

http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(2): 3826–3841.

DOI: 10.3934/math.2023190 Received: 04 October 2022 Revised: 15 November 2022 Accepted: 22 November 2022

Published: 29 November 2022

Research article

Some topological aspects of interval spaces

Muhammad Qasim^{1,*}, Arbaz Jehan Khan¹, Samirah Alsulami² and Shoaib Assar¹

- Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
- ² Department of Mathematics, College of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
- * Correspondence: Email: qasim99956@gmail.com; muhammad.qasim@sns.nust.edu.pk.

Abstract: In previous papers, several T_0 , T_2 objects, D-connectedness and zero-dimensionality in topological categories have been introduced and compared. In this paper, we characterize separated objects, T_0 , T_0 , T_1 , T_1 , T_1 , T_2 , and several versions of Hausdorff objects in the category of interval spaces and interval-preserving mappings and examine their mutual relationship. Further, we give the characterization of the notion of closedness and T_1 -connectedness in interval spaces and study some of their properties. Finally, we introduce zero-dimensionality in this category and show its relation to T_1 -connectedness.

Keywords: interval space; convex space; separated, Hausdorff; zero-dimensional; initial lift; topological category

Mathematics Subject Classification, 54A05, 54B30, 54D10, 54E99, 54F45

1. Introduction

Convexity is a fundamental feature in many fields of mathematics. However, in vector spaces, it is not the best environment for understanding the basic characteristic of convex sets. As a remedy, abstract convex structures [40] came into existence and have many applications in different areas of mathematics, including topology, graph theory and lattice theory (see [39], [35] and [32]). Convex structures can be determined in several different ways, including through the use of the algebraic closure operator and hull operators. In 1971, Calder [17] introduced the concept of Interval operators which is a natural generalization of intervals and it also provides a natural and frequent method of constructing convex structures. Interval operators have many applications in planer geometry such as Pasch-Peano (PP) spaces.

In 1921, Sierpinski [20] introduced zero-dimensional topological space consisting of a basis that is clopen and it has been utilized to construct several well-known classes of topological spaces such as

Lusin spaces [16], non-Archimedean spaces [19] and stone spaces [21]. Recently, Stine put forward this notion to an arbitrary topological category [36, 37].

Classical separation axioms of topology have been put forward for topological categories by numerous authors [2, 18] using different approaches. In 1991, Baran [2, 18] introduced T_0 , T_1 and T_2 objects and (strongly) closed objects in a set-based topological category by using initial, final lifts and (in) discrete objects. Further, he introduced the concept of pre- T_2 in topological space and later on, extended it to a set-based topological category [2, 9]. T_0 objects and the notion of closedness are widely used to define and characterize various forms of Hausdorff objects [5], connectedness [8] and sobriety [11] in some topological categories [11,23,33].

In 1994, Mielke [30] showed the important role of pre- T_2 objects in the general theory of geometric realization, their associated intervals and corresponding homotopic structures. Also, in 1999, Mielke [31] used pre- T_2 objects of topological categories to characterize decidable objects in topos theory, where $X \in Obj(\mathcal{E})$ with \mathcal{E} as a topos [21], is called decidable if the diagonal $\Delta \subset X^2$ is a complemented subobject.

Other uses of pre- T_2 objects include defining various forms of Hausdorff objects [5], T_3 and T_4 objects [7] in some well-known topological categories [14,25]. There is also, a relationship between pre- T_2 objects and partitions, as well as equivalence relations in case of **Top** see [36] in the some other categories see [10,12,13,15].

The salient objectives of the paper are stated as follows:

- (1) To characterize separated, T_0 , T_0 , T_1 , pre- T_2 , T_2 , ST_2 and NT_2 interval spaces, and examine their mutual relationship;
- (2) To give the characterization of closedness of singleton sets and *D*-connectedness in the category **IS** (i.e., the category of interval spaces and interval preserving mappings);
- (3) To examine the zero-dimensionality and study its relation to *D*-connectedness in the category of interval spaces and interval preserving mappings.

2. Preliminaries

Let X be a non-empty set and $\{B_i\}_{i\in I} \stackrel{dir}{\subseteq} P(X)$ denotes the directed subset of X, which means that, for any $E, F \in \{B_i\}_{i\in I}$, there exists $G \in \{B_i\}_{i\in I}$ such that $E \subseteq G$ and $F \subseteq G$. For any non-empty sets X and Y, and $f: X \longrightarrow Y$ be any mapping. Define forward mapping $f^{\rightarrow}: P(X) \longrightarrow P(Y)$ and backward mapping $f^{\leftarrow}: P(Y) \longrightarrow P(X)$ by $f^{\rightarrow}(E) = \{f(x) \mid x \in E\}$ and $f^{\leftarrow}(G) = \{x \mid f(x) \in G\}$ for any $E \in P(X)$ and $G \in P(Y)$, respectively.

Definition 2.1. (cf. [40, 41]) A convex structure \mathfrak{C} on the set X is a subset of P(X) satisfying the following:

- (1) $\emptyset, X \in \mathfrak{C}$;
- (2) $\{B_i\}_{i\in I}\subseteq \mathfrak{C} \text{ implies } \bigcap_{i\in I}B_i\in \mathfrak{C};$
- (3) $\{B_i\}_{i\in I}\stackrel{dir}{\subseteq}\mathfrak{C} \text{ implies } \bigcup_{i\in I}B_i\in\mathfrak{C}.$

The pair (X, \mathfrak{C}) is called convexity space. The members of \mathfrak{C} are called convex sets and their complements are called concave sets.

A mapping $g:(X, \mathfrak{C}_X) \longrightarrow (Y, \mathfrak{C}_Y)$ is called convexity preserving mapping provided that $E \in \mathfrak{C}_Y$ implies $g^{\leftarrow}(E) \in \mathfrak{C}_X$. Let **CS** denotes the category of convexity spaces (X, \mathfrak{C}) and convexity preserving mappings.

The smallest convex set including a set E is defined as $co(E) = \bigcap \{F : E \subseteq F \in \mathfrak{C}\}$ is called the convex hull of E. A set of type co(E) with E is finite, and it is called polytope [40].

Definition 2.2. (cf. [40, 41]) A closure operator cl on X is a mapping $cl : P(X) \longrightarrow P(X)$ satisfying:

- (1) $cl(\emptyset) = \emptyset$;
- (2) $E \subseteq cl(E)$;
- (3) $E \subseteq F$ implies $cl(E) \subseteq cl(F)$;
- (4) cl(cl(F)) = cl(F).

The pair (X, cl) is called a closure space. Further, the closure space (X, cl) is said to be an algebraic closure space if $cl(E) = \bigcup \{cl(F) \mid F \text{ is a finite subset of } E\}$ is satisfied.

A mapping $g:(X, cl_X) \longrightarrow (Y, cl_Y)$ between two closure spaces is called a closure preserving mapping such that $g^{\rightarrow}(cl_X(E)) \subseteq cl_Y(g^{\rightarrow}(E))$, $\forall E \in P(X)$. Let **CLS** denotes the category of closure spaces and closure preserving mappings, and **ACLS** (the category of algebraic closure spaces and algebraic closure preserving mappings) is the full subcategory of **CLS**. Note that **ACLS** \cong **CS** [40,41].

