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1. Introduction

In 1951 and 1953, Linnik [4, 5] considered a problem related to Goldbach’s problem. He proved
that each sufficiently large positive even integer N can be written as a sum of two primes and k powers
of 2, namely

N = p1 + p2 + 2ν1 + · · · + 2νk . (1.1)

Later in 2002, Heath-Brown and Puchta [1] showed that k = 13 and k = 7 under the assumption of
Generalized Riemann Hypothesis. In 2003, Pintz and Ruzsa [12] obtained that k = 8 unconditionally.
Recently, Elsholtz showed that k = 12 in an unpublished manuscript. This was also proved by Liu and
Lü [11] independently.

In 2001, Liu and Liu [6] showed that each large positive even integer N was a sum of eight prime
cubes and k powers of 2, namely

N = p3
1 + p3

2 + · · · + p3
8 + 2v1 + · · · + 2vk . (1.2)

The acceptable value was improved by Liu and Lü [8], Platt and Trudgian [13] and Zhao and Ge [16].
As an extension, recently, Liu [10] considered that every pair of large positive even integers

satisfying N2 ≫ N1 > N2 can be written as{
N1 = p3

1 + p3
2 + · · · + p3

8 + 2v1 + · · · + 2vk ,

N2 = p3
9 + p3

10 + · · · + p3
16 + 2v1 + · · · + 2vk .

(1.3)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023197


3941

He proved that (1.3) was solvable when k = 1432. Later Platt and Trudgian [13], Zhao [15] and Liu [7]
improved it to 1319, 648 and 609, respectively.

In this paper, we sharpened the above result and obtained the following theorem.

Theorem 1.1. For k = 287, the concurrent equations of (1.3) are solvable for every pair of sufficiently
large positive even integers N1 and N2 satisfying N2 ≫ N1 > N2.

We can establish Theorem 1.1 by using the Hardy-Littlewood circle method in combination with
some new technologies of Hu et al. [2] and Hu and Yang [3].

2. Proof of Theorem 1.1

Now we can give an outline for the proof of Theorem 1.1.
Let Ni with i = 1, 2 be sufficiently large positive even integers. As in [8], in order to use the circle

method, we set
Pi = N1/9−2ϵ

i , Qi = N8/9+ϵ
i , L = log2 N1

for i = 1, 2.
For any integers a1, a2, q1, q2 satisfying

1 ⩽ a1 ⩽ q1 ⩽ P1, (a1, q1) = 1,

1 ⩽ a2 ⩽ q2 ⩽ P2, (a2, q2) = 1,

we can define the major arcsM1,M2 and minor arcs m1, m2 as usual, namely

Mi =
⋃
q⩽Pi

⋃
1⩽a⩽q
(a,q)=1

Mi(a, q), mi = [1/Qi, 1 + 1/Qi] \Mi,

where i = 1, 2 and
Mi(a, q) = {αi ∈ [0, 1] : |αi − a/q| ⩽ 1/(qQi)} .

By the definitions of Pi and Qi, we know that the arcsMi(a, q) are disjoint. We also let

M = M1 ×M2 = {(α1, α2) ∈ [0, 1]2 : α1 ∈ M1, α2 ∈ M2},

m = [1/Qi, 1 + 1/Qi]2
\M.

As in [3], for convenience, let δ = 10−4 and

Ui =

(
Ni

16(1 + δ)

)1/3

, Vi = U5/6
i

for i = 1, 2. Let

S (αi,Ui) =
∑
p∼Ui

(log p)e(p3αi), T (αi,Vi) =
∑
p∼Vi

(log p)e(p3αi),

AIMS Mathematics Volume 8, Issue 2, 3940–3948.



3942

G(αi) =
∑
v⩽L

e(2vαi),

Eλ = {αi ∈ [0, 1] : |G(αi)| ⩾ λL} ,

where i = 1, 2.
Let

r(N1,N2) =
∑

log p1 log p2 · · · log p16

denote the weighted number of solutions of (1.3) in (p1, ..., p16, v1, ..., vk) with

p1, ..., p4 ∼ U1, p5, ..., p8 ∼ V1,

p9, ..., p12 ∼ U2, p13, ...p16 ∼ V2, v j ⩽ L,

where j = 1, 2, ..., k. Then we have

r(N1,N2)

=


"
M

+

"
m

⋂
Eλ

+

"
m\Eλ

 S 4(α1,U1)T 4(α1,V1)S 4(α2,U2)T 4(α2,V2)

×Gk(α1 + α2)e(−α1N1 − α2N2)dα1dα2

:= r1(N1,N2) + r2(N1,N2) + r3(N1,N2).

