_{g}, \mathfrak{m}_{y}$ as usual, namely

$$
\mathfrak{M}_{\mathrm{i}}=\bigcup_{\substack{q \leqslant P_{i} \\(1 \leqslant a) \\(a, q)=1}} \mathfrak{M}_{\mathrm{i}}(a, q), \quad \mathfrak{m}_{\mathrm{i}}=\left[1 / Q_{i}, 1+1 / Q_{i}\right] \backslash \mathfrak{M}_{\mathrm{i}},
$$

where $i=1,2$ and

$$
\mathfrak{M}_{\mathrm{i}}(a, q)=\left\{\alpha_{i} \in[0,1]:\left|\alpha_{i}-a / q\right| \leqslant 1 /\left(q Q_{i}\right)\right\} .
$$

By the definitions of P_{i} and Q_{i}, we know that the $\operatorname{arcs} \mathfrak{M}_{i}(a, q)$ are disjoint. We also let

$$
\begin{gathered}
\mathfrak{M}=\mathfrak{M}_{1} \times \mathfrak{M}_{2}=\left\{\left(\alpha_{1}, \alpha_{2}\right) \in[0,1]^{2}: \alpha_{1} \in \mathfrak{M}_{1}, \alpha_{2} \in \mathfrak{M}_{2}\right\}, \\
\mathfrak{m}=\left[1 / Q_{i}, 1+1 / Q_{i}\right]^{2} \backslash \mathfrak{M} .
\end{gathered}
$$

As in [3], for convenience, let $\delta=10^{-4}$ and

$$
U_{i}=\left(\frac{N_{i}}{16(1+\delta)}\right)^{1 / 3}, \quad V_{i}=U_{i}^{5 / 6}
$$

for $i=1,2$ Let

$$
S\left(\alpha_{i}, U_{i}\right)=\sum_{p \sim U_{i}}(\log p) e\left(p^{3} \alpha_{i}\right), \quad T\left(\alpha_{i}, V_{i}\right)=\sum_{p \sim V_{i}}(\log p) e\left(p^{3} \alpha_{i}\right),
$$

$$
\begin{gathered}
G\left(\alpha_{i}\right)=\sum_{v \leqslant L} e\left(2^{v} \alpha_{i}\right), \\
\mathscr{E}_{\lambda}=\left\{\alpha_{i} \in[0,1]:\left|G\left(\alpha_{i}\right)\right| \geqslant \lambda L\right\},
\end{gathered}
$$

where $i=1,2$.
Let

$$
r\left(N_{1}, N_{2}\right)=\sum \log p_{1} \log p_{2} \cdots \log p_{16}
$$

denote the weighted number of solutions of (1.3) in $\left(p_{1}, \ldots, p_{16}, v_{1}, \ldots, v_{k}\right)$ with

$$
\begin{gathered}
p_{1}, \ldots, p_{4} \sim U_{1}, \quad p_{5}, \ldots, p_{8} \sim V_{1}, \\
p_{9}, \ldots, p_{12} \sim U_{2}, \quad p_{13}, \ldots p_{16} \sim V_{2}, \quad v_{j} \leqslant L
\end{gathered}
$$

where $j=1,2, \ldots, k$. Then we have

$$
\begin{aligned}
& r\left(N_{1}, N_{2}\right) \\
= & \left(\iint_{\mathfrak{M}}+\iint_{\mathrm{m} \cap \mathfrak{E}_{1}}+\iint_{\mathrm{m} \mid \mathbb{E}_{1}}\right)^{4}\left(\alpha_{1}, U_{1}\right) T^{4}\left(\alpha_{1}, V_{1}\right) S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right) \\
& \times G^{k}\left(\alpha_{1}+\alpha_{2}\right) e\left(-\alpha_{1} N_{1}-\alpha_{2} N_{2}\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2} \\
:= & r_{1}\left(N_{1}, N_{2}\right)+r_{2}\left(N_{1}, N_{2}\right)+r_{3}\left(N_{1}, N_{2}\right) .
\end{aligned}
$$

We can prove Theorem 1.1 by estimating $r_{1}\left(N_{1}, N_{2}\right), r_{2}\left(N_{1}, N_{2}\right)$ and $r_{3}\left(N_{1}, N_{2}\right)$. We want to show that $r\left(N_{1}, N_{2}\right)>0$ for $N_{2} \gg N_{1}>N_{2}$.

