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1. Introduction

Convexity is a fundamental feature in many fields of mathematics. However, in vector spaces, it is
not the best environment for understanding the basic characteristic of convex sets. As a remedy,
abstract convex structures [40] came into existence and have many applications in different areas of
mathematics, including topology, graph theory and lattice theory (see [39], [35] and [32]). Convex
structures can be determined in several different ways, including through the use of the algebraic
closure operator and hull operators. In 1971, Calder [17] introduced the concept of Interval operators
which is a natural generalization of intervals and it also provides a natural and frequent method of
constructing convex structures. Interval operators have many applications in planer geometry such as
Pasch-Peano (PP) spaces.

In 1921, Sierpinski [20] introduced zero-dimensional topological space consisting of a basis that is
clopen and it has been utilized to construct several well-known classes of topological spaces such as
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Lusin spaces [16], non-Archimedean spaces [19] and stone spaces [21]. Recently, Stine put forward
this notion to an arbitrary topological category [36, 37].

Classical separation axioms of topology have been put forward for topological categories by
numerous authors [2, 18] using different approaches. In 1991, Baran [2, 18] introduced T0, T1 and T2

objects and (strongly) closed objects in a set-based topological category by using initial, final lifts and
(in) discrete objects. Further, he introduced the concept of pre-T2 in topological space and later on,
extended it to a set-based topological category [2, 9]. T0 objects and the notion of closedness are
widely used to define and characterize various forms of Hausdorff objects [5], connectedness [8] and
sobriety [11] in some topological categories [11, 23, 33].

In 1994, Mielke [30] showed the important role of pre-T2 objects in the general theory of
geometric realization, their associated intervals and corresponding homotopic structures. Also,
in 1999, Mielke [31] used pre-T2 objects of topological categories to characterize decidable objects in
topos theory, where X ∈ Ob j(E) with E as a topos [21], is called decidable if the diagonal ∆ ⊂ X2 is a
complemented subobject.

Other uses of pre-T2 objects include defining various forms of Hausdorff objects [5], T3 and T4

objects [7] in some well-known topological categories [14, 25]. There is also, a relationship between
pre-T2 objects and partitions, as well as equivalence relations in case of Top see [36] in the some other
categories see [10, 12, 13, 15].

The salient objectives of the paper are stated as follows:

(1) To characterize separated, T0, T0, T1, pre-T2, T2, S T2 and NT2 interval spaces, and examine their
mutual relationship;

(2) To give the characterization of closedness of singleton sets and D-connectedness in the category
IS (i.e., the category of interval spaces and interval preserving mappings);

(3) To examine the zero-dimensionality and study its relation to D-connectedness in the category of
interval spaces and interval preserving mappings.

2. Preliminaries

Let X be a non-empty set and {Bi}i∈I
dir
⊆ P(X) denotes the directed subset of X, which means that,

for any E, F ∈ {Bi}i∈I , there exists G ∈ {Bi}i∈I such that E ⊆ G and F ⊆ G. For any non-empty sets X
and Y , and f : X −→ Y be any mapping. Define forward mapping f→ : P(X) −→ P(Y) and backward
mapping f← : P(Y) −→ P(X) by f→(E) = { f (x) | x ∈ E} and f←(G) = {x | f (x) ∈ G} for any E ∈ P(X)
and G ∈ P(Y), respectively.

Definition 2.1. (cf. [40, 41]) A convex structure C on the set X is a subset of P(X) satisfying the
following:

(1) ∅, X ∈ C;

(2) {Bi}i∈I ⊆ C implies
⋂
i∈I

Bi ∈ C;

(3) {Bi}i∈I
dir
⊆ C implies

⋃
i∈I

Bi ∈ C.
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The pair (X,C) is called convexity space. The members of C are called convex sets and their
complements are called concave sets.

A mapping g : (X,CX) −→ (Y,CY) is called convexity preserving mapping provided that E ∈ CY

implies g←(E) ∈ CX. Let CS denotes the category of convexity spaces (X,C) and convexity preserving
mappings.

The smallest convex set including a set E is defined as co(E) =
⋂
{F : E ⊆ F ∈ C} is called the

convex hull of E. A set of type co(E) with E is finite, and it is called polytope [40].

Definition 2.2. (cf. [40, 41]) A closure operator cl on X is a mapping cl : P(X) −→ P(X) satisfying:

(1) cl(∅) = ∅;

(2) E ⊆ cl(E);

(3) E ⊆ F implies cl(E) ⊆ cl(F);

(4) cl(cl(F)) = cl(F).

The pair (X, cl) is called a closure space. Further, the closure space (X, cl) is said to be an algebraic
closure space if cl(E) = ∪{cl(F) | F is a finite subset of E} is satisfied.

