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1. Introduction

Let D be the open unit disk in the complex plane C, H(D) the class of all analytic functions on
D and S (D) the family of all analytic self-maps of D. Denoted by N the set of positive integers and
Ny =NU{0}.

For 0 < p < oo, Hardy space H”, consists of all f € H(D) such that (see [1])

27

o do

A1, = sup f e < oo.
0<r<1 JO T

The derivative Hardy space, which is denoted by &7, is the set of all f € H(D) whose derivative
f’ € H?. For p > 1, the space 8”, which is contained in the disk algebra, becomes a Banach space
under the norm

1£1lg = 1F O+ 11f Iz

See [2-5] and the references therein for the study of (weighted) composition operators, which are
described below, on the space S”.
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Suppose that u is a radial weight, that is, a strictly positive continuous function on D which is radial
(i.e., u(z) = pu(lz]) for any z € D). The Zygmund-type space Z, consists of all f € H(D) such that

sup u(2)If”(z)] < oo.

zeD

Under the norm |[|fllz, = [f(O)| + [f(0) + sup,p u(@)|f" (@I, Z, becomes a Banach space. When
u(z) = 1 — |z, the induced space Z, reduce to the classical Zygmund space. For some results on Z,,
and operators on them see for instance [6—16].

Let ¢ € S(D) and ¥ € H(D), the composition and multiplication operator are defined respectively
on H(D) by

Cof(2) = fle(z)) and M, f(z) = Y (2)f(2),

where f € H(D) and z € D. The product of C, and M), is known as the weighted composition operator
Wy = ¥(2) f(¢(2)). It is important to provide function theoretic characterizations when ¢ and ¢ induce
a bounded or compact weighted composition operator on various analytic function spaces, and one can
consult [17] for more research about this topic. The differentiation operator D, which is defined by
Df(z) = f'(z) for f € H(D), plays an important role in operator theory and many other different areas
of mathematics.

The first papers on product-type operators, which included the differentiation operator dealt with
the products of differentiation and composition operators (see, for example, [14, 18-21]). In [22,23],
Stevi¢ et al. introduced the following so-called Stevi¢-Sharma operator:

Tuvef(2) = u@)f((2) + v f'(¢(2), [ € HD),

where u,v € H(D) and ¢ € S(D). By taking some specific choices of the involving symbols, we can
easily get the general product-type operators:

MuCgo = Tu,O,goa CgoMu = 4 yop,0,p5 MuD = TO,u,ida DMu = 1y uids Ct,DD = TO,l,go’
DCy=Toyy, MCyD=Toue, MDCy=Toupp, CoMyD =Touop,
DM,Cy =Ty up gy CoDMy = Tuwopuopps DCoMy = Tyop) ¢ wop)e-

There has been an increasing interest in studying the Stevi¢-Sharma operator between various spaces
of analytic function recently. For instance, Stevi¢ et al. in [22, 23] characterized the boundedness,
compactness and essential norm of 7,,, on the weighted Bergman space under some assumptions.
Liu et al. [15, 24] investigated the boundedness and compactness of T, , from Hardy space to the
Bloch-type space or Zygmund-type space. Wang et al. in [25] considered the difference of two Stevic-
Sharma operators and studied its boundedness, compactness and order boundedness between Banach
spaces of analytic functions. Some more related results can be found (see, e.g., [9,26-29] and the
references therein).

Quite recently, Abbasi et al. in [30] generalized the Stevic-Sharma operator as follows

T, f (@) = u(@) f(e(2) + v f"™(¢2)), meN,
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and investigated its boundedness, essential norm and compactness from Hardy space into the nth
weighted-type space, which was introduced by Stevi¢ in [31] (see also [32]). In [33], SteviC et al.
introduced the following product-type operator:

(T}, )@ = u@ (@) + v(@) f" (), neNy,

and characterize the boundedness and compactness of 7, , from a general space to Bloch-type space.
Subsequently, Abbasi and Zhu et al. in [6, 16] characterized the boundedness, compactness and
essential norm of 7}, , from or to Zygmund-type space. In [34], Abbasi investigated the boundedness,
compactness and essential norm of 7y, , from Hardy space to nth weighted-type space. The first
author et al. studied the boundedness and compactness of T\, from Hardy space [8] and Qi(p,q)
space [35] to Zygmund-type space or Bloch-type space.