Definition 2.3. (cf. [40, 41]) The mapping $J: X \times X \to P(X)$ is called an interval operator satisfying the following:

- (1) For all $x, y \in X$, $x, y \in J(x, y)$ (Extensive Law);
- (2) J(x, y) = J(y, x) (Symmetry Law).

The pair (X, J) is called an interval space, and J(x, y) is the interval between x and y.

The mapping $f:(E,J_E) \longrightarrow (F,J_F)$ is called a interval preserving mapping, if

$$\forall x, y \in X, f^{\rightarrow}(J_E(x, y)) \subseteq J_F((f(x), f(y)).$$

Let **IS** denotes the category of interval spaces and interval preserving mappings. Note that **IS** is the full subcategory of **CS**.

Example 2.1. (cf. [41]) Let \mathbb{R} be the set of real numbers, and define a mapping $J_{\mathbb{R}} : \mathbb{R} \times \mathbb{R} \longrightarrow P(\mathbb{R})$ by

$$\forall x, y \in \mathbb{R}, J_{\mathbb{R}}(x, y) = [min\{x, y\}, max\{x, y\}],$$

where $J_{\mathbb{R}}$ indicates the interval operator on \mathbb{R} .

Example 2.2. (cf. [40, 41]) Let d be a metric on X, and define a mapping $J_d: X \times X \longrightarrow P(X)$ as follows:

for all
$$x, y \in X$$
, $J_d(x, y) = \{k \in X \mid d(x, y) = d(x, k) + d(k, y)\}$,

where J_d indicates the geodesic interval operator on X.

Example 2.3. (cf. [40]) Let V be a vector space and define a mapping $J_V: V \times V \longrightarrow P(V)$ by $J_V(x,y) = \{xt + (1-t)y \mid 0 \le t \le 1\}$, where J_V indicates the standard interval operator on the vector space V.

Example 2.4. (cf. [40]) Let (X, \leq) be a partially ordered set and define a mapping $J_{\leq}: X \times X \longrightarrow P(X)$ as follows:

$$J_{\leq}(x,y) = \begin{cases} \{x,y\} & \text{if } x,y \text{ are incomparable;} \\ \{z \mid x \leq z \leq y\} & \text{if } x \leq y, \end{cases}$$

where J_{\leq} indicates the ordered interval operator on X.

Example 2.5. (cf. [40]) Let (M, m) be a median algebra and define a mapping $J_m : M \times M \longrightarrow P(M)$ as follows:

for all
$$x, y \in M$$
, $J_m = \{m(x, y, z) \mid z \in M\} = \{z \in M \mid m(x, y, z) = z\}$,

where J_m indicates the median interval operator on M.

For any interval space (X, J), if for any $x, y, z \in X$ and $w \in J(y, z)$, $t \in J(x, w)$, and then there exists $k \in J(x, y)$ such that $t \in J(z, k)$. This property is known as the Peano Property. Further, if for any $p, x, y \in X$, $z \in J(p, x)$ and $w \in J(p, y)$, then the intervals J(x, w) and J(z, y) intersect. This property is known as the Pasch property [40].

Any interval space (X, J) satisfying the Pasch and Peano properties is called a PP space. Note that every vector space over a totally ordered field is a PP space [40].

Definition 2.4. (cf. [40, 41]) A convex space (X, \mathfrak{C}) is called an arity 2 convex space satisfying the following: for all $B \in P(X)$ and all $x, y \in B$, $co(\{x, y\}) \subseteq B$ implies $B \in \mathfrak{C}$.

Let CS(2) denotes the category of arity 2 convex spaces (X, \mathfrak{C}) and convexity preserving mappings. Note that CS(2) can be embedded in **IS** as a reflexive subcategory [40,41].

Proposition 2.1. (cf. [40, 41]) Suppose (X, \mathfrak{C}) is a convex space and define $J^{\mathfrak{C}}: X \times X \longrightarrow P(X)$ by

$$\forall x, y \in X, J^{\mathfrak{C}}(x, y) = co(x, y) = \bigcap_{x, y \in B \in \mathfrak{C}} B.$$

Then $J^{\mathbb{C}}$ represents the interval operator on X.

Proposition 2.2. (cf. [40, 41]) Suppose (X, J) is interval space and define \mathfrak{C}^J by

$$\mathfrak{C}^J = \{ B \in P(X) \mid \forall x, y \in B, J(x, y) \subseteq B \}.$$

Then, (X, \mathfrak{C}^J) is an arity 2 convex space.

A functor $\mathcal{U}: \mathcal{E} \longrightarrow \mathbf{Set}$ (the category of sets and functions) is called topological if (1) \mathcal{U} is concrete (2) \mathcal{U} consists of small fibers and (3) every \mathcal{U} -source has a unique initial lift, i.e., if for every source $(f_i: X \to (X_i, \zeta_i))_{i \in I}$ there exists a unique structure ζ on X such that $g: (Y, \eta) \to (X, \zeta)$ is a

morphism iff for each $i \in I$, $f_i \circ g: (Y, \eta) \to (X_i, \zeta_i)$ is a morphism or equivalently, each \mathcal{U} -sink has a unique final lift [1,38].

Note that a topological functor $\mathcal{U}: \mathcal{E} \longrightarrow \mathbf{Set}$ has a left adjoint $\mathcal{D}: \mathbf{Set} \longrightarrow \mathcal{E}$, called the discrete functor. An object of the form $X = \mathcal{UD}(X)$ is called a discrete object in \mathcal{E} , i.e., the \mathcal{E} -objects X such that every $f: \mathcal{U}X \longrightarrow \mathcal{U}Y, Y \in \mathcal{E}$, is an \mathcal{E} -morphism.

Also, the functor \mathcal{U} is called a normalized topological functor if the subterminals have a unique structure [1,38].

Lemma 2.1. (cf. [41]) Let (X_i, J_i) be the collection of interval space and $(f_i : (X, J_*) \longrightarrow (X_i, J_i))_{i \in I}$ be a source. Then, for any $x, y \in X$,

$$J_*(x,y) = \bigcap_{i \in I} f_i^{\leftarrow}(J_i(f_i(x), f_i(y)))$$

is the initial interval structure on X.

Lemma 2.2. (cf. [41]) Let (X, J) be an interval space. Then, we have the following:

- (1) The discrete interval structure on X is defined by $J_{dis}(x,y) = \{x,y\}$ for any distinct $x,y \in X$.
- (2) The indiscrete interval structure on X is given by $J_{ind}(x, y) = X$ for any distinct $x, y \in X$.

Remark 2.1. The topological functor $\mathcal{U}: \mathbf{IS} \longrightarrow \mathbf{Set}$ is normalized since a unique structure exists on \emptyset , the empty set or $X = \{x\}$, i.e., a one-point set for $X \in Obj(\mathbf{IS})$ [41].

3. Separated, pre-Hausdorff and Hausdorff interval spaces

Let X be a set and the wedge $X^2 \bigvee_{\Delta} X^2$ be two any disjoint copies of X^2 intersecting diagonally. In other words, the pushout of $\Delta: X \longrightarrow X^2$ along itself. A point (x, y) in $X^2 \bigvee_{\Delta} X^2$ is denoted by $(x, y)_1$ (resp. $(x, y)_2$) if it is in the first (resp. second) component.