A mapping g : (X, clX) −→ (Y, clY) between two closure spaces is called a closure preserving
mapping such that g→(clX(E)) ⊆ clY(g→(E)), ∀E ∈ P(X). Let CLS denotes the category of closure
spaces and closure preserving mappings, and ACLS (the category of algebraic closure spaces and
algebraic closure preserving mappings) is the full subcategory of CLS. Note that ACLS � CS [40,41].

Definition 2.3. (cf. [40, 41]) The mapping J : X × X → P(X) is called an interval operator satisfying
the following:

(1) For all x, y ∈ X, x, y ∈ J(x, y) (Extensive Law);

(2) J(x, y) = J(y, x) (Symmetry Law).

The pair (X, J) is called an interval space, and J(x, y) is the interval between x and y.

The mapping f : (E, JE) −→ (F, JF) is called a interval preserving mapping, if

∀x, y ∈ X, f→(JE(x, y)) ⊆ JF(( f (x), f (y)).

Let IS denotes the category of interval spaces and interval preserving mappings. Note that IS is the
full subcategory of CS.

Example 2.1. (cf. [41]) Let R be the set of real numbers, and define a mapping JR : R × R −→ P(R)
by

∀x, y ∈ R, JR(x, y) = [min{x, y},max{x, y}],

where JR indicates the interval operator on R.

Example 2.2. (cf. [40, 41]) Let d be a metric on X, and define a mapping Jd : X × X −→ P(X) as
follows:
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for all x, y ∈ X, Jd(x, y) = {k ∈ X | d(x, y) = d(x, k) + d(k, y)},

where Jd indicates the geodesic interval operator on X.

Example 2.3. (cf. [40]) Let V be a vector space and define a mapping JV : V × V −→ P(V) by
JV(x, y) = {xt + (1 − t)y | 0 ≤ t ≤ 1}, where JV indicates the standard interval operator on the vector
space V.

Example 2.4. (cf. [40]) Let (X,≤) be a partially ordered set and define a mapping J≤ : X×X −→ P(X)
as follows:

J≤(x, y) =

{x, y} if x, y are incomparable;
{z | x ≤ z ≤ y} if x ≤ y,

where J≤ indicates the ordered interval operator on X.

Example 2.5. (cf. [40]) Let (M,m) be a median algebra and define a mapping Jm : M × M −→ P(M)
as follows:

for all x, y ∈ M, Jm = {m(x, y, z) | z ∈ M} = {z ∈ M | m(x, y, z) = z},

where Jm indicates the median interval operator on M.

For any interval space (X, J), if for any x, y, z ∈ X and w ∈ J(y, z), t ∈ J(x,w), and then there exists
k ∈ J(x, y) such that t ∈ J(z, k). This property is known as the Peano Property. Further, if for any
p, x, y ∈ X, z ∈ J(p, x) and w ∈ J(p, y), then the intervals J(x,w) and J(z, y) intersect. This property is
known as the Pasch property [40].

Any interval space (X, J) satisfying the Pasch and Peano properties is called a PP space. Note that
every vector space over a totally ordered field is a PP space [40].

Definition 2.4. (cf. [40, 41]) A convex space (X,C) is called an arity 2 convex space satisfying the
following: for all B ∈ P(X) and all x, y ∈ B, co({x, y}) ⊆ B implies B ∈ C.

Let CS(2) denotes the category of arity 2 convex spaces (X,C) and convexity preserving mappings.
Note that CS(2) can be embedded in IS as a reflexive subcategory [40, 41].

Proposition 2.1. (cf. [40, 41]) Suppose (X,C) is a convex space and define JC : X × X −→ P(X) by

∀x, y ∈ X, JC(x, y) = co(x, y) =
⋂

x,y∈B∈C
B.

Then JC represents the interval operator on X.

Proposition 2.2. (cf. [40, 41]) Suppose (X, J) is interval space and define CJ by

CJ = {B ∈ P(X) | ∀x, y ∈ B, J(x, y) ⊆ B}.

Then, (X,CJ) is an arity 2 convex space.

A functor U : E −→ Set (the category of sets and functions) is called topological if (1) U is
concrete (2)U consists of small fibers and (3) everyU-source has a unique initial lift, i.e., if for every
source ( fi : X → (Xi, ζi))i∈I there exists a unique structure ζ on X such that g : (Y, η) → (X, ζ) is a
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morphism iff for each i ∈ I, fi ◦ g : (Y, η) → (Xi, ζi) is a morphism or equivalently, each U-sink has a
unique final lift [1, 38].

Note that a topological functor U : E −→ Set has a left adjoint D : Set −→ E, called the discrete
functor. An object of the form X = UD(X) is called a discrete object in E, i.e., the E-objects X such
that every f : UX −→ UY , Y ∈ E, is an E-morphism.

Also, the functor U is called a normalized topological functor if the subterminals have a unique
structure [1, 38].