We can prove Theorem 1.1 by estimating r1(N1,N2), r2(N1,N2) and r3(N1,N2). We want to show that
r(N1,N2) > 0 for N2 ≫ N1 > N2.

For a Dirichlet character χ mod q, let

C(χ, a) =
q∑

h=1

χ(h)e
(
ah3

q

)
, C(q, a) = C(χ0, a).

If χ1, ..., χ8 are characters mod q, then we write

B(n, q; χ1, ..., χ8) =
q∑

a=1
(a,q)=1

C(χ1, a)C(χ2, a) · · ·C(χ8, a)e
(
−

an
q

)
,

B(n, q) = B(n, q; χ0, ..., χ0),

A(n, q) =
B(n, q)
φ4(q)

, S(n) =
∞∑

q=1

A(n, q).

Lemma 2.1. Let N1 ≡ N2 ≡ 0(mod 2), A (Ni, k) = {ni ⩾ 2 : ni = Ni − 2v1 − · · · − 2vk} and k ⩾ 35. Then
we have ∑

n1∈A (N1,k)
n2∈A (N2,k)

n1≡n2≡0(mod 2)

S(n1)S(n2) ⩾ 0.89094Lk.
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Proof. For k ⩾ 35, A(ni, pk) = 0. Now since A(ni, p) is multiplicative, we can get

S(ni) =
∞∏

p=2

(1 + A(ni, p)).

With a similar argument of Lemma 2.3 in the paper by Zhao [15], we have

S(ni) = 2
(
1 −

1
28

)∏
p>3

(1 + A(ni, p)),

∏
p⩾17

(1 + A(n, p)) ⩾ C0 := 0.82067.

Let m0 = 14. Now we can get∑
n1 ∈B(N1 , k)
n2 ∈B(N2 , k)

n1 ≡ n2 ≡ 0(mod 2)

S(n1)S(n2)

⩾ (1.9921875C0)2
∑

n1 ∈B(N1 , k)
n2 ∈B(N2 , k)

n1 ≡ n2 ≡ 0(mod 2)

∏
3<p<m0

(1 + A(n1, p))
∏

3<p<m0

(1 + A(n2, p))

⩾ (1.9921875C0)2
∑

1⩽ j⩽q

∑
n1 ∈B(N1 , k)
n2 ∈B(N2 , k)

n1 ≡ n2 ≡ 0(mod 2)
n1 ≡ n2 ≡ j(mod q)

∏
3<p<m0

(1 + A(n1, p))
∏

3<p<m0

(1 + A(n2, p))

⩾ (1.9921875C0)2
∑

1⩽ j⩽q

∏
3<p<m0

(1 + A( j, p))
∏

3<p<m0

(1 + A( j, p))
∑

n1 ∈B(N1 , k)
n2 ∈B(N2 , k)

n1 ≡ n2 ≡ 0(mod 2)
n1 ≡ n2 ≡ j(mod q)

1,

⩾ (1.9921875C0)2
∑

1⩽ j⩽q

∏
3<p<m0

(1 + A( j, p))2
∑

n1 ∈B(N1 , k)
n1 ≡ 0(mod 2)
n1 ≡ j(mod q)

1,

where q =
∏

3<p<m0
p. By the result obtained by Zhao and Ge [16, Lemma 2.3], we have

∑
n1 ∈B(N1 , k)
n1 ≡ 0(mod 2)
n1 ≡ j(mod q)

1 ⩾
(1 − 0.000064)Lk

3q
+ O(Lk−1).

Noting that

p∑
j=1

(1 + A( j, p))2 = p + 2
p∑

j=1

A( j, p) +
p∑

j=1

(A( j, p))2 = p +
p∑

j=1

(A( j, p))2

⩾ p,
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therefore ∑
n1 ∈B(N1 , k)
n2 ∈B(N2 , k)

n1 ≡ n2 ≡ 0(mod 2)

S(n1)S(n2)

⩾ (1.9921875C0)2
p∑

j=1

∏
3<p<m0

(1 + A( j, p))2 (1 − 0.000064)Lk

3q
+ O(Lk−1)

⩾
1
3

(1.9921875C0)2
∏

3<p<m0

p∑
j=1

(1 + A( j, p))2 (1 − 0.000064)Lk

q
+ O(Lk−1)

⩾
1
3

(1.9921875C0)2 (1 − 0.000064)Lk + O(Lk−1).