For a Dirichlet character $\chi \bmod q$, let

$$
C(\chi, a)=\sum_{h=1}^{q} \bar{\chi}(h) e\left(\frac{a h^{3}}{q}\right), \quad C(q, a)=C\left(\chi^{0}, a\right) .
$$

If $\chi_{1}, \ldots, \chi_{8}$ are characters $\bmod q$, then we write

$$
\begin{gathered}
B\left(n, q ; \chi_{1}, \ldots, \chi_{8}\right)=\sum_{\substack{a=1 \\
(a, q)=1}}^{q} C\left(\chi_{1}, a\right) C\left(\chi_{2}, a\right) \cdots C\left(\chi_{8}, a\right) e\left(-\frac{a n}{q}\right), \\
B(n, q)=B\left(n, q ; \chi^{0}, \ldots, \chi^{0}\right), \\
A(n, q)=\frac{B(n, q)}{\varphi^{4}(q)}, \quad \Im(n)=\sum_{q=1}^{\infty} A(n, q) .
\end{gathered}
$$

Lemma 2.1. Let $N_{1} \equiv N_{2} \equiv 0(\bmod 2), \mathscr{A}\left(N_{i}, k\right)=\left\{n_{i} \geqslant 2: n_{i}=N_{i}-2^{v_{1}}-\cdots-2^{v_{k}}\right\}$ and $k \geqslant 35$. Then we have

$$
\sum_{\substack{\left.n_{1} \in \mathscr{A}\left(N_{1}, k\right) \\ n_{2} \in \mathscr{A}(N), k\right) \\ n_{1} \equiv n_{2}=O(\bmod 2)}} \subseteq\left(n_{1}\right) \subseteq\left(n_{2}\right) \geqslant 0.89094 L^{k}
$$

Proof. For $k \geqslant 35, A\left(n_{i}, p^{k}\right)=0$. Now since $A\left(n_{i}, p\right)$ is multiplicative, we can get

$$
\mathfrak{S}\left(n_{i}\right)=\prod_{p=2}^{\infty}\left(1+A\left(n_{i}, p\right)\right)
$$

With a similar argument of Lemma 2.3 in the paper by Zhao [15], we have

$$
\begin{aligned}
& \Im\left(n_{i}\right)=2\left(1-\frac{1}{2^{8}}\right) \prod_{p>3}\left(1+A\left(n_{i}, p\right)\right), \\
& \prod_{p \geqslant 17}(1+A(n, p)) \geqslant C_{0}:=0.82067 .
\end{aligned}
$$

Let $m_{0}=14$. Now we can get

$$
\begin{aligned}
& \sum_{\substack{n_{1} \in \mathscr{B}\left(N_{1}, k\right) \\
n_{1} \in \mathscr{B}(2, k) \\
n_{1} \equiv n_{2} \equiv O(\bmod 2)}} \circlearrowleft\left(n_{1}\right) \Im\left(n_{2}\right) \\
& \geqslant\left(1.9921875 C_{0}\right)^{2} \sum_{\substack{n_{1} \in \mathscr{B}\left(N_{1}, k\right) \\
n_{2} \in \mathscr{P}\left(N_{2}, k, k \\
n_{1} \equiv n_{2} \equiv(\cos 2)\right.}} \prod_{\substack{3<p<m_{0}}}\left(1+A\left(n_{1}, p\right)\right) \prod_{\substack{3<p<m_{0}}}\left(1+A\left(n_{2}, p\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant\left(1.9921875 C_{0}\right)^{2} \sum_{1 \leqslant j \leqslant q} \prod_{3<p<m_{0}}(1+A(j, p)) \prod_{\substack{3<p<m_{0}}}(1+A(j, p)) \sum_{\substack{\left.\left.n_{1} \in \mathscr{F}\left(N_{1}, k\right) \\
n_{1} \in \mathscr{B} \\
n_{1}=n_{2}=0, k\right) \\
n_{1} \equiv n_{2}=j \bmod 2\right)}} 1, \\
& \geqslant\left(1.9921875 C_{0}\right)^{2} \sum_{1 \leqslant j \leqslant q} \prod_{3<p<m_{0}}(1+A(j, p))^{2} \sum_{\substack{n_{1} \in \mathscr{B}(N, N, k) \\
a_{1}=0(\bmod 2) \\
n_{1} \equiv(\bmod q)}} 1,
\end{aligned}
$$

where $q=\prod_{3<p<m_{0}} p$. By the result obtained by Zhao and Ge [16, Lemma 2.3], we have

$$
\sum_{\substack{n_{1} \in \mathscr{S},(N, k) \\ \text { and } \\ n_{1}==(\text { mod } d) \\ n_{1} \equiv j(\bmod q)}} 1 \geqslant \frac{(1-0.000064) L^{k}}{3 q}+O\left(L^{k-1}\right)
$$