Motivated by these, now we consider the more general operator

T f(2) = u(@) f™(e(2) + V() f " (@(z)), meNy, neN,

and without loss of generality, we can assume that m < n. Note that when m = 0,n = 1, we get the
classical Stevi¢-Sharma operator. In this paper, we mainly investigate the boundedness and essential
norm of the generalized Stevi¢-Sharma type operators 7, from the derivative Hardy spaces S” into
Zygmund-type spaces Z,,. As corollaries, we give the characterizations of their compactness.

Recall that for two Banach spaces X and Y, the essential norm of a bounded linear operator 7 :
X — Y is the distance from T to the compact operators K : X — Y, namely

ITllex—y = inf{||IT — K||x_y : K is compact}.

It is well-known that |||, x—y = O if and only if 7 : X — Y is compact.

Throughout this paper, for nonnegative quantities X and Y, we use the abbreviation X < YorY > X
if there exists a positive constant C independent of X and Y such that X < CY. Moreover, we write
X=YifXsY<sX

2. Boundedness

In this section, we give some necessary and sufficient conditions for the generalized Stevi¢-Sharma
type operators T, : S — Z, to be bounded in different cases involving m and n. For this purpose,
we need the following known lemma which follows from known estimates for the point evaluation
functional on the Hardy space. For example, for the second one see some lemmas in [36].

Lemma 1. Suppose 1 < p < oo and k € N, then

1| f1l.se
e < Wfllse and |F9) s —08__
(1 =z»)»™
for each f € SP.
Forany w e D and j € N, set
(1w
fiw@)=——F7—, z€D. 2.1)
(1 —wz)r*/!

It can be shown that f;,, € S” and sup,,.p || fiwlls» < 1 for every j € N. Moreover, it is evident that f;,,
converges to zero uniformly on compact subsets of D as [w| — 1.
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Lemma 2. Let 1 < p <oo,mn e Nandm+2 <n. Foranyw € D\ {0} and i,k € {m,m+ 1,m +

2,n,n+ 1,n + 2}, there exists a function g;,, € S” such that

—
® N _ W 0k

where 6, is Kronecker delta.

Proof. We use here the method for constructing the test functions given in [31,36]. For any w € D\ {0}
and constants c1, ¢;, 3, C4, Cs, Cg, let

6
2@ = D ¢ifinl2),

J=1

where fj,, is defined in (2.1). Foreach i € {m,m+1,m+2,n,n+1,n+2}, the system of linear equations

6
1 1 . W Sim
g (w) = — L Y (- DG+ G+ jEm—2) = e
(1- |w|2>p j=1 p (1-lw2)?
(I’I’H-]) m+1 6 1 1 . W”H16i(m+l)
(w) = ZC +J—1)( +pG+jtm—-1)=——
(o) p ™ j=1 P A-wp2y? ™
2) —m+2 1 . 1 . 1 . 7m+25’_ m+
g w) = —+m+,ZCj(‘+J—1)(-+])"'(-+J+m): i)
(=) ? P (1-lw)?
(n) 1 _ 1 1 l . _ 2 —_ Wn6iil
gw (W) = —M]ch( +j-DG+) G+ jrn=2)= —i—
(1- lez)l’ P (1-Iwi)?
gy = L — 2 G4 j-DE )t jrn—1y= Tl
(1- |w|2)p*” i1 (1- |w|2)1’
(Yl+2)(w) +2 6

1, - 1, - 1, WS
cil=+j-D(E=+)--(=+j+n = —F——
(- |w|2)l’+n+l ]gl Jip ‘] ) p ‘]) P ‘] ) (l_lwlz)%ﬂwl

has a unique solution ¢', j € {1,2, 3,4, 5, 6} that is independent of w, since the value of the determinant
of coeflicient matrix is

z(%+m_1)(ll)+m)(;+m+1)(%+m+z)(;1)+m+3)2(%+m+4)3
1 3,1 3 1 3,1 2,1

-(;+m+5) (;+m+6) '--(;+n—1) (;+n)(l_?+n+l)

m-—m—-2)n-m—-1>m—my’mn—m+1)*(n—-m+2)

which is not equal to zero. For such chosen numbers ¢’, j € {1,2,3,4,5, 6} the function

6
gin(@) = ) ¢ fiunl@)

j=1
satisfies the desired conditions.