Definition 3.1. (cf. [2]) The mapping $A: X^2 \bigvee_{\Delta} X^2 \longrightarrow X^3$ is said to be the principal axis mapping provided that

$$A(x,y)_j = \begin{cases} (x,y,x) &, j = 1\\ (x,x,y) &, j = 2. \end{cases}$$

Definition 3.2. (cf. [2]) The mapping $S: X^2 \bigvee_{\Delta} X^2 \longrightarrow X^3$ is said to be a skewed axis mapping provided that

$$S(x,y)_{j} = \begin{cases} (x,y,y) & , j = 1\\ (x,x,y) & , j = 2. \end{cases}$$

Definition 3.3. (cf. [2]) The mapping $\nabla: X^2 \bigvee_{\Delta} X^2 \longrightarrow X^2$ is said to be a fold mapping provided that $\nabla(x,y)_j = (x,y)$ for j=1,2.

Definition 3.4. Let $\mathcal{U}: \mathcal{E} \longrightarrow \mathbf{Set}$ be a topological functor and $X \in Obj(\mathcal{E})$ with $\mathcal{U}(X) = Y$.

(1) X is called separated provided that every initial morphism with the domain X is a monomorphism [42].

- (2) X is called T_0 provided that the initial lift of the \mathcal{U} -source $\{A: Y^2 \bigvee_{\Delta} Y^2 \to \mathcal{U}(X^3) = Y^3 \text{ and } \nabla: Y^2 \bigvee_{\Delta} Y^2 \to \mathcal{U}(Y^2) = Y^2\}$ is discrete, where \mathcal{D} is the discrete functor which is the left adjoint of \mathcal{U} [2].
- (3) X is called T_1 provided that the initial lift of the \mathcal{U} -source $\{S: Y^2 \bigvee_{\Delta} Y^2 \to \mathcal{U}(X^3) = Y^3 \text{ and } \nabla: Y^2 \bigvee_{\Delta} Y^2 \to \mathcal{U}\mathcal{D}(Y^2) = Y^2\}$ is discrete [2].
- (4) X is called T_0 if X does not contain an indiscrete subspace with at least two points [29].
- (5) X is called pre- T_2 iff initial lifts of the \mathcal{U} -sources $\{A: Y^2 \bigvee_{\Delta} Y^2 \to \mathcal{U}(X^3) = Y^3 \text{ and } S: Y^2 \bigvee_{\Delta} Y^2 \to \mathcal{U}(X^3) = Y^3 \}$ coincide [2].
- (6) X is called ST_2 provided that X is separated and pre- T_2 .
- (7) X is called T_2 provided that X is T_0 and pre- T_2 [2].
- (8) X is called NT_2 provided that X is $\mathbf{T_0}$ and pre- T_2 [2].
- **Remark 3.1.** (1) In the category **Top**, separated, T_0 and T_0 (resp. T_1) reduce to the usual T_0 (resp. T_1) of topological spaces. Similarly, ST_2 , T_2 and NT_2 reduce to a classical Hausdorff topological space [4, 6, 42].
- (2) If $\mathcal{U}: \mathcal{E} \longrightarrow \mathcal{B}$ is a topological functor, where \mathcal{B} is an elementary topos, then Definition 3.4 is still valid [2].
- (3) In any arbitrary topological category, every $\mathbf{T_0}$ object is separated but converse is not in general [42]. Further, the T_0 object and separated object, and T_0 and $\mathbf{T_0}$ objects are independent of each other [4].
- (4) In any arbitrary topological category, there is no relation among ST_2 , T_2 and NT_2 [5]. However, for any topological functor \mathcal{U} : pre- $T_2(\mathcal{E}) \longrightarrow \mathbf{Set}$, where pre- $T_2(\mathcal{E})$ is the full subcategory of all pre- T_2 objects in \mathcal{E} , all T_0 , T_1 , ST_2 , T_2 and NT_2 objects are equivalent [9].
- (5) Let $\mathcal{U}: \mathcal{E} \longrightarrow \mathbf{Set}$ be a topological functor and $X \in Obj(\mathcal{E})$. If X is an indiscrete object, then X is pre- T_2 [9].

Theorem 3.1. An interval space (X, J) is separated iff X has at most one point.

Proof. Suppose (X, J) is separated, $X \neq \emptyset$ and $X \neq \{a\}$. Then, there exists $b \in X$ with $a \neq b$. If $X = \{a, b\}$, then J(a, b) = X, an indiscrete structure. Let $f : (X, J) \longrightarrow (X, J)$ be a mapping defined by f(a) = a = f(b). Since (X, J) is an indiscrete interval space, f is initial (i.e., $f \leftarrow (J(f(a), f(b))) = f \leftarrow (J(a, a)) = X = J(a, b)$) but it is not mono. Hence, (X, J) is not a separated interval space.

Note that every subspace of a separated interval space is separated since the composition of initial lifts is initial and the composition of monomorphisms is a monomorphism. If $CardX \ge 3$, for any $a, b \in X$ with $a \ne b$ and $M = \{a, b\} \subset X$, then the subinterval structure J_M on M is indiscrete. By Definition 1.1 of [42], a separated interval space can not have an indiscrete subspace with at least two points, which is a contradiction. Hence, X must be the empty set or a one-point set.

Conversely, if $X = \emptyset$ or $X = \{a\}$, then clearly (X, J) is separated.

Theorem 3.2. Every interval space (X, J) is T_0 .

Proof. Let (X, J) be an interval space. We show that (X, J) is T_0 . Let \overline{J} be an initial structure on $X^2 \bigvee_{\Delta} X^2$ induced by $A: X^2 \bigvee_{\Delta} X^2 \longrightarrow (X^3, J^3)$ and $\nabla: X^2 \bigvee_{\Delta} X^2 \longrightarrow (X^2, J_{dis}^2)$, where J^3 and J_{dis}^2 are products and discrete interval structures on X^3 and X^2 , respectively. Let $m, n \in X^2 \bigvee_{\Delta} X^2$.

Case I: If m = n, then $\nabla m = \nabla n$ and $pr_k A m = pr_k A n$, k = 1, 2, 3, where pr_k is the projection mapping $pr_k : X^3 \longrightarrow X$ for k = 1, 2, 3.

On the other hand,

$$\nabla^{\leftarrow}(J_{dis}(\nabla m, \nabla n)) = \nabla^{\leftarrow}(J_{dis}(\nabla m, \nabla m)) = \nabla^{\leftarrow}(\{\nabla m\}) = \{m\}$$

and

$$pr_k A^{\leftarrow}(J(pr_k Am, pr_k An)) = pr_k A^{\leftarrow}(J(pr_k Am, pr_k Am)), \quad k = 1, 2, 3.$$

It follows that $m \in pr_k A^{\leftarrow}(J(pr_k Am, pr_k Am))$ for k = 1, 2, 3.

By Lemma 2.1, we obtain $\overline{J}(m, m) = \{m\}$, a discrete structure.

Case II: Let $m \neq n$ and $\nabla m = \nabla n$. If $\nabla m = (x, y) = \nabla n$ for some $(x, y) \in X^2$ given that $m \neq n$, consequently, it follows that $m = (x, y)_i$ and $n = (x, y)_j$ with $i \neq j$ and i, j = 1, 2.

