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Abstract: This paper presents the problem modeled using Caputo fractional derivatives with an 

accurate study of the MHD unsteady flow of Nanofluid through an inclined plate with the mass 

diffusion effect in association with the energy equation. H2O is thought to be a base liquid with clay 

nanoparticles floating in it in a uniform way. Bousinessq’s approach is used in the momentum 

equation for pressure gradient. The nondimensional fluid temperature, species concentration, and 

fluid transport are derived together with Jacob Fourier sine and Laplace transforms Techniques in 

terms of exponential decay function, whose inverse is computed further in terms of Mittag-Leffler 

function. The impact of various physical quantities interpreted with fractional order of the Caputo 

derivatives. The obtained temperature, transport, and species concentration profiles show behaviours 

for 0 1    where   is the fractional parameter. Numerical calculations have been carried out for 
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the rate of heat transmission and the Sherwood number is swotted to be put in the form of tables. The 

parameters for the magnetic field and the angle of inclination slow down the boundary layer of 

momentum. The distributions of velocity, temperature, and concentration expand more rapidly for 

higher values of the fractional parameter. Additionally, it is revealed that for the volume fraction of 

nanofluids, the concentration profiles behave in the opposite manner. The limiting case solutions also 

presented on flow field of governing model. 

Keywords: nanofluid; heat and mass transfer; magnetic field; Caputo fractional derivative; Fourier 

and integral transforms 

Mathematics Subject Classification: 35Q30, 26A33 

 

Abbreviations: 

Nomenclature 

𝐵0 Magnetic field strength 
V Velocity 
𝑇 Temperature 
C Concentration 
𝑇∞ Ambient temperature 

𝑀 Magnetic parameter 
Gr Grashof number 
Gm Mass of Grashof number 

𝑁𝑢 Nusselt number 
𝑃𝑟 Prandtl number 
𝛼 Fractional parameter 
𝛾 Inclined angle 
D Diffusion 
Sc Schimidt number 

Greek symbols 

𝛽 Thermal expansion 
𝜇 Viscosity 

𝜌 Density 
𝜎 Electrical conductivity 
  Volume fraction of nanoparticles 

( )
p hnf

c  
Heat capacity of the hybrid 

nanofluid 

( )
p f

c  Heat capacity of the fluid 

( )
p s

c  
Heat capacity of the 

nanoparticles material 

k
hnf  

Thermal conductivity of the 

hybrid nanofluid 
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hnf  Viscosity of hybrid nanofluid 

f  fluid kinematic viscosity 

Subscripts 

f  Fluid 
hnf  Hybrid nanofluid 

𝑠 Solid particle 
𝑤 Condition at the sheet 
∞ Ambient conditions 

1. Introduction 

The importance of nanotechnology is enhancing the heat capacity of liquids by increasing heat 

and mass transport rates is gaining prominence. The issue of nanofluids has been a broader issue for 

the academic community in recent years because of their wide variety of applications in heat 

exchangers, biomedicine, electrical device cooling, double windowpane, food, transportation, and 

other sectors. We must add different kinds of nanoparticles to the base fluids, such as graphene, silica, 

silver, gold, copper, alumina, carbon nanotubes, and so on, to boost the heat capacity of common 

fluids like water, kerosene, and motor oils. Choi and Eastman [1] were the first to introduce these 

nanofluids. A vast number of research papers dealing with enhancing the heat conductivity of base liquids 

by accumulating different kinds of nanoparticles have been published in the literature. Wong et al. [2] 

covered a wide range of nanofluid uses. To make nanofluids easier to understand, Mohain et al. [3] 

provided the critical thinking and fresh innovations. A comprehensive elucidation of thermophysical 

properties and an accurate simulation of heat transfer in nanofluid flow were the main points of focus 

for the researchers. Eastman et al. [4,5] reported that when CuO nanoparticles with a volume fraction 

of 5% are introduced to the base fluid (water), the heat conduction of the considered base fluid 

increases at most 0.6. Whereas 1% of copper nanoparticles was introduced into ethylene glycol or oil, 

40% thermal conductivity was increased. This is due to metals having three times the thermal 

conductivity of general fluids. This permits to carry out heat transmission with a mix up of two 

constituents that act as a fluid matter but possess the thermal conductivity of metals. 