O
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Now, we state and prove our main results. For simplicity of the expressions, we write

An(2) = u”(2),
Ap1(2) = 2u'(2)¢"(2) + w(2)¢" (2),
An2(2) = u(2)¢' (2)°,

A,(2) =V"(2),
Ani1(2) = 2V ()¢ (2) + v(2)¢" (2),
Apin(2) = V()¢ ().

Theorem 1. Let 1 < p < oo, u,v € HD), ¢ € S(D), myn € N, m + 2 < n, I denotes the set
{m,m+1,m+2,n,n+1,n+2} and u be a radial weight. Then, the following statements are equivalent.
(i) The operator T,)5, : 8" — Z,, is bounded.
(i1)
6

D suplIT, fillz, < o0, and )" supp(2)Ai2)| < oo,
j=1 web iel €D

where f;,, are defined in (2.1).
(iii)
U(2)IAi(2)]
T < (1= lp@P)r!

Proof. (i)=(ii). Suppose that T}, : S — Z, is bounded. For each w € D and j € {1,2,3,4,5,6},
| fiwlls» < 1 and hence by the boundedness of T,y we have ||, fwllz, < oo. Therefore,

6
Z sup ||TLT;’,1¢fj,w||zﬂ < 00.
=1 weD

Taking f,,(z) = Z" € SP, by the boundedness of T}, : S” — Z,, we get

0o > ([T, fullz, = sup uI(T 5, fn)” (2] = sup u(2)|A,(2)m!,
z€D zeD

then we obtain

sup p(2)|An(z)| < co. (2.2)

zeD

Applying the operator T;y, t0 fiui1(z) = 2! € S” we have

00 > TS fueillz, 2 sup u@I(T, finet)” (2

z€eD
= Sugu(z)lAm(z)sO(z)(m + DI+ Ap(@)(m + DY
2 Sugu(z)lAmn(z)l(m + D! - Sup MDA (Dp@)|(m + 1,
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from which along with (2.2) and the fact that |¢(z)| < 1 it follows that

sup ((2)|Apm+1(2)| < co.
zeD

Similarly, taking f,,,2(z) = 7"** € SP, we get

00 > [T fnsallz, = sup (NI, fns2)” (2
zeD

,(m +2)!

= sup (u(2)|Am(2)(2) + A (R)@R)(m + 2)! + Apa(2)(m + 2)1,

zeD

from which along with (2.2), (2.3), the triangle inequality and the fact that |p(z)| < 1 yields

sup p(2)|Am+2(2)] < 0.
zeD

By using the function f;,(z) = 7" € S8”, we obtain

oo ST fullz, = sup u@IT 5 /)" (@)

zeD
! !
=50 AN s A Q)
!
T e TR A

(2.3)

(2.4)

from which along with (2.2)—(2.4), the triangle inequality and the fact that |¢(z)| < 1 it follows that

sup ((2)|A,(2)| < 0.
zeD

Taking f,+1(z) = Z**' € 8”, by the boundedness of T}, : S* — Z, we get

oo >\, farillz, 2 sup p@IT,5, fur1)” (@)
zeD

(n+1)! (n+1)!

= Szgé’“(Z) An(@)p(z) ! m + A1 (@) = m)!
f A @@y DL @+ 1)+ A O+ D
—m—1)!

from which along with (2.2)—(2.5), the triangle inequality and the fact that |p(z)| < 1 gives

sup ((2)|An+1(2)] < co.
zeD

Finally, using the function f,,,(z) = 7" € S” we get

oo >IN fasallz, 2 sup p@I(T,5, fur2)” (@)
zeD

D!
= Szlelg u(z) Am(z)go(z)”_’"”% + A 1(De(2)

(n+2)!
n-m+1)

n—m+1

(2.5)

(2.6)
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e (1 +2)! (n+2)!
m + An(Z)<P(Z)2 3

+ A1 (@) (n + 2)! + A, (D) (n + 2)!,

+ Api2(2)e(2)

from which along with (2.2)—(2.6), the triangle inequality and the fact that |¢(z)| < 1 it follows that

Sugﬂ(Z)lAmz(z)l < oo, 2.7

Combining (2.2)—(2.7) we deduce that

D sup (A < oo.

iel €D

(i1)=(iii). Assume that (ii) holds. By Lemma 2, for each i € I and ¢(w) # 0, there exist constants
C;’j €{1,2,3,4,5,6} such that

6

Zipon(2) = Z ¢ fiowm(@) €SP, (2.8)

J=1

and

—k
oP (5 = (W) dik
= ey

where fj ) are defined in (2.1) and k € I. Then we have

6
00> ) SUpIIT, Fioonllz, 2 SUp T, 8isunllz,
we

=1 WE
DAl
(1 = [pw)P)7+-"!