Suppose $m = (x, y)_1$ and $n = (x, y)_2$. By Lemma 2.2 (1),

$$J_{dis}(\nabla m, \nabla n) = J_{dis}(\nabla (x, y)_1, \nabla (x, y)_2) = J_{dis}((x, y), (x, y)) = \{(x, y)\}$$

and

$$\nabla^{\leftarrow}(J_{dis}(\nabla m, \nabla n)) = \nabla^{\leftarrow}\{(x, y)\} = \{(x, y)_1, (x, y)_2\}.$$

Similarly,

$$pr_1A^{\leftarrow}(J(pr_1Am, pr_1An)) = pr_1A^{\leftarrow}(J(pr_1A(x, y)_1, pr_1A(x, y)_2)) = pr_1A^{\leftarrow}(J(x, x)),$$

$$pr_2A^{\leftarrow}(J(pr_2Am, pr_2An)) = pr_2A^{\leftarrow}(J(pr_2A(x, y)_1, pr_2A(x, y)_2)) = pr_2A^{\leftarrow}(J(y, x))$$

and

$$pr_3A^{\leftarrow}(J(pr_3Am, pr_3An)) = pr_3A^{\leftarrow}(J(pr_3A(x, y)_1, pr_3A(x, y)_2)) = pr_3A^{\leftarrow}(J(x, y)).$$

Since $x = pr_1A(x, y)_1 = pr_1A(x, y)_2 \in J(x, x)$, consequently, $(x, y)_1, (x, y)_2 \in pr_1A^{\leftarrow}(J(x, x))$. Similarly, $x = pr_2A(x, y)_2 = pr_3A(x, y)_1 \in J(x, y)$ and $y = pr_2A(x, y)_1 = pr_3A(x, y)_2 \in J(x, y)$, and it follows that $(x, y)_1, (x, y)_2 \in pr_kA^{\leftarrow}(J(x, y))$ for k = 2, 3.

By Lemma 2.1,

$$\overline{J}(m,n) = pr_k A^{\leftarrow}(J(pr_k Am, pr_k An)) \cap \nabla^{\leftarrow}(J_{dis}(\nabla m, \nabla n)), \quad k = 1, 2, 3
= pr_k A^{\leftarrow}(J(pr_k Am, pr_k An)) \cap \{(x, y)_1, (x, y)_2\}, \quad k = 1, 2, 3
= \{(x, y)_1, (x, y)_2\}.$$

In a similar way, if $m = (x, y)_2$ and $n = (x, y)_1$, then $\overline{J}(m, n) = \{(x, y)_1, (x, y)_2\}$.

Case III: Let $m \neq n$ and $\nabla m \neq \nabla n$. Note that

$$\nabla^{\leftarrow}(J_{dis}(\nabla m, \nabla n)) = \nabla^{\leftarrow}\{\nabla m, \nabla n\} = \{m, n\}$$

and $pr_kAm, pr_kAn \in J(pr_kAm, pr_kAn)$ for k = 1, 2, 3, and consequently, $m, n \in pr_kA^{\leftarrow}(J(pr_kAm, pr_kAn))$. By Lemma 2.1, we have

$$\overline{J}(m,n) = pr_k A^{\leftarrow}(J(pr_k Am, pr_k An)) \cap \nabla^{\leftarrow}(J_{dis}(\nabla m, \nabla n)), \quad k = 1, 2, 3$$
$$= \{m, n\}.$$

Hence \overline{J} is the discrete structure and by Definition 3.4 (ii), (X, J) is T_0 .

Theorem 3.3. Every interval space (X, J) is T_1 .

Proof. The proof is similar to Theorem 3.2. So the proof is omitted.

Theorem 3.4. An interval space (X, J) is T_0 iff X has at most one point.

Proof. Suppose (X, J) is $\mathbf{T_0}$, $X \neq \emptyset$ and $X \neq \{a\}$. Then, there exists $b \in X$ with $a \neq b$. Let $M = \{a, b\}$ and J_M be an interval structure induced by the inclusion mapping $i : M \longrightarrow (X, J)$. By Lemma 2.1, $J_M(a, b) = i^{\leftarrow}(J(i(a), i(b))) = M \cap J(a, b) = M$, i.e., the indiscrete structure on M, which is a contradiction. Thus, X has at most one point.

Conversely, if
$$X = \emptyset$$
 or $X = \{a\}$, then clearly (X, J) is $\mathbf{T_0}$.

Corollary 3.1. Let (X, J) be an interval space. The following statements are equivalent:

- (1) (X, J) is separated.
- (2) (X, J) is T_0 .
- (3) X has at most one point.

Proof. The proof can be deduced from Theorems 3.1 and 3.4.

Theorem 3.5. An interval space (X, J) is pre- T_2 iff (X, J) is an indiscrete interval space.

Proof. Suppose that (X, J) is pre- T_2 . If $X = \emptyset$, $X = \{x\}$ or $X = \{x, y\}$, then $J_{dis} = J_{ind} = J$. Now, consider CardX = 3, i.e., $X = \{x, y, z\}$. Then, by Definition 2.3, X carries only discrete and indiscrete structures. Assume, on the contrary, that (X, J) is not an indiscrete interval space. It follows that for all $x, y \in X$ with $x \neq y$, $J(x, y) = \{x, y\}$. Let J_A and J_S be initial structures on $X^2 \bigvee_\Delta X^2$ induced by $A: X^2 \bigvee_\Delta X^2 \longrightarrow (X^3, J^3)$ and $S: X^2 \bigvee_\Delta X^2 \longrightarrow (X^3, J^3)$, respectively. Here, J^3 is the product structure on X^3 . Also, pr_k is the projection mapping $pr_k: X^3 \longrightarrow X$ for k = 1, 2, 3. We show that (X, J) is not pre- T_2 , i.e., $J_A(m, n) \neq J_S(m, n)$ for some $m, n \in X^2 \bigvee_\Delta X^2$.

Suppose $m = (x, y)_1$ and $n = (z, y)_2 \in X^2 \bigvee_{\Delta} X^2$ for all $x, y, z \in X$ with $x \neq y \neq z$. Note that

$$A^{\leftarrow}(\{x,z\}\times X^2) = \{(x,x)_1 = (x,x)_2, (z,z)_1 = (z,z)_2, (x,y)_1, (x,y)_2, (x,z)_1, (x,z)_2, (z,x)_1, (z,x)_2, (z,y)_1, (z,y)_2\},$$

$$S^{\leftarrow}(\{x,z\}\times X^2) = \{(x,x)_1 = (x,x)_2, (z,z)_1 = (z,z)_2, (x,y)_1, (x,y)_2, (x,z)_1, (x,z)_2, (z,x)_1, (z,x)_2, (z,y)_1, (z,y)_2\},$$

$$A^{\leftarrow}(X\times \{y,z\}\times X) = \{(y,y)_1 = (y,y)_2, (z,z)_1 = (z,z)_2, (x,y)_1, (y,x)_2, (x,z)_1, (z,x)_2, (y,z)_1, (y,z)_2, (z,y)_1, (z,y)_2\},$$

$$S^{\leftarrow}(X\times \{y,z\}\times X) = \{(y,y)_1 = (y,y)_2, (z,z)_1 = (z,z)_2, (x,y)_1, (y,x)_2, (x,z)_1, (z,x)_2, (y,z)_1, (y,z)_2, (z,y)_1, (z,y)_2\},$$

$$A^{\leftarrow}(X^2\times \{x,y\}) = \{(x,x)_1 = (x,x)_2, (y,y)_1 = (y,y)_2, (x,y)_1, (x,y)_2, (y,x)_1, (y,x)_2, (x,z)_1, (z,x)_2, (y,z)_1, (z,y)_2\},$$

and

$$S \leftarrow (X^2 \times \{y\}) = \{(y, y)_1 = (y, y)_2, (x, y)_1, (x, y)_2, (z, y)_1, (z, y)_2\}.$$