The study of magnetohydrodynamics coupled with heat and mass transport has captured the 

interest of many academics due to its wide range of applications. Due to the many different fields 

that MHD may be used in, including biomedical engineering, geophysics, magnetic drug targeting, 

engineering, and many more, there has been a lot of interest in the field in recent years. Employing 

Caputo fractional derivatives, a Brinkman-type fluid flow with mass transfer in an unstable MHD 

flow was examined by N. A. Sheikh et al. [6,7]. A Maxwell fluid with correlated effects of heat and 

mass transport is investigated by M. M. Ghalib et al. [8] under slip and non-slip boundary conditions. 

With the concept of non-integer order derivatives, N. Iftikhar et al. [9] examine the MHD Oldroyd-B 

fluid. An angled magnetic force Casson nanofluid based on kerosene oil and water was studied by A. 

Raza et al. [10]. 

In the past 10 years, fractional derivatives have been used to represent a wide variety of 

practical events. Fractional calculus is a rapidly expanding discipline in the contemporary period due 

to its wide-ranging consequences in a variety of real-world occurrences such as in electromagnetism, 
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modelling in biological, biomedical and epidemic problems, dynamical behaviour of fluid matters, 

wave traveling solutions, signals processing, economics and viscoelastic behaviour of fluids are few 

examples of fractional calculus applications. Many academics have recently come to the conclusion 

that fractional derivatives provide more reliable and accurate findings than ordinary derivatives. This 

is because an acceptable fractional parameter adaptation results in almost complete congruence 

between theoretical and experimental assessments. Some rheological properties of fluids can only be 

seen using fractional derivatives in the subject of fluid mechanics. As a result, scientists realized that 

generating unique fractional derivatives with distinct benefits over regular derivatives was critical in 

confirming a few specifications in modeling computational and mathematical problems. To date, all 

fractional derivatives presented use a unique kernel. Leibnitz and L. Hospital are credited with doing 

the foundational work on the fractional order technique in the year 1695 [11]. Fractional operators in 

biological modelling are examined as a broad topic [12] in their physical model [13], in the 

investigations of mathematical physics [14,15], in applications of mathematics [16]. There are a great 

number of fractional derivatives, and they each offer some distinct benefits.  

The Riemann-Liouville derivative and the integral associated with it are both considered to be 

fractional operators. The Caputo-Fabrizio derivative as well as the integral that is connected with it. 

The usefulness of Fractional calculus has been extensively studied in the scientific literature [17]. 

For the flow problems, academics as F. Ali et al. [18,19], apply the fractional derivatives technique. 

Caputo-Fabrizio fractional derivatives [20] are another way of representing fractional derivatives; 

they are sometimes referred to in the literature as derivatives with a non-singular kernel. The use of 

fractional derivatives by Atangana and Koca [21] demonstrated the existence and uniqueness of a 

solution to the issue. The Riemann-Liouville integral operator and Mittag-Leffler functions have been 

developed numerically by Diehelm and coworkers [22]. Using fractional derivatives, S. Aman et al. [23] 

attempt to obtain an accurate solution to the flow field, fluid temperature, and species levels of a forced 

convective flow of graphene nanofluid prepared by graphene nanoparticles in an ambient stream of 

upright surface. A viscous fluid with a heat/sink was studied over an upright cylinder by considering 

a combination of 47 nm alumina nanoparticles in water as a heat source has been given by N. A. 

Shah et al. [24]. In [25], A. Raza et al. have conducted research on the exact solutions of fractional 

nanofluids moving on an endless surface at a fixed temperature while accounting for heat flux and 

radiation impact. M. D. Ikram et al. [26] estimated hybrid nanoparticles suspended in Brinkman type 

fluid (BTF) have been explored using a fractional fractional model. The majority of the research 

concentrated on fluid flow issues by examining various liquids, connected to fractional order 

derivatives, and in the process of heat transmission. Some pertinent works with subject to 

fractionalized models are discovered in depth [27–30]. H. Elhadedy et al. [31] used the  -Laplace 

transform and finite sin-Fourier transform to solve fractional differential equations with a generalized 

Caputo derivative. They employ these transformations to solve the time-fractional heat equation 

using a generalized Caputo fractional derivative. Fractional heat equation on a spherical domain with 

a hybrid fractional derivative operator is studied by A. H. A. Kader et al. [32]. 