Lemma 2.1. (cf. [41]) Let (Xi, Ji) be the collection of interval space and ( fi : (X, J∗) −→ (Xi, Ji))i∈I be
a source. Then, for any x, y ∈ X,

J∗(x, y) =
⋂
i∈I

f←i (Ji( fi(x), fi(y))

is the initial interval structure on X.

Lemma 2.2. (cf. [41]) Let (X, J) be an interval space. Then, we have the following:

(1) The discrete interval structure on X is defined by Jdis(x, y) = {x, y} for any distinct x, y ∈ X.

(2) The indiscrete interval structure on X is given by Jind(x, y) = X for any distinct x, y ∈ X.

Remark 2.1. The topological functorU : IS −→ Set is normalized since a unique structure exists on
∅, the empty set or X = {x}, i.e., a one-point set for X ∈ Ob j(IS) [41].

3. Separated, pre-Hausdorff and Hausdorff interval spaces

Let X be a set and the wedge X2∨
∆ X2 be two any disjoint copies of X2 intersecting diagonally. In

other words, the pushout of ∆ : X −→ X2 along itself. A point (x, y) in X2∨
∆ X2 is denoted by (x, y)1

(resp. (x, y)2) if it is in the first (resp. second) component.

Definition 3.1. (cf. [2]) The mapping A : X2∨
∆ X2 −→ X3 is said to be the principal axis mapping

provided that

A(x, y) j =

(x, y, x) , j = 1
(x, x, y) , j = 2.

Definition 3.2. (cf. [2]) The mapping S : X2∨
∆ X2 −→ X3 is said to be a skewed axis mapping

provided that

S (x, y) j =

(x, y, y) , j = 1
(x, x, y) , j = 2.

Definition 3.3. (cf. [2]) The mapping ∇ : X2∨
∆ X2 −→ X2 is said to be a fold mapping provided that

∇(x, y) j = (x, y) for j = 1, 2.

Definition 3.4. LetU : E −→ Set be a topological functor and X ∈ Ob j(E) withU(X) = Y.

(1) X is called separated provided that every initial morphism with the domain X is a monomorphism
[42].
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(2) X is called T0 provided that the initial lift of the U-source {A : Y2∨
∆ Y2 → U(X3) = Y3 and

∇ : Y2∨
∆ Y2 → UD(Y2) = Y2} is discrete, where D is the discrete functor which is the left

adjoint ofU [2].

(3) X is called T1 provided that the initial lift of the U-source {S : Y2∨
∆ Y2 → U(X3) = Y3 and

∇ : Y2∨
∆ Y2 →UD(Y2) = Y2} is discrete [2].

(4) X is called T0 if X does not contain an indiscrete subspace with at least two points [29].

(5) X is called pre-T2 iff initial lifts of the U-sources {A : Y2∨
∆ Y2 → U(X3) = Y3 and S :

Y2∨
∆ Y2 →U(X3) = Y3} coincide [2].

(6) X is called S T2 provided that X is separated and pre-T2.

(7) X is called T2 provided that X is T0 and pre-T2 [2].

(8) X is called NT2 provided that X is T0 and pre-T2 [2].

Remark 3.1. (1) In the category Top, separated, T0 and T0 (resp. T1) reduce to the usual T0 (resp.
T1) of topological spaces. Similarly, S T2, T2 and NT2 reduce to a classical Hausdorff topological
space [4, 6, 42].

(2) If U : E −→ B is a topological functor, where B is an elementary topos, then Definition 3.4 is
still valid [2].

(3) In any arbitrary topological category, every T0 object is separated but converse is not in
general [42]. Further, the T0 object and separated object, and T0 and T0 objects are
independent of each other [4].

(4) In any arbitrary topological category, there is no relation among S T2, T2 and NT2 [5]. However,
for any topological functorU : pre-T2(E) −→ Set, where pre-T2(E) is the full subcategory of all
pre-T2 objects in E, all T0, T1, S T2, T2 and NT2 objects are equivalent [9].

(5) Let U : E −→ Set be a topological functor and X ∈ Ob j(E). If X is an indiscrete object, then X
is pre-T2 [9].

Theorem 3.1. An interval space (X, J) is separated iff X has at most one point.

Proof. Suppose (X, J) is separated, X , ∅ and X , {a}. Then, there exists b ∈ X with a , b. If
X = {a, b}, then J(a, b) = X, an indiscrete structure. Let f : (X, J) −→ (X, J) be a mapping defined
by f (a) = a = f (b). Since (X, J) is an indiscrete interval space, f is initial (i.e., f←(J( f (a), f (b))) =
f←(J(a, a)) = X = J(a, b)) but it is not mono. Hence, (X, J) is not a separated interval space.