Then the lemma follows since L is sufficiently large. □

Lemma 2.2. Let N1 and N2 are sufficiently large positive even integers satisfying N2 ≫ N1 > N2,

r1(N1,N2) ⩾ 1.26 × 10−4U1V4
1 U2V4

2 Lk.

Proof. By Lemma 2.1 in Liu and Lü [8], we note that

r1(N1,N2)

=

"
M

S 4(α1,U1)T 4(α1,V1)S 4(α2,U2)T 4(α2,V2)

×Gk(α1 + α2)e(−α1N1 − α2N2)dα1dα2

⩾

(
1
38

)2 ∑
n1∈A (N1,k)
n2∈A (N2,k)

S(n1)S(n2)J(n1)J(n2).

We also note that J(ni) > 78.15468UiV4
i by Liu and Lü [8, Lemma 3.3]. Then the lemma follows from

Lemma 2.1. □

Lemma 2.3. Let α = a/q + λ be subject to 1 ⩽ a ⩽ q, (a, q) = 1 and |λ| ⩽ 1/qQ, with Q = U12/7; then,
we have ∑

p∼U

(log p)e(p3α) ≪ U1−1/12+ϵ +
q−1/6U1+ϵ

(1 + |λ|U3)1/2 .

Proof. This is Lemma 8.5 in Zhao [14]. □

Lemma 2.4. Let m and S (αi,Ui) be defined as before; then,

max
α∈C(M )

|S (αi,Ui)| ≪ U1−1/12+ϵ
i .

Proof. We can find that the proof of this lemma is similar to that of Lemma 3.4 in Liu and Lü [8]. We
only need to change 1/14 to 1/12 for Lemma 2.4 in the proof of Liu and Lü [8, Lemma 3.4]. □
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Lemma 2.5. Let meas(Eλ) denotes the measure of Eλ. We have

meas(Eλ) ≪ N−E(λ)
1 ,

with E(0.9532) > 8/9 + 10−10.

Proof. Similar to the proof of Liu and Lü [8, Lemma 3.5], we can calculate by computer to prove this
lemma. □

Lemma 2.6. Let N1 and N2 are sufficiently large positive even integers satisfying N2 ≫ N1 > N2,

r2(N1,N2) ≪ U1V4
1 U2V4

2 Lk−1,

with λ = 0.9532.

Proof. According to the definition of m, we have

m ⊂ {(α1, α2) : α1 ∈ m1, α2 ∈ [0, 1]} ∪ {(α1, α2) : α1 ∈ [0, 1], α2 ∈ m2}.

Then

r2(N1,N2)

=

"
m

⋂
Eλ

S 4(α1,U1)T 4(α1,V1)S 4(α2,U2)T 4(α2,V2)

×Gk(α1 + α2)e(−α1N1 − α2N2)dα1dα2

≪ Lk
( "
(α1,α2)∈m1×[0,1]
|G(α1+α2)|⩾λL

|S 4(α1,U1)T 4(α1,V1)S 4(α2,U2)T 4(α2,V2)|dα1dα2

+

"
(α1,α2)∈[0,1]×m2
|G(α1+α2)|⩾λL

|S 4(α1,U1)T 4(α1,V1)S 4(α2,U2)T 4(α2,V2)|dα1dα2

)

:= Lk(I1 + I2).

Then we have

I1 =

"
(α1,α2)∈m1×[0,1]
|G(α1+α2)|⩾λL

|S 4(α1,U1)T 4(α1,V1)S 4(α2,U2)T 4(α2,V2)|dα1dα2

≪ U11/3+ϵ
1 V4

1

"
(α1,α2)∈[0,1]2

|G(α1+α2)|⩾λL

|S 4(α2,U2)T 4(α2,V2)|dα1dα2,

where we use Lemma 2.5 and the trivial bound of T (α1,V1).
Now we use the variable substitution β = α1 + α2 and get
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"
(α1,α2)∈[0,1]2

|G(α1+α2)|⩾λL

|S 4(α2,U2)T 4(α2,V2)|dα1dα2

=

∫ 1

0
|S 4(α2,U2)T 4(α2,V2)|

( ∫
β∈[α2,1+α2]
|G(β)|⩾λL

dβ
)
dα2.

By Lemma 2.6 in the paper by Hu and Yang [3], we have∫ 1

0
|S 4(α2,U2)T 4(α2,V2)|dα2 ≪ U2V4

2 .

From Lemma 2.5 we have"
(α1,α2)∈[0,1]2

|G(α1+α2)|⩾λL

|S 4(α2,U2)T 4(α2,V2)|dα1dα2 ≪ U2V4
2 N−E(λ)

1 .