Noting that

$$
\begin{aligned}
\sum_{j=1}^{p}(1+A(j, p))^{2} & =p+2 \sum_{j=1}^{p} A(j, p)+\sum_{j=1}^{p}(A(j, p))^{2}=p+\sum_{j=1}^{p}(A(j, p))^{2} \\
& \geqslant p
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \sum_{\substack{\left.n_{1} \in \mathscr{F}\left(N_{1}, k\right) \\
n_{1} \in \mathscr{F H}, k, k\right) \\
n_{1} \equiv n_{2} \equiv O(\bmod 2)}} \Im\left(n_{1}\right) \Im\left(n_{2}\right) \\
& \geqslant\left(1.9921875 C_{0}\right)^{2} \sum_{j=1}^{p} \prod_{3<p<m_{0}}(1+A(j, p))^{2} \frac{(1-0.000064) L^{k}}{3 q}+O\left(L^{k-1}\right) \\
& \geqslant \frac{1}{3}\left(1.9921875 C_{0}\right)^{2} \prod_{3<p<m_{0}} \sum_{j=1}^{p}(1+A(j, p))^{2} \frac{(1-0.000064) L^{k}}{q}+O\left(L^{k-1}\right) \\
& \geqslant \frac{1}{3}\left(1.9921875 C_{0}\right)^{2}(1-0.000064) L^{k}+O\left(L^{k-1}\right) .
\end{aligned}
$$

Then the lemma follows since L is sufficiently large.
Lemma 2.2. Let N_{1} and N_{2} are sufficiently large positive even integers satisfying $N_{2} \gg N_{1}>N_{2}$,

$$
r_{1}\left(N_{1}, N_{2}\right) \geqslant 1.26 \times 10^{-4} U_{1} V_{1}^{4} U_{2} V_{2}^{4} L^{k} .
$$

Proof. By Lemma 2.1 in Liu and Lü [8], we note that

$$
\begin{aligned}
& r_{1}\left(N_{1}, N_{2}\right) \\
= & \iint_{\mathfrak{M}} S^{4}\left(\alpha_{1}, U_{1}\right) T^{4}\left(\alpha_{1}, V_{1}\right) S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right) \\
& \times G^{k}\left(\alpha_{1}+\alpha_{2}\right) e\left(-\alpha_{1} N_{1}-\alpha_{2} N_{2}\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2} \\
\geqslant & \left(\frac{1}{3^{8}}\right)^{2} \sum_{\substack{n_{1} \in \mathscr{A}\left(N_{1}, k\right) \\
n_{2} \in \mathscr{A}\left(N_{2}, k\right)}} \Im\left(n_{1}\right) \Im\left(n_{2}\right) J\left(n_{1}\right) J\left(n_{2}\right) .
\end{aligned}
$$

We also note that $J\left(n_{i}\right)>78.15468 U_{i} V_{i}^{4}$ by Liu and Lü [8, Lemma 3.3]. Then the lemma follows from Lemma 2.1.

Lemma 2.3. Let $\alpha=a / q+\lambda$ be subject to $1 \leqslant a \leqslant q,(a, q)=1$ and $|\lambda| \leqslant 1 / q Q$, with $Q=U^{12 / 7}$; then, we have

$$
\sum_{p \sim U}(\log p) e\left(p^{3} \alpha\right) \ll U^{1-1 / 12+\epsilon}+\frac{q^{-1 / 6} U^{1+\epsilon}}{\left(1+|\lambda| U^{3}\right)^{1 / 2}}
$$

Proof. This is Lemma 8.5 in Zhao [14].
Lemma 2.4. Let \mathfrak{m} and $S\left(\alpha_{i}, U_{i}\right)$ be defined as before; then,

$$
\max _{\alpha \in C(: \mathscr{U})}\left|S\left(\alpha_{i}, U_{i}\right)\right| \ll U_{i}^{1-1 / 12+\epsilon} .
$$

Proof. We can find that the proof of this lemma is similar to that of Lemma 3.4 in Liu and Lü [8]. We only need to change $1 / 14$ to $1 / 12$ for Lemma 2.4 in the proof of Liu and Lü [8, Lemma 3.4].