By Lemma 2.1,

$$J_{A}((x,y)_{1},(z,y)_{2}) = \bigcap_{k=1}^{3} pr_{k}A^{\leftarrow}(J(pr_{k}A(x,y)_{1},pr_{k}A(z,y)_{2}))$$

$$= pr_{1}A^{\leftarrow}(J(x,z)) \cap pr_{2}A^{\leftarrow}(J(y,z)) \cap pr_{3}A^{\leftarrow}(J(x,y))$$

$$= A^{\leftarrow}(pr_{1}^{\leftarrow}(J(x,z))) \cap A^{\leftarrow}(pr_{2}^{\leftarrow}(J(y,z))) \cap A^{\leftarrow}(pr_{3}^{\leftarrow}(J(x,y)))$$

$$= A^{\leftarrow}(\{x,z\} \times X^{2}) \cap A^{\leftarrow}(X \times \{y,z\} \times X) \cap A^{\leftarrow}(X^{2} \times \{x,y\})$$

$$= \{(x,y)_{1},(x,z)_{1},(z,x)_{2},(z,y)_{2}\}.$$

Similarly,

$$J_{S}((x,y)_{1},(z,y)_{2}) = \bigcap_{k=1}^{3} pr_{k}S^{\leftarrow}(J(pr_{k}S(x,y)_{1},pr_{k}S(z,y)_{2}))$$

$$= pr_{1}S^{\leftarrow}(J(x,z)) \cap pr_{2}S^{\leftarrow}(J(y,z)) \cap pr_{3}S^{\leftarrow}(J(y,y))$$

$$= S^{\leftarrow}(pr_{1}^{\leftarrow}(J(x,z))) \cap S^{\leftarrow}(pr_{2}^{\leftarrow}(J(y,z))) \cap S^{\leftarrow}(pr_{3}^{\leftarrow}(J(y,y)))$$

$$= S^{\leftarrow}(\{x,z\} \times X^{2}) \cap S^{\leftarrow}(X \times \{y,z\} \times X) \cap S^{\leftarrow}(X^{2} \times \{y\})$$

$$= \{(x,y)_{1},(z,y)_{1},(z,y)_{2}\}.$$

Therefore, $J_A((x, y)_1, (z, y)_2) \neq J_S((x, y)_1, (z, y)_2)$, and consequently, (X, J) is not pre- T_2 .

Now, consider CardX > 3. Assume, on the contrary, that (X, J) is not an indiscrete interval space. Then, there exists $M \subset X$ such that J(x,y) = M for all $x,y \in X$ with $\{x,y\} \subset M \neq X$ and $x \neq y$. Then, there exists a point $z \in X$ but $z \neq M$ whenever J(x,y) = M for all $x,y \in X$ with $x \neq y$. Similar to the above, consider $(z,y)_1 \in X^2 \bigvee_\Delta X^2$ for any $z,y \in X$ with $y \neq z$. Since $pr_1S(z,y)_1 = z \in J(x,z)$, consequently, $(z,y)_1 \in pr_1S \subset J(x,z)$. Similarly, $pr_2S(z,y)_1 = y \in J(y,z)$, and, consequently, $(z,y)_1 \in pr_2S \subset J(x,z)$, and $(z,y)_1 \in pr_3S \subset J(x,y)$. Thus, by Lemma 2.1, $(z,y)_1 \in J_S((x,y)_1,(z,y)_2)$ for any $(x,y)_1,(z,y)_2 \in X^2 \bigvee_\Delta X^2$. However $(z,y)_1 \notin J_A((x,y)_1,(z,y)_2)$ since $pr_3A(z,y)_1 = z \notin J(x,y)$ and it follows that $(z,y)_1 \notin pr_3A \subset J(x,y)$. Thus, $J_A((x,y)_1,(z,y)_2) \neq J_S((x,y)_1,(z,y)_2)$. Consequently, an interval space (X,J) is not pre- T_2 .

Conversely, let (X, J) be an indiscrete interval space. Then, by Remark 3.1 (5), (X, J) is pre- T_2 . \square

Theorem 3.6. An interval space (X, J) is T_2 iff (X, J) is an indiscrete interval space.

Proof. The proof follows from Theorems 3.2 and 3.5.

- **Remark 3.2.** (1) In **O-REL** (the category of ordered relative spaces and relative mappings) [27] as well as in **b-UFIL** (the category of b-UFIL spaces and buc mappings) [27, 28], $T_1 \implies T_0$ [22, 34].
- (2) In V-Cls (the category of V-closure spaces and continuous mappings) with V as an integral quantale [26], $T_2 = T_1 \implies T_0 \implies T_0$ [33].

- (3) In **Born** (the category of bornological spaces and bounded mappings), all objects are T_0 , T_1 and T_2 [4], and X is separated or T_0 iff X is either empty or a singleton [4]. However, in **Prox** (the category of proximity spaces and proximity mappings), all objects are not T_0 , T_1 and T_2 but they are all equal [24].
- (4) In **IS**, by Theorems 3.2, 3.3 and 3.6, and Corollary 3.1, we conclude that $\mathbf{T_0} \implies T_0 = T_1$ and $T_2 \implies T_0 = T_1$ but the converse is not true in general.

Corollary 3.2. An interval space (X, J) is NT_2 iff (X, J) is ST_2 iff X has a cardinality I.

Proof. It follows from Theorems 3.1, 3.4 and 3.5.

4. Notion of closedness and D-connectedness in interval spaces

Let X be any set and $p \in X$. Let the *infinite wedge product of X at p* be the infinitely countable disjoint copies of X identifying at p and denoted by $\bigvee_{p}^{\infty} X$.

For a point $x \in \bigvee_{p}^{\infty} X$, we write it as x_j if it belongs to the j^{th} component of the infinite wedge product.

Definition 4.1. (cf. [2]) Let $X^{\infty} = X \times X \times X \times \dots$ be the countable Cartesian product of X.

(1) The mapping $A_p^{\infty}: \bigvee_{p}^{\infty} X \longrightarrow X^{\infty}$ is said to be an infinite principal p-axis mapping provided that

$$A_p^{\infty}(x_j) = (p, p, \dots, p, \underbrace{x}_{j^{th} \ place}, p, \dots), \quad \forall j \in I.$$

(2) The mapping $\nabla_p^{\infty}: \bigvee_p^{\infty} X \longrightarrow X$ is said to be an infinite fold mapping at p provided that

$$\nabla_p^{\infty}(x_j) = x, \quad \forall j \in I.$$

Definition 4.2. (cf. [2,3]) Let $\mathcal{U}: \mathcal{E} \longrightarrow \mathbf{Set}$ be a topological functor and $X \in Obj(\mathcal{E})$ with $\mathcal{U}(X) = Y$ and $p \in Y$. $\{p\}$ is closed provided that the initial lift of the \mathcal{U} -source $\{\bigvee_{p}^{\infty} Y \xrightarrow{A_{p}^{\infty}} \mathcal{U}X^{\infty} = Y^{\infty} \text{ and } \bigvee_{p}^{\infty} Y \xrightarrow{\nabla_{p}^{\infty}} \mathcal{U}DY = Y\}$ is discrete, where \mathcal{D} is the discrete functor which is left adjoint of \mathcal{U} .