> W0 gipon) W)| = (2.9)

From (2.9) and (ii), for each i € I, we have

HW)IA; (W) HW)IA;(w) HW)|A;(w)|
i < sup 1yl + sup 1y
weD (1 = [p(w)>)? leai>1 (1 = lo(w)|?)? i<t (1 = lo(w)|?)?
: WIAWleW)F 14\ L+i-1
w4 (1 = lpw)l?)» le(w)l<4

< 00,

Therefore,

H@IAR)
T D (1 - o))+

AIMS Mathematics Volume 8, Issue 2, 3920-3939.
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(iii))=(1). Suppose that (iii) holds. For any f € 8”, by Lemma 1 we have

. A
OO < Y HOIAI ) 5 Iflls Y —LDAEL_
icl e (1— |90(Z)|2)”+l

Moreover,

(T, O + (T f) (O))
<(Ju(0)] + [t O)DLL™ (O] + [u(0)¢" O F ™V (p(0))]
+ (VO] + Y O™ (@(0))] + ()¢ (O] £+ (p(0))]
S( |u<0>|+|u'fc+)>|_1+ lu(O)‘p(O)L .\ |v(0>|+|v<l(1>|_1+ 'V(O)"D(O)L )” Lo
(1= lpO)P)r™ " (1 =1p)P)»™™ (1 —lpO)P)r™ " (1 - o))"

Consequently, 7,5, : S” — Z, is bounded. The proof is completed. m|
When m + 2 = n, as in the proof of Lemma 2, we have forany 0 # w e Dand i,k € {m,m+ 1,n,n+
1,n + 2}, there exist constants d; j € {1,2,3,4,5} such that the function h;,, = §:1 dj. fiw(@) € S°
satisfying
A® 1y = Wi

( S —
" (1 — [wp2)s**!

By this and analysis similar to that in the proof of Theorem 1, we can get the following result.

Theorem 2. Let 1 < p < oo, u,v € HD), ¢ € S(D), myn € N, m + 2 = n, I, denotes the set
{m,m+ 1,n+ 1,n+ 2} and u be a radial weight. Then, the following statements are equivalent.
(i) The operator T,5, : 8" — Z,, is bounded.
(i1)
5
2 S lIT L fiallz, < oo.

=1 weD
and

Z sup u(2)|Ai(2)] + sup HRNuR)' (2)* +v"(2)] < oo,

iel, €D z

where f;,, are defined in (2.1).
(iii)
H(2)A(2)] p@IuE)¢'(2)* +v" ()|
1ii +su Lin-1 <
ier, 22 (1 = lp(2)l)? €D (1= lp(2)]?)?

For the case m + 1 = n, similar to Lemma 2, forany O # w €e D and i, k € {m,n,n + 1,n + 2}, there
exist constants e;, j €{1,2,3,4} and the function ¢;,, = Z;!:l e; fiw(z) € S such that

k W'
qpaw) = —
’ (1 = [w)r !

which along with the same method as in the proof of Theorem 1, we obtain the following theorem.

AIMS Mathematics Volume 8, Issue 2, 3920-3939.
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Theorem 3. Let 1 < p < oo, u,v € HD), ¢ € S(D), m,n € N, m+ 1 = n, I, denotes the set {m,n + 2}

and u be a radial weight. Then, the following statements are equivalent.
(i) The operator Ty, : S — Z,, is bounded.
(i1)
4
D suplIT, fiullz, < oo,

=1 weD
and

D sup p@)IAID)] + sup ()2 ()¢ (2) + ()¢ (2) + V()

icl, zeD zeD

+ sup u()u(2)¢’ (2)* + 2v'(2)¢' (2) + v(2)¢” (2)] < o0,

zeD

where f;,, are defined in (2.1).

(i11)
sup ,u(z)IAi(z)ll s p,u(z)|2u @¢'(2) + u(2)¢" (z) + v (2)l
icl, zeD (1 — |¢(Z)|2);+171 2D (1 _ |(P(Z)|2)P+n 1
b ,u(z)lu(z)so @+ 2V (¢’ (2) + V(z)so”(z)l
ZeD (1 = lp)P)r*"

For the case m = 0, we need to break the problem into three different cases: n =1,n =2 and n > 2.