Lemma 2.5. Let meas(\mathscr{E}_{λ}) denotes the measure of \mathscr{E}_{λ}. We have

$$
\operatorname{meas}\left(\mathscr{E}_{\lambda}\right) \ll N_{1}^{-E(\lambda)},
$$

with $E(0.9532)>8 / 9+10^{-10}$.
Proof. Similar to the proof of Liu and Lü [8, Lemma 3.5], we can calculate by computer to prove this lemma.

Lemma 2.6. Let N_{1} and N_{2} are sufficiently large positive even integers satisfying $N_{2} \gg N_{1}>N_{2}$,

$$
r_{2}\left(N_{1}, N_{2}\right) \ll U_{1} V_{1}^{4} U_{2} V_{2}^{4} L^{k-1},
$$

with $\lambda=0.9532$.
Proof. According to the definition of \mathfrak{m}, we have

$$
\mathfrak{m} \subset\left\{\left(\alpha_{1}, \alpha_{2}\right): \alpha_{1} \in \mathfrak{m}_{1}, \alpha_{2} \in[0,1]\right\} \cup\left\{\left(\alpha_{1}, \alpha_{2}\right): \alpha_{1} \in[0,1], \alpha_{2} \in \mathfrak{m}_{2}\right\} .
$$

Then

$$
\begin{aligned}
& =\int_{\mathrm{m} \cap \tilde{\mathscr{E}}_{h}}^{r_{2}\left(N_{1}, N_{2}\right)} S^{4}\left(\alpha_{1}, U_{1}\right) T^{4}\left(\alpha_{1}, V_{1}\right) S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right) \\
& \times G^{k}\left(\alpha_{1}+\alpha_{2}\right) e\left(-\alpha_{1} N_{1}-\alpha_{2} N_{2}\right) \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2} \\
& \ll L^{k}\left(\iint_{\substack{\left(\alpha_{1}, \alpha_{2}\right) \in \mathfrak{m i n}_{1} \times[0,1] \\
\left|G\left(\alpha_{1}+\alpha_{2}\right)\right| \geqslant \lambda L}}\left|S^{4}\left(\alpha_{1}, U_{1}\right) T^{4}\left(\alpha_{1}, V_{1}\right) S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right)\right| \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}\right. \\
& \left.+\iint_{\substack{\left.\left(\alpha_{1}, \alpha_{2}\right) \in \mid 0,1\right] \times m_{2} \\
\mid G\left(\alpha_{1}+\alpha_{2}\right) \geqslant \lambda L}}\left|S^{4}\left(\alpha_{1}, U_{1}\right) T^{4}\left(\alpha_{1}, V_{1}\right) S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right)\right| \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2}\right) \\
& :=L^{k}\left(I_{1}+I_{2}\right) \text {. }
\end{aligned}
$$

Then we have

$$
\begin{aligned}
I_{1} & =\iint_{\substack{\left(\alpha_{1}, \alpha_{2}\right) \in \in \operatorname{m1} 1 \times[0,1] \\
\left|G\left(\alpha_{1}+\alpha_{2}\right)\right| \geqslant L L}}\left|S^{4}\left(\alpha_{1}, U_{1}\right) T^{4}\left(\alpha_{1}, V_{1}\right) S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right)\right| \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2} \\
& \ll U_{1}^{11 / 3+\epsilon} V_{1}^{4} \iint_{\substack{\left(\alpha_{1}, \alpha_{2}\right) \in[0,1]^{2} \\
\left|G\left(\alpha_{1}+\alpha_{2}\right)\right| \geqslant \lambda L}}\left|S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right)\right| \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2},
\end{aligned}
$$

where we use Lemma 2.5 and the trivial bound of $T\left(\alpha_{1}, V_{1}\right)$.
Now we use the variable substitution $\beta=\alpha_{1}+\alpha_{2}$ and get

$$
\begin{aligned}
& \iint_{\substack{\left(\alpha_{1}, \alpha_{2}\right) \in[0,1]^{2} \\
\mid G\left(\alpha_{1}+\alpha_{2}\right) \geqslant \lambda L}}\left|S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right)\right| \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2} \\
= & \int_{0}^{1}\left|S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right)\right|\left(\int_{\substack{\beta \in\left[\alpha_{2}, 1+\alpha_{2}\right] \\
|G(\beta)| \geqslant \lambda L}} \mathrm{~d} \beta\right) \mathrm{d} \alpha_{2} .
\end{aligned}
$$