Using fractional calculus, M. Khan et al. [33] examined modeling charge carrier transport with 

anomalous diffusion and heat conduction in amorphous semiconductors. M. Irfan et al. [34] 

evaluated the effectiveness of a novel mass flux theory on Carreau nanofluid employing thermal 

aspects of convective heat transfer with nonlinear properties of mixed convection. I. Ali et al. [35] 

describe the phase dynamics of an inline long Josephson junction in a voltage state under the effect 

of a constant external magnetic field. A fractional calculus technique is utilized to simulate the 

growth of the phase difference between the macroscopic wave functions of the two superconductors 
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across the junction. The stagnation point in Jeffery liquid flow through a deformable cylinder is 

investigated by Z. Hussain et al. [36] a Cattaneo-Christov model with double stratification, heat 

source, and thermal relaxation is used to examine heat and mass transmission. N. S. Akbar et al. [37] 

studied the effects of an external magnetic field and gravity on the stable incompressible flow of a 

temperature-dependent viscous nanofluid flowing from a vertically stretched sheet. The benefits of 

applying the fractional calculus theory to many scientific and engineering fields: 1) tuning of PID 

controllers using fractional calculus concepts; 2) fractional PD control of a hexapod robot; 3) 

fractional dynamics in the trajectory control of redundant manipulators; 4) circuit synthesis using 

evolutionary algorithms; 5) heat diffusion.  

In the present work, the resulting flow of governing equations is translated into fractional PDEs 

and solved utilizing a combination of Fourier series and the Laplace Transform Technique. The 

computational results were obtained through MATLAB with the help of Euler-inversion. It can be 

seen that the influence of some flow quantities and the order of the fractional parameter   on the fluid 

velocity, temperature, and species concentration analysed graphically in the proposed research work. 

2. Mathematical formulation 

We address the unsteady flow of an incompressible MHD viscous nano fluid through an infinite 

inclined plate with mass and heat transfer through the caputo fractional derivative. y axis is taken along 

the plate with an angle of inclination to the vertical, while the x axis is normal to the plate. In the x 

direction, a uniform magnetic field is applied transversely to the plate as shown in Figure 1. The xy -

plane filled with nanofluid contains Clay nanoparticles. Fluid is flowing in the y direction along with 

the inclined plate. Initially ( 0)t¢=  the plate surface and nanofluids are static condition and after a 

certain time 0t¢> , the plate moves with velocity U and at the same time its temperature raises to w
T . 

The buoyant force is the essential mechanism in driving the fluid though gravity is pulling down the 

fluid flow. Since the plate is taken at an infinite length, the boundary layer thickness is considerably 

small when compared, hence all the flow fields are only function of one special coordinate and with 

respect to time. The governing equations of momentum, energy, and concentration describing the fluid 

flow phenomena are formulated accordingly to simplify pressure gradient and body force in the 

Navier-Stokes equation and presented in dimensionless form with Caputo fractional derivative as 

follows [38,39]: 

( ) ( )
2

2

2

v (x, t)
( ) cos ( ) cos 

  
    = + − + − −

  
nf nf T nf C nf nf
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g T T g C C B v

t x


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       ,  (1) 

2

2

(x, t)
( )

  
=

  
cp nf nf

T T
K

t x




 ,        (2) 

2

2

(x, t)  
=

  
nf

C C
D

t x




,         (3) 

with appropriate initial and boundary conditions [39], 

( ,0) 0, ( ,0) , ( ,0)v x T x T C x C = = =  

(0, ) , (0, ) , (0, )w wv t V T t T C t C= = =  
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( , ) 0, ( , ) , ( , )v t T t T C t C  →  →  → . 

 

Figure 1. Flow configuration of the problem. 