Note that every subspace of a separated interval space is separated since the composition of initial
lifts is initial and the composition of monomorphisms is a monomorphism. If CardX ≥ 3, for any
a, b ∈ X with a , b and M = {a, b} ⊂ X, then the subinterval structure JM on M is indiscrete. By
Definition 1.1 of [42], a separated interval space can not have an indiscrete subspace with at least two
points, which is a contradiction. Hence, X must be the empty set or a one-point set.

Conversely, if X = ∅ or X = {a}, then clearly (X, J) is separated.
□
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Theorem 3.2. Every interval space (X, J) is T0.

Proof. Let (X, J) be an interval space. We show that (X, J) is T0. Let J be an initial structure on
X2∨

∆ X2 induced by A : X2∨
∆ X2 −→ (X3, J3) and ∇ : X2∨

∆ X2 −→ (X2, J2
dis), where J3 and J2

dis are
products and discrete interval structures on X3 and X2, respectively. Let m, n ∈ X2∨

∆ X2.
Case I: If m = n, then ∇m = ∇n and prkAm = prkAn, k = 1, 2, 3, where prk is the projection

mapping prk : X3 −→ X for k = 1, 2, 3.
On the other hand,

∇←(Jdis(∇m,∇n)) = ∇←(Jdis(∇m,∇m)) = ∇←({∇m}) = {m}

and
prkA←(J(prkAm, prkAn)) = prkA←(J(prkAm, prkAm)), k = 1, 2, 3.

It follows that m ∈ prkA←(J(prkAm, prkAm)) for k = 1, 2, 3.
By Lemma 2.1, we obtain J(m,m) = {m}, a discrete structure.
Case II: Let m , n and ∇m = ∇n. If ∇m = (x, y) = ∇n for some (x, y) ∈ X2 given that m , n,

consequently, it follows that m = (x, y)i and n = (x, y) j with i , j and i, j = 1, 2.
Suppose m = (x, y)1 and n = (x, y)2. By Lemma 2.2 (1),

Jdis(∇m,∇n) = Jdis(∇(x, y)1,∇(x, y)2) = Jdis((x, y), (x, y)) = {(x, y)}

and
∇←(Jdis(∇m,∇n)) = ∇←{(x, y)} = {(x, y)1, (x, y)2}.

Similarly,

pr1A←(J(pr1Am, pr1An)) = pr1A←(J(pr1A(x, y)1, pr1A(x, y)2)) = pr1A←(J(x, x)),

pr2A←(J(pr2Am, pr2An)) = pr2A←(J(pr2A(x, y)1, pr2A(x, y)2)) = pr2A←(J(y, x))

and
pr3A←(J(pr3Am, pr3An)) = pr3A←(J(pr3A(x, y)1, pr3A(x, y)2)) = pr3A←(J(x, y)).

Since x = pr1A(x, y)1 = pr1A(x, y)2 ∈ J(x, x), consequently, (x, y)1, (x, y)2 ∈ pr1A←(J(x, x)). Similarly,
x = pr2A(x, y)2 = pr3A(x, y)1 ∈ J(x, y) and y = pr2A(x, y)1 = pr3A(x, y)2 ∈ J(x, y), and it follows that
(x, y)1, (x, y)2 ∈ prkA←(J(x, y)) for k = 2, 3.

By Lemma 2.1,

J(m, n) = prkA←(J(prkAm, prkAn)) ∩ ∇←(Jdis(∇m,∇n)), k = 1, 2, 3
= prkA←(J(prkAm, prkAn)) ∩ {(x, y)1, (x, y)2}, k = 1, 2, 3
= {(x, y)1, (x, y)2}.

In a similar way, if m = (x, y)2 and n = (x, y)1, then J(m, n) = {(x, y)1, (x, y)2}.
Case III: Let m , n and ∇m , ∇n. Note that

∇←(Jdis(∇m,∇n)) = ∇←{∇m,∇n} = {m, n}
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and prkAm, prkAn ∈ J(prkAm, prkAn) for k = 1, 2, 3, and consequently,
m, n ∈ prkA←(J(prkAm, prkAn)). By Lemma 2.1, we have

J(m, n) = prkA←(J(prkAm, prkAn)) ∩ ∇←(Jdis(∇m,∇n)), k = 1, 2, 3
= {m, n}.

Hence J is the discrete structure and by Definition 3.4 (ii), (X, J) is T0. □

Theorem 3.3. Every interval space (X, J) is T1.

Proof. The proof is similar to Theorem 3.2. So the proof is omitted. □

Theorem 3.4. An interval space (X, J) is T0 iff X has at most one point.

Proof. Suppose (X, J) is T0, X , ∅ and X , {a}. Then, there exists b ∈ X with a , b. Let M = {a, b}
and JM be an interval structure induced by the inclusion mapping i : M −→ (X, J). By Lemma 2.1,
JM(a, b) = i←(J(i(a), i(b))) = M ∩ J(a, b) = M, i.e., the indiscrete structure on M, which is a
contradiction. Thus, X has at most one point.