By Lemma 2.6 in the paper by Hu and Yang [3], we have

$$
\int_{0}^{1}\left|S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right)\right| \mathrm{d} \alpha_{2} \ll U_{2} V_{2}^{4} .
$$

From Lemma 2.5 we have

$$
\iint_{\substack{\left(\alpha_{1}, \alpha_{2}\right) \in[0,1]^{2} \\\left|G\left(\alpha_{1}+\alpha_{2}\right)\right| \geqslant \lambda L}}\left|S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right)\right| \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2} \ll U_{2} V_{2}^{4} N_{1}^{-E(\lambda)} .
$$

We choose $\lambda=0.9532$ and get

$$
I_{1} \ll U_{1}^{11 / 3-8 / 3-\epsilon} V_{1}^{4} U_{2} V_{2}^{4} \ll U_{1}^{1-\epsilon} V_{1}^{4} U_{2} V_{2}^{4},
$$

since $N_{2} \gg N_{1}>N_{2}$. Similarly,

$$
I_{2} \ll U_{2}^{11 / 3-8 / 3-\epsilon} V_{2}^{4} U_{1} V_{1}^{4} \ll U_{2}^{1-\epsilon} V_{2}^{4} U_{1} V_{1}^{4},
$$

Then

$$
r_{2}\left(N_{1}, N_{2}\right) \ll\left(U_{1}^{1-\epsilon} V_{1}^{4} U_{2} V_{2}^{4}+U_{2}^{1-\epsilon} V_{2}^{4} U_{1} V_{1}^{4}\right) L^{k} \ll U_{1} V_{1}^{4} U_{2} V_{2}^{4} L^{k-1} .
$$

To estimate $r_{3}\left(N_{1}, N_{2}\right)$, first we need to consider the upper bound for the number of solutions of the equation

$$
\begin{equation*}
n=p_{1}^{3}+\cdots+p_{4}^{3}-p_{5}^{3}-\cdots-p_{8}^{3}, \quad 0 \leqslant|n| \leqslant N_{i} . \tag{2.1}
\end{equation*}
$$

Lemma 2.7. Let $n \equiv 0(\bmod 2)$ be an integer and $\varrho_{i}(n)$ be the number of representations of n in the form of (2.1) that are subject to

$$
p_{1}, p_{2}, p_{5}, p_{6} \sim U_{i}, \quad p_{3}, p_{4}, p_{7}, p_{8} \sim V_{i}, \quad i=1,2 .
$$

Then for all $0 \leqslant|n| \leqslant N_{i}$,

$$
\varrho_{i}(n) \leqslant b U_{i} V_{i}^{4} L^{-8}
$$

with $b=147185.22$.

Proof. This lemma is Lemma 2.1 in the paper by Liu [9].
Lemma 2.8. Let N_{1} and N_{2} be sufficiently large positive even integers satisfying $N_{2} \gg N_{1}>N_{2}$,

$$
r_{3}\left(N_{1}, N_{2}\right) \leqslant 117.04 \lambda^{k} U_{1} V_{1}^{4} U_{2} V_{2}^{4} L^{k} .
$$

Proof. According to the definitions of \mathfrak{m} and \mathscr{E}_{λ}, by Lemma 2.7 and the definition of $\varrho(n)$ we have

$$
\begin{aligned}
& r_{3}\left(N_{1}, N_{2}\right) \\
\leqslant & (\lambda L)^{k} \iint_{\left(\alpha_{1}, \alpha_{2}\right) \in[0,1]^{2}}\left|S^{4}\left(\alpha_{1}, U_{1}\right) T^{4}\left(\alpha_{1}, V_{1}\right) S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right)\right| \mathrm{d} \alpha_{1} \mathrm{~d} \alpha_{2} \\
\leqslant & (\lambda L)^{k} \int_{0}^{1}\left|S^{4}\left(\alpha_{1}, U_{1}\right) T^{4}\left(\alpha_{1}, V_{1}\right)\right| \mathrm{d} \alpha_{1} \int_{0}^{1}\left|S^{4}\left(\alpha_{2}, U_{2}\right) T^{4}\left(\alpha_{2}, V_{2}\right)\right| \mathrm{d} \alpha_{2} \\
\leqslant & (\lambda L)^{k}\left(\log \left(2 U_{1}\right)\right)^{4}\left(\log \left(2 V_{1}\right)\right)^{4}\left(\log \left(2 U_{2}\right)\right)^{4}\left(\log \left(2 V_{2}\right)\right)^{4} \varrho_{1}(0) \varrho_{2}(0) \\
\leqslant & 117.04 \lambda^{k} U_{1} V_{1}^{4} U_{2} V_{2}^{4} L^{k} .
\end{aligned}
$$