In the same manner as before we have the following theorems.

Theorem 4. Let 1 < p < oo, u,v € HD), ¢ € S(D) and u be a radial weight. Then, the following

statements are equivalent.
(i) The operator T, , : S — Z, is bounded.
(i)ueZ,
4
D suplITuygfinllz, < oo,
=1 weD

and

sup H(R)12u ()¢’ (2) + u(2)¢” () + V" (2)

+ sup ()¢’ (2)° + 2V ()¢’ (2) + v(2)¢" (2)] + sup u@@)ll¢’ @) < oo,

z€D zeD

where f;,, are defined in (2.1).

(iii) u € Z,,
M(Z)IZM (@¢'(2) + u(z)p”(z) + v'(2)|
- (1~ lg()P)?
s ﬂ(z)lu(z)so (27 + 2V ()¢’ (2) + v@¢" @l sup p@IvQ@)lle ) - o

e (1 - lp@P)7*! e (1 - ()7 *?
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Theorem S. Let 1 < p < oo, u,v € HD), ¢ € S(D) and u be a radial weight. Then, the following
statements are equivalent.
(i) The operator Ty, : S” — Z,, is bounded.

(i)ueZ,
5
D suplITe2, fiullz, < oo,
=1 weD
and
Sugﬂ(z)IZM’(z)¢’(z) + u(2)¢” (2) + SuIé),u(z)lu(z)so’(z)2 +V'(2)]
+ Sugﬂ(2)|2v'(2)¢'(2) +v(2)¢” (2| + SuIé)/J(Z)IV(Z)IIQD’(Z)I2 < 00,
where f;,, are defined in (2.1).
(i) ue,
up u@)2u' (@)@’ (z) + u(x)¢” (2)| + sup u@Mu@)¢' (2)* + v ()
b (1 - le@P)" (1= lp2)R)r!
s #(z)|2v (@¢'(2) + V(z)so”(z)l sup u@VlY () ‘o
b (1 - lp()P)7* = (1 = lp@P)r*

Theorem 6. Let 1 < p < oo, u,v € HD), ¢ € S(D), n € N, n > 2, I5 denotes the set {1,2,n,n+1,n+2}
and u be a radial weight. Then, the following statements are equivalent.
(i) The operator Ty, : S” — Z,, is bounded.

(i) ueZ,
6
DS ITL finllz, <o, and ) supu@IA)] < .
j=1 W€ ier, P
where f;,, are defined in (2.1).
(i) u e Z,
H(2)IA(2)]

Hen (1= o))t

Note that A(z) = 2u' ()¢’ (z) + u(z)¢”(z) and A,(z) = u(z)¢’(z)* in Theorem 6.
3. Essential norm

In order to estimate the essential norm of 7}, : S” — Z,,, we need the following lemma, which is
a direct consequence of Lemmas 3.2 and 3.3 in [37].

Lemma 3. Let 1 < p < oo, u,v € HD), ¢ € S(D), m,n € N and u be a radial weight such that the
operator T, : S” — Z, is bounded. ThenT,%, : 8" — Z, is compact if and only if || T, wfkllzﬂ -0

as k — oo for each norm-bounded sequence {fi}ren in S” which converges to zero uniformly in D.

AIMS Mathematics Volume 8, Issue 2, 3920-3939.
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Theorem 7. Let 1 < p < oo, u,v € HD), ¢ € S(D), myn € N, m + 2 < n, I denotes the set
{m,m+1,m+2,n,n+1,n+2}and u be a radial weight such that T, : S* — Z, is bounded. Then

6
. . H1(2)|A:(2)|
T2 Nlesroz, ~ Y Timsup T2, fullz, ~ > lim sup L
=1 W=l ier e@=1 (1= lp(2)?)7

where f;,, are defined in (2.1).
Proof. First, we prove that

6
1T lesr-z, 2 ) imsup 1T, fiullz,.

=1 wl—1

It is immediate that for each j € {1,2,3,4,5,6} and w € D, ||f;.lls» < 1. For any compact operator K
from S” into Z,,, we have

1T, — Kllsr—z, 2 limsup|(T}, — K)fjullz,

u,v, u,v,p
wl—1

> limsup |77, fiwllz, — limsup K fj,llz,-

N
wl—1 [wl—1

Since f;,, converge to zero uniformly on compact subsets of D as [w| — 1, by using some standard
arguments (see, e.g., [38,39]) we have

lim K Iz, = 0.