Conversely, if X = ∅ or X = {a}, then clearly (X, J) is T0. □

Corollary 3.1. Let (X, J) be an interval space. The following statements are equivalent:

(1) (X, J) is separated.

(2) (X, J) is T0.

(3) X has at most one point.

Proof. The proof can be deduced from Theorems 3.1 and 3.4. □

Theorem 3.5. An interval space (X, J) is pre-T2 iff (X, J) is an indiscrete interval space.

Proof. Suppose that (X, J) is pre-T2. If X = ∅, X = {x} or X = {x, y}, then Jdis = Jind = J. Now,
consider CardX = 3, i.e., X = {x, y, z}. Then, by Definition 2.3, X carries only discrete and indiscrete
structures. Assume, on the contrary, that (X, J) is not an indiscrete interval space. It follows that for
all x, y ∈ X with x , y, J(x, y) = {x, y}. Let JA and JS be initial structures on X2∨

∆ X2 induced
by A : X2∨

∆ X2 −→ (X3, J3) and S : X2∨
∆ X2 −→ (X3, J3), respectively. Here, J3 is the product

structure on X3. Also, prk is the projection mapping prk : X3 −→ X for k = 1, 2, 3. We show that (X, J)
is not pre-T2, i.e., JA(m, n) , JS (m, n) for some m, n ∈ X2∨

∆ X2.
Suppose m = (x, y)1 and n = (z, y)2 ∈ X2∨

∆ X2 for all x, y, z ∈ X with x , y , z. Note that

A←({x, z}×X2) = {(x, x)1 = (x, x)2, (z, z)1 = (z, z)2, (x, y)1, (x, y)2, (x, z)1, (x, z)2, (z, x)1, (z, x)2, (z, y)1, (z, y)2},

S←({x, z}×X2) = {(x, x)1 = (x, x)2, (z, z)1 = (z, z)2, (x, y)1, (x, y)2, (x, z)1, (x, z)2, (z, x)1, (z, x)2, (z, y)1, (z, y)2},

A←(X×{y, z}×X) = {(y, y)1 = (y, y)2, (z, z)1 = (z, z)2, (x, y)1, (y, x)2, (x, z)1, (z, x)2, (y, z)1, (y, z)2, (z, y)1, (z, y)2},

S←(X×{y, z}×X) = {(y, y)1 = (y, y)2, (z, z)1 = (z, z)2, (x, y)1, (y, x)2, (x, z)1, (z, x)2, (y, z)1, (y, z)2, (z, y)1, (z, y)2},

A←(X2×{x, y}) = {(x, x)1 = (x, x)2, (y, y)1 = (y, y)2, (x, y)1, (x, y)2, (y, x)1, (y, x)2, (x, z)1, (z, x)2, (y, z)1, (z, y)2}
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and
S←(X2 × {y}) = {(y, y)1 = (y, y)2, (x, y)1, (x, y)2, (z, y)1, (z, y)2}.

By Lemma 2.1,

JA((x, y)1, (z, y)2) =
3⋂

k=1

prkA←(J(prkA(x, y)1, prkA(z, y)2))

= pr1A←(J(x, z)) ∩ pr2A←(J(y, z)) ∩ pr3A←(J(x, y))
= A←(pr←1 (J(x, z))) ∩ A←(pr←2 (J(y, z))) ∩ A←(pr←3 (J(x, y)))
= A←({x, z} × X2) ∩ A←(X × {y, z} × X) ∩ A←(X2 × {x, y})
= {(x, y)1, (x, z)1, (z, x)2, (z, y)2}.

Similarly,

JS ((x, y)1, (z, y)2) =
3⋂

k=1

prkS←(J(prkS (x, y)1, prkS (z, y)2))

= pr1S←(J(x, z)) ∩ pr2S←(J(y, z)) ∩ pr3S←(J(y, y))
= S←(pr←1 (J(x, z))) ∩ S←(pr←2 (J(y, z))) ∩ S←(pr←3 (J(y, y)))
= S←({x, z} × X2) ∩ S←(X × {y, z} × X) ∩ S←(X2 × {y})
= {(x, y)1, (z, y)1, (z, y)2}.

Therefore, JA((x, y)1, (z, y)2) , JS ((x, y)1, (z, y)2), and consequently, (X, J) is not pre-T2.
Now, consider CardX > 3. Assume, on the contrary, that (X, J) is not an indiscrete interval space.