Remark 4.1. In **Top**, the closedness of $\{p\}$ reduces to the usual closedness of the singleton set $\{p\}$ [2,3]. Also, for any $X \in obj(\textbf{Top})$, X is T_1 iff all points of X are closed. However, in an arbitrary topological category, this is not true in general [3].

Theorem 4.1. Every singleton set $\{p\}$ in an interval space (X, J) is closed.

Proof. Let (X, J) be an interval space, $p \in X$. We show that $\{p\}$ is closed. Let \bar{J} be an initial structure on $\bigvee_p^{\infty} X$ induced by $A_p^{\infty} : \bigvee_p^{\infty} X \to (X^{\infty}, J^{\infty})$ and $\nabla_p^{\infty} : \bigvee_p^{\infty} X \to (X, J_{dis})$, where J^{∞} and J_{dis} are the product interval structures and discrete interval structures on X^{∞} and X, respectively. Let $m, n \in \bigvee_p^{\infty} X$.

If m = n, then $\nabla_p^{\infty} m = \nabla_p^{\infty} n$ and also $pr_k A_p^{\infty} m = pr_k A_p^{\infty} n$ for $k \in I$. Here, pr_k are the projection mappings $pr_k : X^{\infty} \to X$, where $k \in I$. By Lemma 2.2 (1),

$$\nabla_p^{\infty \leftarrow}(J_{dis}(\nabla_p^{\infty}m,\nabla_p^{\infty}n)) = \nabla_p^{\leftarrow}(J_{dis}(\nabla_p^{\infty}m,\nabla_p^{\infty}m))$$

and it follows that $\nabla_p^{\infty\leftarrow}(\{\nabla_p^{\infty}m\}) = \{m\}$ and

$$pr_kA_p^{\infty\leftarrow}(J(pr_kA_p^{\infty}m,pr_kA_p^{\infty}n))=pr_kA_p^{\infty\leftarrow}(J(pr_kA_p^{\infty}m,pr_kA_p^{\infty}m)), \ \forall k\in I.$$

Since $pr_k A_p^{\infty} m \in J(pr_k A_p^{\infty} m, pr_k A_p^{\infty} m)$ for each $k \in I$, consequently, $m \in pr_k A_p^{\infty} \leftarrow (J(pr_k A_p^{\infty} m, pr_k A_p^{\infty} m))$. By Lemma 2.1,

$$\bar{J}(m,m) = pr_k A_p^{\infty \leftarrow} (J(pr_k A_p^{\infty} m, pr_k A_p^{\infty} m)) \cap \nabla_p^{\infty \leftarrow} (J_{dis}(\nabla_p^{\infty} m, \nabla_p^{\infty} m)), \quad k \in I$$

$$= pr_k A_p^{\infty \leftarrow} (J(pr_k A_p^{\infty} m, pr_k A_p^{\infty} m)) \cap \{m\}, \quad k \in I$$

$$= \{m\}.$$

Let $m \neq n$ and $\nabla_p^{\infty} m = \nabla_p^{\infty} n$. If $\nabla_p^{\infty} m = p = \nabla_p^{\infty} n$, consequently, $m = (p, p, p, ..., p, ...) = p_i = p_j = n$ for all $i, j \in I$, which is a contradiction.

Suppose $\nabla_p^{\infty} m = x = \nabla_p^{\infty} n$, so it follows easily that $m = x_i$ and $n = x_j$ for some $i, j \in I$ with $i \neq j$. Note that

$$J(pr_kA_p^{\infty}m,pr_kA_p^{\infty}n)=J(pr_kA_p^{\infty}x_i,pr_kA_p^{\infty}x_j)=\left\{\begin{array}{ll}J(x,p),&if\ k=i\\J(p,x),&if\ k=j\\J(p,p),&if\ k\notin\{i,j\}.\end{array}\right.$$

Since $x = pr_k A_p^{\infty} m \in J(x, p)$, consequently, $m \in pr_k A_p^{\infty \leftarrow}(J(x, p))$ for k = i or k = j, and $p = pr_k A_p^{\infty} n \in J(x, p)$ for any $k \in I$; it follows that $n \in pr_k A_p^{\infty \leftarrow}(J(x, p))$. Thus, $m, n \in pr_k A_p^{\infty \leftarrow}(J(pr_k A_p^{\infty} m, pr_k A_p^{\infty} n))$ for any $k \in I$. On the other hand,

$$\nabla_{n}^{\infty\leftarrow}(J_{dis}(\nabla_{n}^{\infty}x_{i},\nabla_{n}^{\infty}x_{j})) = \nabla_{n}^{\infty\leftarrow}\{x\} = \{x_{i},x_{j}\} = \{m,n\}.$$

By Lemma 2.1,

$$\bar{J}(m,n) = pr_k A_p^{\infty \leftarrow} (J(pr_k A_p^{\infty} m, pr_k A_p^{\infty} n)) \cap \nabla_p^{\infty \leftarrow} (J_{dis}(\nabla_p^{\infty} m, \nabla_p^{\infty} n)), \quad k \in I$$

$$= pr_k A_p^{\infty \leftarrow} (J(pr_k A m, pr_k A n)) \cap \{m, n\} = \{m, n\}.$$

Suppose that $m \neq n$ and $\nabla_p^{\infty} m \neq \nabla_p^{\infty} n$.

By Lemma 2.2 (1), $\nabla_p^{\infty} \leftarrow (\bar{J}_{dis}(\nabla_p^{\infty}m, \nabla_p^{\infty}n)) = \nabla_p^{\leftarrow}(\{\nabla_p^{\infty}m, \nabla_p^{\infty}n\}) = \{m, n\}$ and $m, n \in J(pr_kA_p^{\infty}m, pr_kA_p^{\infty}n)$ for any $k \in I$. By Lemma 2.1, $\bar{J}(m, n) = \{m, n\}$, which is a discrete structure. Thus, by Definition 4.2, $\{p\}$ is closed.

Definition 4.3. (cf. [8, 38]) Let $\mathcal{U}: \mathcal{E} \longrightarrow \mathbf{Set}$ be a topological functor and $X \in Obj(\mathcal{E})$. X is said to be D-connected provided that any morphism from X to any discrete object is constant.

Remark 4.2. In **Top**, the D-connectedness reduces to the usual connectedness [8, 38].

Theorem 4.2. An interval space (X, J) is D-connected iff there exists a proper subset N of X such that $\{x, y\} \subset J(x, y)$ for some $x \in N$ and $y \in N^c$.

Proof. Let (X, J) be *D*-connected and there exists a nonempty subset N of X, $J(x, y) = \{x, y\}$ for all $x \in N$ and $y \in N^c$. Suppose (Y, J_{dis}) is the discrete interval space with CardY > 1. Define the mapping $f: (X, J) \to (Y, J_{dis})$ by

$$f(x) = \begin{cases} a, & x \in N \\ b, & x \notin N. \end{cases}$$

Let $x, y \in X$. If $x, y \in N$ then

$$f^{\rightarrow}(J(x,y)) = f^{\rightarrow}(\{x,y\}) = \{f(x), f(y)\} = \{a\}$$

and

$$J_{dis}(f(x), f(y)) = \{f(x), f(y)\} = \{a\},\$$

and consequently,

$$f^{\rightarrow}(J(x,y)) = J_{dis}(f(x), f(y)).$$

Thus f is an interval preserving mapping. Similarly, if $x, y \in N^c$, then f is also an interval preserving mapping.