By the definition of the essential norm, we obtain

6
1T sz, = nf T, = Kllsrz, 2 ) imsuplIT, fiullz, (3.1)

= wo

Next, we show that

m,n : N(Z)|AI(Z)|
T ooz, 2 ) lim su vy
el b=l (1 = o)) ?™

Let {z;} be a sequence in D such that |¢(z;)] — 1 as j — co. Since Ty, : S? — Z, is bounded, for any
compact operator K : 8" — Z, and i € I, applying Lemma 3 and (2.9) we get

”T,Zn"ip - K”S”—>Zﬂ b hm sup ”Tifﬁpgi,np(zﬂllzﬂ - hm sup ”Kgi,w(z_,')llzﬂ

J—)OO J—)OO

MNA (7 )|

> Tim sup p(z))l ,(z])llsol(z{)l

e (1= ez
Ai

_ Jimsup M)l (z)ll. ’

k@1 (1= |e)P)r !
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where g; ., are defined in (2.8). Consequently,

1 < Ai Z
”Tl/ri’?\’/}:lsolle,sp—)zﬂ Z lem Sup /’l( )| ( )l

—. (3.2)
it o1 (1= o))

Combining (3.1) and (3.2), we see that it is sufficient to show

6

mn : : mn : H(@)IAi(2)]
||Tu,;,¢||e,3p_>zﬂ < min { Z lim sup ||TM,L,¢fj,w||Z,,’ Z lim sup e }
peru ! el =1 (1= lp@)P) ™

Define K, f(z) = f,(z) = f(rz), where 0 < r < 1. Then K, is a compact operator on S” with ||K,|| < 1
and f, — f on compact subsets of D as r — 1. Let {r;} C (0, 1) be a sequence such that r; — 1 as
j — oo. Then for every j € N, T,7 K, : 8" — Z, is compact, and so

T llesr—z, < lim sup T, = T K llsr -z,
J—)OO

Therefore, we only need to prove that

limsup [T, — T, K, |lsr -z,

j_>oo u,v,p u,v,p
6
. . . H(2)IA(2)]
< 1 T fiwllz,s ) 1 — - (3.3)
mm{; lf:vlljlfp o fiwllz IZEI: \1;(13)|S—1>11p (1- |¢(Z)|2)p+l—l}
For each f € 87 satisfying ||f]|ls» < 1, we have
||(T;’f;'f¢ - TZ?;r.lt,oK’j)f”Zu
Tl = Tz DOV (T f = TusioF) O + sUp p@IT 5 f = Ty fr))" (@)
< ()] + W ODIf = £)" (@O + [u0)¢" (O)(f = f;)" P ((0))]
%)
+ (WO)] + VOIS = £;)™ (@O + (0" (O)(f = f:)"™ P ((0))]
D,
* sup D UQAES = ) )
PRISIN “jep
)
# s D H@IARS = £) ()L (34)
PIZIN jef
@3

where N € N such that r; > % for all j > N. Furthermore, we have (f — frj)(’) — 0 uniformly on

compact subsets of D as j — oo for any ¢ € Nj. Thus

lim sup @y = lim sup ®; = limsup ®, = 0. (3.5)

Jj—ooo j—oo J—oo
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Finally, we estimate ®3. Obviously,

O < sup p@IA @@+ Y sup u@IAI (i@ (3.6)

el |e@I>ry el le@I>ry

¥; Qi

For each i € I, using Lemma 1, (2.8) and (2.9) we obtain

(1 = lp@P) 1 (@) 1A

lP,':

le@l>ry (@)l (1 = p(z)P) 7+
< ”f”Sl’ sup ||TZ1vn¢glt,0(Z)||Zy
lp@)I>rn
6
< ) sup T2 fiallz, (3.7)
=1 [wl>ry
On the other hand,
Loinly g (@)IAi(2)]
Pi= sup (1= le@Pr I Op@)——
lp(@)>ry (1 _ |(p(z)|2);+z—
(2)IAi)
<lflls sup —E (3.8)