The physical properties of nanofluid provided by [40] as follows: 

( )
2.5

1
1
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, 
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The subscript f denotes base fluids and s denotes nanoparticles, while the subscript   stands 

for the nanoparticle volume concentration. 

To obtain a prototype model, the following non-dimensional parameters are construced with the 

help of Buckingham’s pi-thereom. 
2
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With the use of these dimensionless numbers, the governing Eqs (1)–(3) and corresponding 

conditions, once after dropping asterisk can be yield as 

2

1 2 2 42
cos cos


= +  +  −


t

v
D v a a Gr a Gm C a M v

x

  ,     (4) 

2

2

1
3
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x


=


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2

2
5

 
=


t

sc C
D C

a x
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Where, 

1
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1
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, 

2
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4

3

3

z
a
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= , 5

4

1

=
z
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z
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The boundary conditions are taken into consideration 

( ) ( ),0 0, ,0 0, (x,0) 0v x x c= = = ,        (7) 

( ) ( )0, 1, 0, 1, (0, ) 1v c= = =    .        (8) 

2.1. Solution of the problem 

For the fractional differential equations presented in Eqs (4)–(6) various approaches exist for 

finding their solutions. In the present investigation, both of Integral transforms are employed such as 

Laplace transform of the Caputo fractional derivative and the Fourier sine transformation for 

classical derivatives to find the precise results of the governing model.  

2.2. Energy equation 

From Eq (5) the Fourier sine transformation is applied to the equation, yielding the following 

relationship: 

( ) ( )
2

3 2

1
, ,
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s sF D x a F x

x

 
  =     
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

       .      (9) 

The next step is the Integral transformation, which involves the integral transform to the Caputo 

derivative; and once simplifying, we get the following equations: 
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


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After obtaining the above expression derived from energy equation with fractional derivative using the 

methods outlined in [41] and then using the inverse integral transform, we can get the following form: 

( )
1

1 1
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1 1
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s
L q s L

q aq s
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 by using Mittag-Leffler function 
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As described in [42], we should perform the inverse Fourier transform on Eq (11)  
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0
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2.3. Concentration equation 

From Eq (6) the Fourier sine transformation is applied to this equation, yielding the following 

relationship: 

2

2
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The next step is the Integral transformation, which involves the integral transform to the Caputo 

derivative; with a rearrangement of terms, we get the following form: 
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After determining the above expression to the concentration equation with fractional derivative using 
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the methods outlined in [41], and then Using the inverse integral transform, we can get the following 

equation: 

( )
1
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 by using Mittag-Leffler function 
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As described in [42], we should perform the inverse Fourier transform on Eq (15)  

( )
2

5

0

2 sin
, 1


 

= − − 
 


q aqx

c x E dq
q sc



 


.     (16) 

2.4. Velocity equation 

From Eq (4) the Fourier sine transformation is applied to this equation, yielding the following 

relationship: 
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The second step is the Integral transformation, which involves the integral transform to the 

Caputo derivative; with rearrangement of terms, we get the following equations: 
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After obtaining the above expression to the velocity equation with fractional derivative using the 

methods outlined in [41], further using the inverse Integral transform, we can get the following form: 
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As described [42], we should perform the inverse Fourier transform on Eq (18)  
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where, 1

1
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 
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 
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(x, ) a(x, ) b(x, ) (x, ) (x, ) =  +  +  − v c d .      (19) 

2.5. Nusselt number 

From the fluid temperature, heat flow rate can be computed from the non-dimensional  

form
2

1 1
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− −
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Nu L L
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.   (20) 

2.6. Shearwood number 

From the Concentration, mass flow rate can be computed from the non-dimensional form: 

2
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.   (21) 

 



3553 

AIMS Mathematics  Volume 8, Issue 2, 3542–3560. 

3. Parametric study 

The fractional derivative is employed in this article to generalize the convective flow of the 

nanofluid. The Caputo-fractional derivative is used to fractionalize the Brinkman type fluid's 

governing equation. From the fractional PDEs constructed to the modelling fluid flow. The 

nondimensional fluid temperature, species concentration, and fluid momentum equations are solved 

analytically using the Fourier sine and Laplace transform methods. The results obtained from the 

solutions of the governing model are displayed in the form of graphs to investigate the impact of the 

various physical terms, such as  , M,  ,  , Gr, Gm, Pr and Sc. The nanofluid physical parameters 

are listed in Table 1. 