Now, let $x \in N$ and $y \in N^c$ (resp. $y \in N$ and $x \in N^c$). Note that

$$f^{\rightarrow}(J(x,y)) = \{f(t) \mid t \in J(x,y) = \{x,y\}\} = \{f(x), f(y)\} = \{a,b\}$$

and $J_{dis}(f(x), f(y)) = \{f(x), f(y)\} = \{a, b\}$. Thus, $f^{\rightarrow}((J(x, y))) = J_{dis}(f(x), f(y))$. Hence, f is an interval preserving mapping, but it is not constant, which is a contradiction.

Conversely, suppose that the condition holds. Let (Y, J_{dis}) be a discrete interval space and $f: (X, J) \to (Y, J_{dis})$ be an interval preserving mapping.

If CardY = 1, then f is constant. Suppose that CardY > 1, and f is not constant. Then there exist $x, y \in X$ with $x \neq y$ such that $f(x) \neq f(y)$ and let $N = f^{\leftarrow}\{f(x)\}$. Note that N is a proper subset of X. By our assumption $\{x, y\} \subset J(x, y)$ for some $x \in N$ and $y \notin N$, we have

$$\{f(x), f(y)\} = f^{\rightarrow}(\{x, y\}) \subset f^{\rightarrow}((J(x, y)) \subseteq J_{dis}(f(x), f(y)).$$

By Lemma 2.2 (1), it follows that f is not an interval-preserving mapping, which is a contradiction. Thus f must be constant and, by Definition 4.3, (X, J) is D-connected.

Theorem 4.3. Let (X, J_X) and (Y, J_Y) be interval spaces, and let $f: (X, J_X) \longrightarrow (Y, J_Y)$ be an interval preserving mapping. If (X, J_X) is D-connected and f is surjective, then (Y, J_Y) is D-connected.

Proof. Let f(x), $f(y) \in f(X)$ with $f(x) \neq f(y)$. Since f is an interval preserving mapping, it follows that $f^{\rightarrow}(J_X(x,y)) \subseteq J_Y((f(x),f(y)))$. The assumption that there exists a proper subset N of X such that $\{x,y\} \subset J(x,y)$ for some $x \in N$ and $y \notin N$ implies that

$$\{f(x), f(y)\} = f^{\rightarrow}(\{x, y\}) \subset f^{\rightarrow}(J_X(x, y)) \subseteq J_Y((f(x), f(y)),$$

and consequently, $\{f(x), f(y)\} \subset J_Y((f(x), f(y)) \text{ for some } f(x) \in f(N) \text{ and } f(y) \notin f(N).$ Therefore, f(X) is *D*-connected. Since f is surjective, it follows that f(X) = Y is *D*-connected.

5. Zero-dimensionality in interval spaces

In 1997, Stine [36] gave an alternative characterization of the zero-dimensional space (X, τ) that is, (X, τ) is a zero-dimensional space provided that for all $i \in I$, there exists a family $(X_i, \tau_{i_{dis}})$ and there exists $f_i : (X, \tau) \longrightarrow (X_i, \tau_{i_{dis}})$ such that τ is the initial topology by $(X_i, \tau_{i_{dis}})$ via f_i , where $(X_i, \tau_{i_{dis}})$ is the family of discrete topological spaces. Considering the categorical counterparts, we have the following definition, as given in [37].

Definition 5.1. (cf. [37]) Let $\mathcal{U}: C \longrightarrow \mathcal{E}$ be a topological and $\mathcal{D}: \mathcal{E} \longrightarrow C$ be a discrete functor. Any object $X \in Obj(C)$ is called a zero-dimensional object provided that for all $i \in I$, there exists $A_i \in Obj(\mathcal{E})$ and the morphisms $f_i: \mathcal{U}(X) \longrightarrow A_i$ such that $(\overline{f}_i: X \longrightarrow \mathcal{D}(A_i))_{i \in I}$ is the initial lift of $(f_i: \mathcal{U}(X) \longrightarrow \mathcal{U}(\mathcal{D}(A_i)) = A_i)_{i \in I}$.

- **Remark 5.1.** (1) For C = Top and $\mathcal{E} = \textbf{Set}$, by Theorem 4.3.1 of [36], Definition 5.1 reduces to the usual zero-dimensional topological space.
- (2) If $\mathcal{U}: C \longrightarrow \mathcal{E}$ is a normalized topological functor, by Theorem 4.3.4 and 5.3.1 of [37], then every indiscrete object in C is a zero-dimensional object.

Theorem 5.1. Every discrete and indiscrete interval space (X, J) is zero-dimensional.

Proof. Suppose (X, J) is an interval space and $X = \{x\}$ or $X = \{x, y\}$. Then $J_{dis} = J_{ind} = J$. By Remarks 2.1 and 5.1, it is zero-dimensional.

Let $CardX \ge 3$, and $J = J_{dis}$. Consider $f_i(x) = x$ (identity mapping) and $X = X_i$ for all $i \in I$. Clearly, $f_i : X \longrightarrow X_i$ is an interval preserving mapping and $f_i : X \longrightarrow X_i$ is the initial lift of $f_i : (X, J) \longrightarrow (X_i, J_{idis})$. Thus, by Definition 5.1, (X, J) is zero-dimensional.

Now, let $J = J_{ind}$ and take $f_i(x) = c$ (constant mapping) for all $i \in I$. Clearly, $f_i : X \longrightarrow X_i$ is an interval preserving mapping which is the initial lift of $f_i : (X, J) \longrightarrow (X_i, J_{idis})$. Therefore, by Definition 5.1, (X, J) is zero-dimensional.

Corollary 5.1. Every interval space (except for a discrete interval space) is D-connected.

Corollary 5.2. Every D-disconnected (not D-connected) interval space with cardinality greater than 2 is zero-dimensional.

Proof. Let (X, J) be a D-disconnected interval space with cardinality greater than 2. By Theorem 4.2, for all $x, y \in X$ with $x \neq y$, $J(x, y) = \{x, y\}$ and consequently, (X, J) is discrete. Thus, by Theorem 5.1, (X, J) is zero-dimensional.

6. Conclusions

First, we characterized separated, T_0 , T_0 , T_1 , pre- T_2 , T_2 , NT_2 and ST_2 interval spaces and showed that separated = $T_0 \implies T_0 = T_1$ and $T_2 \implies T_0 = T_1$ but the converse is not true in general. Also, we proved that in any interval space with cardinality at most one point, $NT_2 = ST_2$. Further, we showed that every singleton set is closed and every interval space (except for a discrete interval space) is D-connected. Finally, we characterized zero-dimensionality in interval spaces and showed that every discrete and indiscrete interval space is zero-dimensional. Considering these results, the followings can be treated as open research problems:

- (1) How can one characterize sobriety, ultraconnectedness and irreducibility in the category **IS**?
- (2) Can one characterize pre- T_2 , zero-dimensionality and separatedness for quantale generalization of interval spaces, and what would be their relation to the classical ones?