wolirs (1 - @)
Taking the limits as N — oo in (3.7) and (3.8) we get

hm sup‘{’ Z lim sup (|77, fiwllZ,» (3.9
=1 w]—1
and
A;
limsup ¥; < limsup HRIAG) (3.10)
joo w1 (1= |p)P)r "
Similarly, we have
A;
lim sup Q; < Z limsup 177" fiullz, and  limsup €, < limsup HRIAR) (.11)
oo = o jooo lp@I-1 (1 — Igo(z)lz)l’ﬂ 1
Therefore, by (3.4)—(3.6), (3.9)—-(3.11), we obtain
lim sup ||T;"v”¢ - TZ"’L,K \lsr—z, = limsup sup ||(TZ1V"¢ - T;”v"wK )z,
jooo j—>°° Ifllsp=<1
< Z lim sup 17,57, fiwllz,»
=1 lwl—1
and
A;
limsup |75, — 1,5 K llsr—z, S Z lim sup HRIAL2)
Jjooo el le(z)|—1 (1 — |¢(Z)|2)P+l 1

From the last two inequalities we get (3.3) and the proof is completed. O
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Similar arguments apply to the case m + 2 = n or m + 1 = n, which along with Theorems 2 and 3,
we obtain the following results.

Theorem 8. Let 1 < p < oo, u,v € HD), ¢ € S(D), m,n € N, m +2 = n, I, denotes the set
{m,m+ 1,n+ 1,n+ 2} and pu be a radial weight such that T, : S” — Z, is bounded. Then

1T llesr—z, ~thsup||T;”V"¢f,W||Zﬂ
=1 [w|—1

N HOAEL e @+ V@)
= 1m sup — + lim sup 1
ien, @1 (1 - |<P(Z)|2);+l_1 lp(2)|—1 (1- |<,0(Z)|2)5+"_1

where f;,, are defined in (2.1).

Theorem 9. Let 1 < p < oo, u,v € HD), ¢ € S(D), m,n € N, m + 1 = n, I, denotes the set {m,n + 2}
and u be a radial weight such that T,y : S* — Z,, is bounded. Then

T Mesr—z, = Z limsup |75 fiwllz,

wl—1

j=1

lmsup  HOAQ@L ORI () + u@)e" Q) + V(@)
o (1= le@R) T o (1 - @Ry !
+ Tim sup U@ (2)* + 2V ()¢’ (z) + V(Z)SO"(Z)l

le@I-1 (1 = lp@)P)7*"

where f;,, are defined in (2.1).

For the case m = 0, note that every sequence in S” bounded in norm has a subsequence which
converges uniformly in D to a function in S (see [37, Lemma 3.2]), which along with the similar
arguments as in the proof of Theorem 7 yields the following theorems.

Theorem 10. Let 1 < p < oo, u,v € H(D), ¢ € S(D) and u be a radial weight such that T, , : S* —
Z, is bounded. Then

Il sr-z, ~th SUP I iz,

=1 lw|—1

ﬂ(Z)I2u ()¢ (z) + u2)¢" (2) +V"(2)|

~lim su
|¢<z>|ﬂ1 (1 - le@P)?
+ lim su u@Mu@)¢' (2)* + 2V (2)¢'(2) + ()" (2)
pEu (1 = ()7
+lims ,u(z)IV(z)Ilso )P

s (1 @)

where f;,, are defined in (2.1).
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Theorem 11. Let 1 < p < o0, u,v € H(D), ¢ € S(D) and u be a radial weight such that T,?:vz,s,J : 8P —
Z, is bounded. Then

0,2
[ e ~lem8up||Tuwf]w||z#

wl—1

M(@)2u' (2)¢'(2) + u(z)so”(z)l lims ﬂ(Z)|M(Z)<P (2 +v"(2)

~ lim sup
|¢<z>|ﬁ1 (1 - lp()P)? lw(z)lﬁl (1 = lp)P)7*!
T limsu u(z)|2v @' (@) +v@P" @I | lim sup u@Iv@lle' @)1
it (1 - lp)PR)r* e (1 - lp@P)r*

where f;,, are defined in (2.1).

Theorem 12. Let1 < p < oo, u,v € HD), ¢ € S(D), n € N, n > 2, I5 denotes the set {1,2,n,n+1,n+2}
and u be a radial weight such that Ty}, o - 8P — Z, is bounded. Then

. Q@IAR)
1T Mesr -z, = thS“PHTSwfzw”zp = Dlimsup =R,
o1 el iery; @=L (1= o(2)] ),,

where f;,, are defined in (2.1).

From Theorems 7-12 and the fact that ||7||, x—y = O if and only if 7 : X — Y is compact, we can
get the following corollaries, which characterize the compactness of 7,y : S” — Z,,.