The velocity profiles for various Prandtl number values are shown in Figure 2. It was 

discovered that the velocity profiles dropped as the Prandtl number raised. The proportion of 

momentum to thermal diffusivity is known as the Prandtl number. Due to the direct correlation 

between Prandtl number and momentum diffusivity, the fluid gets thicker and more viscous with less 

capacity for heat conduction as Pr values increase due to that the fluid travels more slowly as a 

consequence. The impact of Gr on the behaviour of fluid flow is seen in Figure 3. In this case, Gr>0 

stands for “plate is heated up of” and Gr <0 “plate is cooled down of”. When the plate is cooled, the 

fluid’s temperature significantly rises; conversely, heating causes the fluid to move at a much slower 

rate. From the curve pattern, it can be seen that when the plate’s surface is cooled, fluid momentum 

increases in Grashof number. It explains the actual finding that the buoyant force of the species 

improves and is enhanced as Gr rises. As seen in Figure 4, the magnetic parameter (M) affects the 

velocity distribution. It has been shown that the function of M is negatively impacted by nanofluid 

velocity. The Lorentz force, or magnetic lines, which are produced by one of Maxwell's equations 

and Ohm’s law, may have a stronger effect on the velocity boundary close to the plate and cause 

slowdowns as a result. When a magnetic field is given to an electrified, insulated nanofluid, it creates 

a dragging force known as the Lorentz force. The Lorentz force grows stronger as M rises, allowing 

the nanofluid to slow gradually. Figure 5 illustrates the impact of nanoparticle volume fraction   on 

dimensionless velocity. The velocity of nanofluids is revealed to have an inverse relationship. The 

thickness of the nanofluid increases as it increases  , and this results in a decrease in the fluid 

velocity. Adding nanoparticles to a fluid increases its density, which reduces both the boundary layer 

thickness as well as nanofluid velocity. 

Figure 6 demonstrates the flow curves for variation in   values, it is observed that increasing 

the order of the fractional derivative causes an increase in the fluid momentum. Since it is true that 

increasing time leads to an increase in the flow field, which may explain this result. Figure 7 shows 

how the angle ( ) affects the velocity profile. The fluid velocity profile is shown to decrease with 

increasing angle. The buoyant force caused by heat diffusion has a decreasing impact as the angle of 

inclination increases. Figure 8 depicts the effect of volume fraction (nano-sized particle volume 

fraction) on fluid temperature, hence noticed that with increasing the volume fraction of nanoparticle 

increases the temperature profile. It is because of the physical fact that, due to an increment in the 

density of nanoparticles, leads to a rise in the conductivity of heat.  

The temperature profiles for different values of   are shown in Figure 9 while the other 

parameters are held constant. The Caputo fractional parameter’s rising function grows as the 

temperature increases. The uniqueness lies in explaining how temperature rises as the fractional 

operator's orders grow. Increases in order have a significant influence on time values because of the 

memory effect inherent in fractional operators, which leads to a large accumulation. When the order 

of the fractional operator is increased, it is seen that a rise in time, consequently it leads to an upturn 
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in fluid temperature. It’s also noted that a sub diffusion in the range (0, 1). The Caputo fractional 

derivative sub diffusion is confirmed by the literature's conclusions when the order is changed to (0, 1). 

Figure 10 Increasing the value of the Prandtl number makes the fluid's thermal conductivity go down, 

so the temperature of the nanofluid goes down. 

For different magnitudes Sc,   and  , the curve patterns on the species are represented in 

Figures 11–13. It has been noticed that the concentration drops as a raise in Schmidt number and  , 

but increases as   increases. Different values of a number of factors were used to calculate the 

non-dimensional mass and heat flow rates for the nanofluids (included in Tables 2 to 3). We see a 

drop in the Nusselt and Shearwood numbers as t, rises. Increasing the Prandtl number results in a 

rise in the Nusselt number Nu and it drops while increasing a volume fraction of a nanoparticle. With 

increasing of Sc and   then the Shearwood number too. Table 4 displays the comparison and 

reveals a high level of agreement. 