Then, there exists M ⊂ X such that J(x, y) = M for all x, y ∈ X with {x, y} ⊂ M , X and x , y. Then,
there exists a point z ∈ X but z , M whenever J(x, y) = M for all x, y ∈ X with x , y. Similar to
the above, consider (z, y)1 ∈ X2∨

∆ X2 for any z, y ∈ X with y , z. Since pr1S (z, y)1 = z ∈ J(x, z),
consequently, (z, y)1 ∈ pr1S←(J(x, z)). Similarly, pr2S (z, y)1 = y ∈ J(y, z), and, consequently, (z, y)1 ∈

pr2S←(J(y, z)) and (z, y)1 ∈ pr3S←(J(x, y)). Thus, by Lemma 2.1, (z, y)1 ∈ JS ((x, y)1, (z, y)2) for any
(x, y)1, (z, y)2 ∈ X2∨

∆ X2. However (z, y)1 < JA((x, y)1, (z, y)2) since pr3A(z, y)1 = z < J(x, y) and it
follows that (z, y)1 < pr3A←(J(x, y)). Thus, JA((x, y)1, (z, y)2) , JS ((x, y)1, (z, y)2). Consequently, an
interval space (X, J) is not pre-T2.

Conversely, let (X, J) be an indiscrete interval space. Then, by Remark 3.1 (5), (X, J) is pre-T2. □

Theorem 3.6. An interval space (X, J) is T2 iff (X, J) is an indiscrete interval space.

Proof. The proof follows from Theorems 3.2 and 3.5. □

Remark 3.2. (1) In O-REL (the category of ordered relative spaces and relative mappings) [27] as
well as in b-UFIL (the category of b-UFIL spaces and buc mappings) [27, 28], T1 =⇒ T0 =⇒

T0 [22, 34].

(2) In V-Cls (the category of V-closure spaces and continuous mappings) with V as an integral
quantale [26], T2 = T1 =⇒ T0 =⇒ T0 [33].
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(3) In Born (the category of bornological spaces and bounded mappings), all objects are T0, T1 and
T2 [4], and X is separated or T0 iff X is either empty or a singleton [4]. However, in Prox (the
category of proximity spaces and proximity mappings), all objects are not T0, T1 and T2 but they
are all equal [24].

(4) In IS, by Theorems 3.2, 3.3 and 3.6, and Corollary 3.1, we conclude that T0 =⇒ T0 = T1 and
T2 =⇒ T0 = T1 but the converse is not true in general.

Corollary 3.2. An interval space (X, J) is NT2 iff (X, J) is S T2 iff X has a cardinality 1.

Proof. It follows from Theorems 3.1, 3.4 and 3.5. □

4. Notion of closedness and D-connectedness in interval spaces

Let X be any set and p ∈ X. Let the infinite wedge product of X at p be the infinitely countable
disjoint copies of X identifying at p and denoted by

∨∞
p X.

For a point x ∈
∨∞

p X, we write it as x j if it belongs to the jth component of the infinite wedge
product.

Definition 4.1. (cf. [2]) Let X∞ = X × X × X × ...... be the countable Cartesian product of X.

(1) The mapping A∞p :
∨∞

p X −→ X∞ is said to be an infinite principal p-axis mapping provided
that

A∞p (x j) = (p, p, · · · , p, x︸︷︷︸
jth place

, p, · · · ), ∀ j ∈ I.

(2) The mapping ∇∞p :
∨∞

p X −→ X is said to be an infinite fold mapping at p provided that

∇∞p (x j) = x, ∀ j ∈ I.

Definition 4.2. (cf. [2,3]) LetU : E −→ Set be a topological functor and X ∈ Ob j(E) withU(X) = Y
and p ∈ Y. {p} is closed provided that the initial lift of the U-source

{
∨∞

p Y
A∞p
−−→ UX∞ = Y∞ and

∨∞
p Y

∇∞p
−−→ UDY = Y} is discrete, whereD is the discrete functor which is

left adjoint ofU.

Remark 4.1. In Top, the closedness of {p} reduces to the usual closedness of the singleton set {p} [2,3].
Also, for any X ∈ ob j(Top), X is T1 iff all points of X are closed. However, in an arbitrary topological
category, this is not true in general [3].

Theorem 4.1. Every singleton set {p} in an interval space (X, J) is closed.

Proof. Let (X, J) be an interval space, p ∈ X. We show that {p} is closed. Let J̄ be an initial structure
on
∨∞

p X induced by A∞p :
∨∞

p X → (X∞, J∞) and ∇∞p :
∨∞

p X → (X, Jdis), where J∞ and Jdis are the
product interval structures and discrete interval structures on X∞ and X, respectively. Let m, n ∈

∨∞
p X.

If m = n, then ∇∞p m = ∇∞p n and also prkA∞p m = prkA∞p n for k ∈ I. Here, prk are the projection
mappings prk : X∞ → X, where k ∈ I.
By Lemma 2.2 (1),

∇∞←p (Jdis(∇∞p m,∇∞p n)) = ∇←p (Jdis(∇∞p m,∇∞p m))
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and it follows that ∇∞←p ({∇∞p m}) = {m} and

prkA∞←p (J(prkA∞p m, prkA∞p n)) = prkA∞←p (J(prkA∞p m, prkA∞p m)), ∀k ∈ I.