Combining Lemmas 2.2, 2.6 and 2.8, we can obtain

$$
r\left(N_{1}, N_{2}\right)>1.26 \times 10^{-4} U_{1} V_{1}^{4} U_{2} V_{2}^{4} L^{k}-117.04 \lambda^{k} U_{1} V_{1}^{4} U_{2} V_{2}^{4} L^{k}
$$

Therefore we solve the inequality

$$
r\left(N_{1}, N_{2}\right)>0
$$

and obtain $k \geqslant 287$. Now the proof of Theorem 1.1 is complete.

3. Conclusions

To sum up, we deduce that every pair of sufficiently large even integers N_{1}, N_{2} satisfying $N_{2} \gg$ $N_{1}>N_{2}$ can be represented in the form of a pair of eight cubes of primes and 287 powers of 2.

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars (Grant No. 20212ACB211007), Natural Science Foundation of China (Grant No. 11761048) and Natural Science Foundation of Tianjin City (Grant No. 19JCQNJC14200). The authors would like to express their sincere thanks to the referee for many useful suggestions and comments on the manuscript.

Conflict of interest

The authors declare that they have no competing interests.

References

1. D. R. Heath-Brown, J. C. Puchta, Integers represented as a sum of primes and powers of two, Asian J. Math., 6 (2002), 535-566. https://doi.org/10.4310/AJM.2002.v6.n3.a7
2. L. Q. Hu, Y. F. Kong, Z. X. Liu, A pair of equations in four prime squares and powers of 2, Ramanujan J., 54 (2021), 79-92. https://doi.org/10.1007/s11139-019-00171-y
3. L. Q. Hu, L. Yang, On pairs of equations in unlike powers of primes and powers of 2, Open Math., 15 (2017), 1487-1494. https://doi.org/10.1515/math-2017-0125
4. Y. V. Linnik, Prime numbers and powers of two (in Russian), Trudy Mat. Inst. Steklova, 38 (1951), 152-169.
5. Y. V. Linnik, Addition of prime numbers and powers of one and the same number (in Russian), Mat. Sb., 74 (1953), 3-60.
6. J. Y. Liu, M. C. Liu, Representation of even integers by cubes of primes and powers of 2, Acta Math. Hung., 91 (2001), 217-243. https://doi.org/10.1023/A:1010671222944
7. Y. H. Liu, Two results on Goldbach-Linnik problems for cubes of primes, Rocky Mountain J. Math., 52 (2022), 999-1007. https://doi.org/10.1216/rmj.2022.52.999
8. Z. X. Liu, G. S. Lü, Eight cubes of primes and powers of 2, Acta Arith., 145 (2010), 171-192.
9. Z. X. Liu, Density of the sums of four cubes of primes, J. Number Theory, 132 (2012), 735-747. https://doi.org/10.1016/j.jnt.2011.12.003
10. Z. X. Liu, On pairs of quadratic equations in primes and powers of 2, J. Number Theory, 133 (2013), 3339-3347. https://doi.org/10.1016/j.jnt.2013.04.006
11. Z. X. Liu, G. S. Lü, Density of two squares of primes and powers of 2, Int. J. Number Theory, 7 (2011), 1317-1329. https://doi.org/10.1142/S1793042111004605
12. J. Pintz, I. Z. Ruzsa, On Linnik's approximation to Goldbach's problem. I, Acta Arith., 109 (2003), 169-194.
13. D. J. Platt, T. S. Trudgian, Linnik's approximation to Goldbach's conjecture, and other problems, J. Number Theory, 153 (2015), 54-62. https://doi.org/10.1016/j.jnt.2015.01.008
14. L. L. Zhao, On the Waring-Goldbach problem for fourth and sixth powers, Proc. London Math. Soc., 108 (2014), 1593-1622. https://doi.org/10.1112/plms/pdt072
15. X. D. Zhao, Goldbach-Linnik type problems on cubes of primes, Ramanujan J., 57 (2022), 239251. https://doi.org/10.1007/s11139-020-00303-9
16. X. D. Zhao, W. X. Ge, Eight cubes of primes and 204 powers of 2, Int. J. Number Theory, 16 (2020), 1547-1555. https://doi.org/10.1142/S1793042120500803
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