We choose λ = 0.9532 and get

I1 ≪ U11/3−8/3−ϵ
1 V4

1 U2V4
2 ≪ U1−ϵ

1 V4
1 U2V4

2 ,

since N2 ≫ N1 > N2. Similarly,

I2 ≪ U11/3−8/3−ϵ
2 V4

2 U1V4
1 ≪ U1−ϵ

2 V4
2 U1V4

1 ,

Then

r2(N1,N2) ≪ (U1−ϵ
1 V4

1 U2V4
2 + U1−ϵ

2 V4
2 U1V4

1 )Lk ≪ U1V4
1 U2V4

2 Lk−1.

□

To estimate r3(N1,N2), first we need to consider the upper bound for the number of solutions of the
equation

n = p3
1 + · · · + p3

4 − p3
5 − · · · − p3

8, 0 ⩽ |n| ⩽ Ni. (2.1)

Lemma 2.7. Let n ≡ 0(mod 2) be an integer and ϱi(n) be the number of representations of n in the
form of (2.1) that are subject to

p1, p2, p5, p6 ∼ Ui, p3, p4, p7, p8 ∼ Vi, i = 1, 2.

Then for all 0 ⩽ |n| ⩽ Ni,

ϱi(n) ⩽ bUiV4
i L−8

with b = 147185.22.
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Proof. This lemma is Lemma 2.1 in the paper by Liu [9]. □

Lemma 2.8. Let N1 and N2 be sufficiently large positive even integers satisfying N2 ≫ N1 > N2,

r3(N1,N2) ⩽ 117.04λkU1V4
1 U2V4

2 Lk.

Proof. According to the definitions of m and Eλ, by Lemma 2.7 and the definition of ϱ(n) we have

r3(N1,N2)

⩽ (λL)k
"

(α1,α2)∈[0,1]2

|S 4(α1,U1)T 4(α1,V1)S 4(α2,U2)T 4(α2,V2)|dα1dα2

⩽ (λL)k
∫ 1

0
|S 4(α1,U1)T 4(α1,V1)|dα1

∫ 1

0
|S 4(α2,U2)T 4(α2,V2)|dα2

⩽ (λL)k(log(2U1))4(log(2V1))4(log(2U2))4(log(2V2))4ϱ1(0)ϱ2(0)
⩽ 117.04λkU1V4

1 U2V4
2 Lk.

□

Combining Lemmas 2.2, 2.6 and 2.8, we can obtain

r(N1,N2) > 1.26 × 10−4U1V4
1 U2V4

2 Lk − 117.04λkU1V4
1 U2V4

2 Lk.

Therefore we solve the inequality
r(N1,N2) > 0

and obtain k ⩾ 287. Now the proof of Theorem 1.1 is complete.

3. Conclusions

To sum up, we deduce that every pair of sufficiently large even integers N1, N2 satisfying N2 ≫

N1 > N2 can be represented in the form of a pair of eight cubes of primes and 287 powers of 2.

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangxi Province for Distinguished
Young Scholars (Grant No. 20212ACB211007), Natural Science Foundation of China (Grant No.
11761048) and Natural Science Foundation of Tianjin City (Grant No. 19JCQNJC14200). The authors
would like to express their sincere thanks to the referee for many useful suggestions and comments on
the manuscript.

Conflict of interest

The authors declare that they have no competing interests.

AIMS Mathematics Volume 8, Issue 2, 3940–3948.



3948

References

1. D. R. Heath-Brown, J. C. Puchta, Integers represented as a sum of primes and powers of two, Asian
J. Math., 6 (2002), 535–566. https://doi.org/10.4310/AJM.2002.v6.n3.a7

2. L. Q. Hu, Y. F. Kong, Z. X. Liu, A pair of equations in four prime squares and powers of 2,
Ramanujan J., 54 (2021), 79–92. https://doi.org/10.1007/s11139-019-00171-y

3. L. Q. Hu, L. Yang, On pairs of equations in unlike powers of primes and powers of 2, Open Math.,
15 (2017), 1487–1494. https://doi.org/10.1515/math-2017-0125

4. Y. V. Linnik, Prime numbers and powers of two (in Russian), Trudy Mat. Inst. Steklova, 38 (1951),
152–169.

5. Y. V. Linnik, Addition of prime numbers and powers of one and the same number (in Russian),
Mat. Sb., 74 (1953), 3–60.

6. J. Y. Liu, M. C. Liu, Representation of even integers by cubes of primes and powers of 2, Acta
Math. Hung., 91 (2001), 217–243. https://doi.org/10.1023/A:1010671222944

7. Y. H. Liu, Two results on Goldbach–Linnik problems for cubes of primes, Rocky Mountain J.
Math., 52 (2022), 999–1007. https://doi.org/10.1216/rmj.2022.52.999
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