Corollary 1. Let 1 < p < oo, u,v € HD), ¢ € S(D), m,n € N, m + 2 < n, I denotes the set
{m,m+1,m+2,n,n+1,n+ 2} and u be a radial weight. Suppose that T,y : S* — Z,, is bounded,
Then, the following statements are equivalent.

(i) The operator T,y : 8" — Z,, is compact.

(ii)
6
Z limsup 77 fiullz, = 0
= o
(iii)
. H(2)IA(2)]
1m Ssu

oot (1 - o))

Corollary 2. Let 1 < p < oo, u,v € HD), ¢ € S(D), myn € N, m + 2 = n, I| denotes the set
{m,m+ 1,n+ 1,n+ 2} and u be a radial weight. Suppose that TZ%, : 8” — Z, is bounded, Then, the
following statements are equivalent.

(i) The operator T,5, : 8" — Z,, is compact.

(ii)

Z lim sup||TZ1v"¢fJW||Zy =0.

Jj=1 lwl—1
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(111)

=0.

Z lim sup H(DIA(2)| + lim su U@ (2)* +Vv"(2)]
el (1= lp@P)r ™ ket (1= le@P) !

Corollary 3. Let 1 < p < oo, u,ve HD), ¢ € S(D), m,n € N, m+ 1 = n, I, denotes the set {m,n + 2}
and p be a radial weight. Suppose that T, : S" — Z, is bounded, Then, the following statements
are equivalent.

(i) The operator T,y : 8" — Z,, is compact.

(i1)
Z limsup (|75, fiwllz, = 0
=1 wl—1
(111)
I H1(2)A(2)] . M) (2)¢' (2) + u(2)¢” (2) + v’ (2)
im su —— + lim sup
T e@ist (1= et i (1 = lp(2)P)r !
. ﬂ(z)lu(z)cp (2> + 2V ()¢ (2) + v(2)¢” (2)]
+ lim su =0.
lw@lﬂ (- Iso(z)lz)l'“’

Corollary 4. Let 1 < p < oo, u,v € HD), ¢ € S(D) and u be a radial weight. Suppose that
Tyyy : S” — Z, is bounded, Then, the following statements are equivalent.

(i) The operator T, , : S — Z, is compact.

(i1)

Z lim sup ”Tu % ‘,ofj W”Z,, =0.
= wiol
(iii)
lim su ﬂ(Z)I2u (2)¢'(z) + u(2)¢" (z) + v (2)|
|¢(z>\ﬁ1 (1 - le@P)?
: L@@ (2)* + 2V ()¢’ (2) + v(2)¢" @)l
+ lim sup -
le(@-1 (1 = le@)P)r*!
: p@V@Ile'@F
+ lim sup — =
@1 (1= [p2)P)r™?
Corollary 5. Let 1 < p < oo, u,v € HD), ¢ € S(D) and u be a radial weight. Suppose that
Tff,’vz,ga : 8P — Z,, is bounded, Then, the following statements are equivalent.

(i) The operator T,?jvz,sa : 8P — Z, is compact.

(ii)

Z lim suplngvzwaWIIZﬂ =0.

Jj=1 lwl—1
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(iii)
I H@)12u' (2)¢' (2) + u(z)QO”(Z)I p@u)¢’ (2)* +v"(2)|
1m sup lim sup ]
eI (1 - le@P)" w1 (1= lp)P)r ™!
i H(@)2V (2)¢'(2) + V(z)so”(z)l LRIV @I
im sup lim sup =0.
eI (1 - lp@)P)r a1 (1= )P

Corollary 6. Let 1 < p < oo, u,v e HD), ¢ € S(D), n € N, n > 2, I3 denotes the set {1,2,n,n+1,n+2}
and u be a radial weight. Suppose that Tf,)jf,ga : 8” — Z, is bounded, Then, the following statements
are equivalent.

(1) The operator T,?jf’,, o 8P — Z, is compact.

(i1)
th supl|T27, fillz, = 0

(iii)

Zl M)A
1m sup =
S -1 (1= ()Rt

4. Conclusions

In this paper, we generalize the Stevi¢-Sharma operator by 7,5, f(z) = u(z) F™(0(2)+v(2) ™ (@(z)),
where m, n are nonnegative integers such that m < n, and investigate the boundedness and essential
norm of T, acting from the derivative Hardy spaces S” into Zygmund-type spaces Z, in different
cases. As an application, we also give the characterizations of their compactness.
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