Since prkA∞p m ∈ J(prkA∞p m, prkA∞p m) for each k ∈ I, consequently, m ∈ prkA∞←p (J(prkA∞p m, prkA∞p m)).
By Lemma 2.1,

J̄(m,m) = prkA∞←p (J(prkA∞p m, prkA∞p m)) ∩ ∇∞←p (Jdis(∇∞p m,∇∞p m)), k ∈ I

= prkA∞←p (J(prkA∞p m, prkA∞p m)) ∩ {m}, k ∈ I

= {m}.

Let m , n and ∇∞p m = ∇∞p n. If ∇∞p m = p = ∇∞p n, consequently, m = (p, p, p, ..., p, ...) = pi = p j = n
for all i, j ∈ I, which is a contradiction.

Suppose ∇∞p m = x = ∇∞p n, so it follows easily that m = xi and n = x j for some i, j ∈ I with i , j.
Note that

J(prkA∞p m, prkA∞p n) = J(prkA∞p xi, prkA∞p x j) =


J(x, p), i f k = i
J(p, x), i f k = j
J(p, p), i f k < {i, j}.

Since x = prkA∞p m ∈ J(x, p), consequently, m ∈ prkA∞←p (J(x, p)) for k = i or k = j, and
p = prkA∞p n ∈ J(x, p) for any k ∈ I; it follows that n ∈ prkA∞←p (J(x, p)). Thus,
m, n ∈ prkA∞←p (J(prkA∞p m, prkA∞p n)) for any k ∈ I. On the other hand,

∇∞←p (Jdis(∇∞p xi,∇
∞
p x j)) = ∇∞←p {x} = {xi, x j} = {m, n}.

By Lemma 2.1,

J̄(m, n) = prkA∞←p (J(prkA∞p m, prkA∞p n)) ∩ ∇∞←p (Jdis(∇∞p m,∇∞p n)), k ∈ I

= prkA∞←p (J(prkAm, prkAn)) ∩ {m, n} = {m, n}.

Suppose that m , n and ∇∞p m , ∇∞p n.
By Lemma 2.2 (1), ∇∞←p (Jdis(∇∞p m,∇∞p n)) = ∇←p ({∇∞p m,∇∞p n}) = {m, n} and

m, n ∈ J(prkA∞p m, prkA∞p n) for any k ∈ I. By Lemma 2.1, J̄(m, n) = {m, n}, which is a discrete
structure. Thus, by Definition 4.2, {p} is closed. □

Definition 4.3. (cf. [8, 38]) Let U : E −→ Set be a topological functor and X ∈ Ob j(E). X is said to
be D-connected provided that any morphism from X to any discrete object is constant.

Remark 4.2. In Top, the D-connectedness reduces to the usual connectedness [8, 38].

Theorem 4.2. An interval space (X, J) is D-connected iff there exists a proper subset N of X such that
{x, y} ⊂ J(x, y) for some x ∈ N and y ∈ Nc.

Proof. Let (X, J) be D-connected and there exists a nonempty subset N of X, J(x, y) = {x, y} for all
x ∈ N and y ∈ Nc. Suppose (Y, Jdis) is the discrete interval space with CardY > 1. Define the mapping
f : (X, J)→ (Y, Jdis) by

f (x) =
{

a, x ∈ N
b, x < N.
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Let x, y ∈ X. If x, y ∈ N then

f→(J(x, y)) = f→({x, y}) = { f (x), f (y)} = {a}

and
Jdis( f (x), f (y)) = { f (x), f (y)} = {a},

and consequently,
f→(J(x, y)) = Jdis( f (x), f (y)).

Thus f is an interval preserving mapping. Similarly, if x, y ∈ Nc, then f is also an interval preserving
mapping.

Now, let x ∈ N and y ∈ Nc (resp. y ∈ N and x ∈ Nc). Note that

f→(J(x, y)) = { f (t) | t ∈ J(x, y) = {x, y}} = { f (x), f (y)} = {a, b}

and Jdis( f (x), f (y)) = { f (x), f (y)} = {a, b}. Thus, f→((J(x, y)) = Jdis( f (x), f (y)). Hence, f is an interval
preserving mapping, but it is not constant, which is a contradiction.

Conversely, suppose that the condition holds. Let (Y, Jdis) be a discrete interval space and f :
(X, J)→ (Y, Jdis) be an interval preserving mapping.

If CardY = 1, then f is constant. Suppose that CardY > 1, and f is not constant. Then there exist
x, y ∈ X with x , y such that f (x) , f (y) and let N = f←{ f (x)}. Note that N is a proper subset of X.
By our assumption {x, y} ⊂ J(x, y) for some x ∈ N and y < N, we have

{ f (x), f (y)} = f→({x, y}) ⊂ f→((J(x, y)) ⊆ Jdis( f (x), f (y)).