Acknowledgments

We would like to thank the referees for their valuable and helpful suggestions that improved the paper radically.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

- 1. J. Adámek, H. Herrlich, G. E. Strecker, *Abstract and concrete categories*, New York: John Wiley & Sons, 1990.
- 2. M. Baran, Separation properties, *Indian J. Pure Appl. Math.*, 23 (1991), 333–341.
- 3. M. Baran, The notion of closedness in topological categories, *Comment. Math. Univ. Carolin.*, **34** (1993), 383–395.
- 4. M. Baran, H. Altındiş, T_0 objects in topological categories, *J. Univ. Kuwait (Sci.)*, **22** (1995), 123–127.
- 5. M. Baran, H. Altındiş, T_2 objects in topological categories, *Acta Math. Hungarica*, **71** (1996), 41–48. https://doi.org/10.1007/BF00052193
- 6. M. Baran, Separation properties in topological categories, *Math. Balkanica*, **10** (1996), 39–48.
- 7. M. Baran, Completely regular objects and normal objects in topological categories, *Acta Mathematica Hungarica*, **80** (1998), 211–224. https://doi.org/10.1023/A:1006550726143
- 8. M. Baran, M. Kula, A note on connectedness, *Publ. Math. Debrecen*, **68** (2006), 489–501. https://doi.org/10.5486/PMD.2006.3343
- 9. M. Baran, Pre T_2 -objects in topological categories, *Appl. Categor. Struct.*, **17** (2009), 591–602. https://doi.org/10.1007/s10485-008-9161-4
- 10. M. Baran, J. Al-Safar, Quotient-reflective and bireflective subcategories of the category of preordered sets, *Topol. Appl.*, **158** (2011), 2076–2084. https://doi.org/10.1016/j.topol.2011.06.043
- 11. M. Baran, H. Abughalwa, Sober spaces, *Turkish J. Math.*, **46** (2022), 299–310. https://doi.org/10.3906/mat-2109-95
- 12. T. M. Baran, M. Kula, Local pre-Hausdorff extended pseudo-quasi-semi metric spaces, *Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.*, **68** (2019), 862–870. https://doi.org/10.31801/cfsuasmas.484924
- 13. T. M. Baran, Closedness, separation and connectedness in pseudo-quasi-semi metric spaces, *Filomat*, **34** (2020), 4757–4766. https://doi.org/10.2298/FIL2014757B
- 14. T. M. Baran, A. Erciyes, T_4 , Urysohn's lemma and Tietze extension theorem for constant filter convergence spaces, *Turkish J. Math.*, **45** (2021), 843–855. https://doi.org/10.3906/mat-2012-101

- 15. T. M. Baran, M. Kula, Separation axioms, Urysohn's Lemma and Tietze Extention Theorem for extended pseudo-quasi-semi metric spaces, *Filomat*, **36** (2022), 703–713. https://doi.org/10.2298/FIL2202703B
- 16. N. Bourbaki, General topology, Hermann: Addison-Wesley Publishing Company, 1966.
- 17. J. Calder, Some elementary properties of interval convexities, *J. London Math. Soc.*, **2** (1971), 422–428. https://doi.org/10.1112/jlms/s2-3.3.422
- 18. M. M. Clementino, W. Tholen, Separation versus connectedness, *Topol. Appl.*, **75** (1997), 143–181. https://doi.org/10.1016/S0166-8641(96)00087-9
- 19. D. Deses, On the representation of non-Archimedean objects, *Topol. Appl.*, **153** (2005), 774–785. https://doi.org/10.1016/j.topol.2005.01.010
- 20. W. Hurewicz, H. Wallman, *Dimension theory*, Princeton: Princeton University Press, 2015.
- 21. P. T. Johnstone, *Stone spaces*, New York: L. M. S. Mathematics Monograph: No. 10. Academic Press, 1977.
- 22. S. Khadim, M. Qasim, Quotient reflective subcategories of the category of bounded uniform filter spaces, *AIMS Math.*, **7** (2022), 16632–16648. https://doi.org/10.3934/math.2022911
- 23. M. Kula, T. Maraşlı, S. Özkan, A note on closedness and connectedness in the category of proximity spaces, *Filomat*, **28** (2014), 1483–1492. https://doi.org/10.2298/FIL1407483K
- 24. M. Kula, S. Özkan, T. Maraşlı, Pre-Hausdorff and Hausdorff proximity spaces, *Filomat*, **31** (2014), 3837–3846. https://doi.org/10.2298/FIL1712837K
- 25. M. Kula, S. Özkan, T_2 and T_3 at p in the category of proximity spaces, *Math. Bohem.*, **145** (2020), 177–190. https://doi.org/10.21136/MB.2019.0144-17
- 26. H. Lai, W. Tholen, A note on the topologicity of quantale-valued topological spaces, *Log. Meth. Comput. Sci.*, **13** (2017), 1–13. https://doi.org/10.23638/LMCS-13(3:12)2017
- 27. D. Leseberg, Z. Vaziry, *Bounded topology*, Saarbrucken: Lap Lambert Academic Publishing, 2019.
- 28. D. Leseberg, Z. Vaziry, The quasitopos of b-uniform filter spaces, *Math. Appl.*, **7** (2018), 155–171. https://doi.org/10.13164/ma.2018.13
- 29. T. Marny, *Rechts-bikategoriestrukturen in topologischen kategorien*, Ph.D thesis, Freie Universität Berlin, 1973.
- 30. M. V. Mielke, Separation axioms and geometric realizations, *Indian J. Pure Appl. Math.*, **25** (1994), 711–722.
- 31. M. V. Mielke, Hausdorff separations and decidability, In: *Symposium on categorical topology*, Rondebosch: University of Cape Town, 1999.
- 32. J. V. Mill, Supercompactness and wallman spaces, Amsterdam: Mathematic Centre Tracts, 1997.
- 33. M. Qasim, B. Pang, Pre-Hausdorff and Hausdorff objects in the category of quantale-valued closure spaces, *Hacet. J. Math. Stat.*, **50** (2021), 612–623. https://doi.org/10.15672/hujms.740593

- 34. M. Qasim, M. A. Aslam, A note on quotient reflective subcategories of **O-REL**, *J. Funct. Space*., 2022, 1117881. https://doi.org/10.1155/2022/1117881
- 35. V. P. Soltan, D-convexity in graphs, Soviet Math. Dokl., 28 (1983), 419–421.
- 36. J. Stine, Pre-Hausdorff objects in topological categories, Ph.D thesis, University of Miami, 1997.
- 37. J. Stine, Initial hulls and zero dimensional objects, *Publ. Math. Debrecen*, **82** (2013), 359–371. https://doi.org/ 10.5486/PMD.2013.5307
- 38. G. Preuss, *Theory of topological structures: an approach to categorical topology*, Berlin: Springer, 1988.
- 39. M. J. L. Van De Vel, Binary convexities and distributive lattices, *Proc. London Math. Soc.*, **48** (1984), 1–33. https://doi.org/ 10.1112/plms/s3-48.1.1
- 40. M. J. L. Van De Vel, *Theory of convex structures*, Amsterdam: North Holland, 1993.
- 41. B. Wang, Q. H. Li, Z. Y. Xiu, A categorical approach to abstract convex spaces and interval spaces, *Open Math.*, **17** (2019), 374–384. https://doi.org/10.1515/math-2019-0029
- 42. S. Weck-Schwarz, T_0 -objects and separated objects in topological categories, *Quaest. Math.*, **14** (1991), 315–325. https://doi.org/10.1080/16073606.1991.9631649

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)