 

Figure 2. Variation of Pr on velocity.         Figure 3. Variation of Gr on velocity. 

 

Figure 4. Variation of M on velocity.        Figure 5. Variation of 𝜙 on velocity. 

 

Figure 6. Variation of 𝛼 on velocity.          Figure 7. Variation of 𝛾 on velocity. 



3555 

AIMS Mathematics  Volume 8, Issue 2, 3542–3560. 

 

Figure 8. Variation of 𝜙 on temperature.      Figure 9. Variation of 𝛼 on temperature. 

Figure 10. Variation of Pr on temperature.     Figure 11. Variation of 𝛼 on concentration. 

 

Figure 12. Variation of Sc on concentration.     Figure 13. Variation of 𝜙 on concentration. 

Table 1. Thermophoresis properties of water and Clay Nanoparticle [43]. 

Thermophysical 

Property 

( )3kg m

 

( )pC J kgK  ( )k w mK

 
( )1 k  

𝐻2𝑂 997.1 4179 0.613 2110-5 

Clay 6320 531.8 76.5 1.8010-5 
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Table 2. Nusselt number. 

t 𝛼 Pr 𝜙 Nu 

1 0.22 6.7 0.3 1.5578490609 

1.5    1.0859358139 

2    0.8406373474 

 0.42   0.8252379429 

 0.62   0.7912402832 

 0.82   0.7367901660 

  6.9  0.7477061704 

  7.1  0.7584650855 

  7.3  0.7690735040 

   0.4 0.6667779206   

   0.5 0.5739573719 

   0.6 0.4872590819 

Table 3. Shearwood number. 

T 𝛼 Sc 𝜙 Sh 

0.5 0.46 1 0.2 1.5891987144   

1    0.9319338967 

1.5    0.6820164329 

 0.56   0.6587650874 

 0.66   0.6320018337 

 0.76   0.6017264546 

  2  1.2034529092 

  3  1.8051793638 

  4  2.4069058184 

   0.3 2.5730905527 

   0.4 2.7792554443 

   0.5 3.0445217998 

Table 4. Comparison of Nusselt number when 𝜙 = 0. 

t   Pr Nodolane sene [7] Present result 

1 0.84 12 2.2539 2.25672 

1  18 2.7605 2.7564 

 0.94  3.1875 3.1645 

Limiting case: 1 →   

Temperature and concentration for classical case 

The temperature and Concentration expression corresponding to 1 →  in Eqs (2) and (3) reduces to 

the following expression 

2

3 2

(x, t)
( )

  
=

  
cp nf

T T
a

t x
 ,        (22) 
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2

5 2

1 
=

 

C C
a

t sc x
.          (24) 

By using Laplace and Inverse Laplace transformation we will get the solution for the above 

equations: 

3

Pr
( , )

2

 
=  

 
 

x
x erfc

ta
  , 

5

C( , )
2

 
=  

 
 

x sc
x erfc

ta
 , 

where erfc  is a Gaussian error function. 

4. Conclusions 

This article examines the effects of MHD on electrically conducting incompressible viscous 

nanofluid flowing freely over an inclined plate. The analytical solutions for nanofluid with Clay 

nanoparticles are obtained using Caputo fractional derivates. A Caputo fractional model is developed 

using a combination of two popular methods in this research. The Laplace transform for time 

derivatives and the sine Fourier Transform for special derivative methods for each the governing 

equations of the flow field. The main findings of this analysis are: 

• As the magnetic field and angle of inclination are increased, the velocity profile for nanofluids 

decreases. 

• The velocity, temperature and Concentration profiles show an increasing behaviour for increasing 

values 𝛼. 

• The concentration boundary layer reduces as an increase in nanoparticles volume fraction, but the 

energy boundary layer and momentum boundary layer are increased for the nanofluid. 

• Temperature decreases with increasing of Pr. 

• For nanofluid the velocity profiles are increased as an increase of Gr.  

• Concentration decreases with an increase in Schmidt number Sc.  

• As the fractional parameter is increased, the Nu and Sh values are reduced. 
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