By Lemma 2.2 (1), it follows that f is not an interval-preserving mapping, which is a contradiction.
Thus f must be constant and, by Definition 4.3, (X, J) is D-connected. □

Theorem 4.3. Let (X, JX) and (Y, JY) be interval spaces, and let f : (X, JX) −→ (Y, JY) be an interval
preserving mapping. If (X, JX) is D-connected and f is surjective, then (Y, JY) is D-connected.

Proof. Let f (x), f (y) ∈ f (X) with f (x) , f (y). Since f is an interval preserving mapping, it follows
that f→(JX(x, y)) ⊆ JY(( f (x), f (y)). The assumption that there exists a proper subset N of X such that
{x, y} ⊂ J(x, y) for some x ∈ N and y < N implies that

{ f (x), f (y)} = f→({x, y}) ⊂ f→(JX(x, y)) ⊆ JY(( f (x), f (y)),

and consequently, { f (x), f (y)} ⊂ JY(( f (x), f (y)) for some f (x) ∈ f (N) and f (y) < f (N). Therefore,
f (X) is D-connected. Since f is surjective, it follows that f (X) = Y is D-connected. □

5. Zero-dimensionality in interval spaces

In 1997, Stine [36] gave an alternative characterization of the zero-dimensional space (X, τ) that is,
(X, τ) is a zero-dimensional space provided that for all i ∈ I, there exists a family (Xi, τidis) and there
exists fi : (X, τ) −→ (Xi, τidis) such that τ is the initial topology by (Xi, τidis) via fi, where (Xi, τidis) is the
family of discrete topological spaces. Considering the categorical counterparts, we have the following
definition, as given in [37].
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Definition 5.1. (cf. [37]) Let U : C −→ E be a topological and D : E −→ C be a discrete functor.
Any object X ∈ Ob j(C) is called a zero-dimensional object provided that for all i ∈ I, there exists
Ai ∈ Ob j(E) and the morphisms fi : U(X) −→ Ai such that ( f i : X −→ D(Ai))i∈I is the initial lift of
( fi : U(X) −→ U(D(Ai)) = Ai)i∈I .

Remark 5.1. (1) For C = Top and E = Set, by Theorem 4.3.1 of [36], Definition 5.1 reduces to the
usual zero-dimensional topological space.

(2) If U : C −→ E is a normalized topological functor, by Theorem 4.3.4 and 5.3.1 of [37], then
every indiscrete object in C is a zero-dimensional object.

Theorem 5.1. Every discrete and indiscrete interval space (X, J) is zero-dimensional.

Proof. Suppose (X, J) is an interval space and X = {x} or X = {x, y}. Then Jdis = Jind = J. By
Remarks 2.1 and 5.1, it is zero-dimensional.

Let CardX ≥ 3, and J = Jdis. Consider fi(x) = x (identity mapping) and X = Xi for all i ∈ I.
Clearly, fi : X −→ Xi is an interval preserving mapping and fi : X −→ Xi is the initial lift of fi :
(X, J) −→ (Xi, Jidis). Thus, by Definition 5.1, (X, J) is zero-dimensional.

Now, let J = Jind and take fi(x) = c (constant mapping) for all i ∈ I. Clearly, fi : X −→ Xi

is an interval preserving mapping which is the initial lift of fi : (X, J) −→ (Xi, Jidis). Therefore, by
Definition 5.1, (X, J) is zero-dimensional. □

Corollary 5.1. Every interval space (except for a discrete interval space) is D-connected.

Corollary 5.2. Every D-disconnected (not D-connected) interval space with cardinality greater than 2
is zero-dimensional.

Proof. Let (X, J) be a D-disconnected interval space with cardinality greater than 2. By Theorem 4.2,
for all x, y ∈ X with x , y, J(x, y) = {x, y} and consequently, (X, J) is discrete. Thus, by Theorem 5.1,
(X, J) is zero-dimensional. □

6. Conclusions

First, we characterized separated, T0, T0, T1, pre-T2, T2, NT2 and S T2 interval spaces and showed
that separated = T0 =⇒ T0 = T1 and T2 =⇒ T0 = T1 but the converse is not true in general.
Also, we proved that in any interval space with cardinality at most one point, NT2 = S T2. Further,
we showed that every singleton set is closed and every interval space (except for a discrete interval
space) is D-connected. Finally, we characterized zero-dimensionality in interval spaces and showed
that every discrete and indiscrete interval space is zero-dimensional. Considering these results, the
followings can be treated as open research problems:

(1) How can one characterize sobriety, ultraconnectedness and irreducibility in the category IS?

(2) Can one characterize pre-T2, zero-dimensionality and separatedness for quantale generalization
of interval spaces, and what would be their relation to the classical ones?
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