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Abstract: This paper presents a chaotic complex system with a fractional-order derivative. The
dynamical behaviors of the proposed system such as phase portraits, bifurcation diagrams, and the
Lyapunov exponents are investigated. The main contribution of this effort is an implementation of
Mittag-Leftler boundedness. The global attractive sets (GASs) and positive invariant sets (PISs) for
the fractional chaotic complex system are derived based on the Lyapunov stability theory and the
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verified to show the effectiveness of the theoretical analysis.
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1. Introduction

The study of the dynamical behavior of dynamical systems is attracting a lot of research efforts
from various fields. The existence of chaos is an interesting phenomenon associated with a nonlinear
dynamical system. Various dynamics, the existence of chaos, control, and synchronization have been
studied on a large number of dynamical systems. A dynamical system involving fractional time
derivatives instead of integer order time derivatives is known as a fractional dynamical system [1-6].
The fractional-order system is a generalization of an integer order system. It has been extensively
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applied for the modeling of many real problems appearing in Viscoelastic systems [7], distributed-order
dynamical systems [8], hydroturbine-governing systems [9], glucose-insulin regulatory systems [10]
and so on.

Stability, control and synchronization are three important concepts to investigate in chaotic
fractional dynamical systems. In recent years, several methods of chaos synchronization have been
proposed in the literature for fractional-order chaotic systems. For example, [11] investigated optimal
synchronization of chaotic fractional systems. They used finite time synchronization for an optimal
control problem. The authors [12] applied function cascade synchronization for the fractional-order
chaotic systems. Mahmoud et al. [13] presented the idea of complex modified projective phase
synchronization of the nonlinear chaotic system with complex variables. Aghababa [14] proposed a
sliding mode technique for the goal of finite-time chaos control and synchronization of fractional-order
nonautonomous chaotic systems. The adaptive fuzzy control scheme, sliding-mode control, linear,
nonlinear, active, feedback, and adaptive control methods have been applied for the global stability
and synchronization of chaotic fractional systems [15-19].

Estimation of ultimate bound sets (UBSs) and global exponential attractive sets (GEAS) is
an important topic in dynamical systems that is applied to the study of chaos control, chaos
synchronization, Hausdorff dimension, and numerical search of hidden attractors [20-24]. In fact,
if one can calculate an ultimate bound set (UBS) or globally attractive set (GAS) for a system,
then the system cannot have chaotic attractors, equilibrium points, periodic solutions, quasi-periodic
solutions, etc. outside the GAS [25,26]. This is very important for engineering applications, since it is
very difficult to predict the existence of hidden attractors. Therefore, how to get the GASs of a chaotic
dynamical system is particularly significant both for theoretical research and practical applications.
In 1987, Leonov published the initial results of the global UBS for the Lorenz model [27-29]. After
that, Swinnerton-Dyer [30] showed that the Lyapunov function can be used to study the bounds of
the states of the Lorenz equations. This idea was developed by many researchers, and they were able
to compute the GAS and PIS for different chaotic systems by constructing a family of generalized
Lyapunov functions including general Lorenz system [31], complex Lorenz [32], financial risk [33],
chaotic dynamical finance model [34], etc.

Motivated by the above discussion, in this article, a five-dimensional fractional-order chaotic
complex system is proposed. By means of theoretical analysis and numerical simulation, some basic
dynamical properties, such as phase portraits, bifurcation diagram, Lyapunov exponents and chaos
diagram of the presented system are studied with varying the fractional derivative orders. An interesting
point that we investigated for this system is that varying the fractional-order parameter (@) causes the
transition of the system from a chaotic state to a steady state. The UBS and GAS for the chaotic
fractional systems have been estimated so far in two papers by Jian et al. [35,36]. Also, Jian et al.
investigated the global Mittag-Lefller boundedness for fractional-order neural networks [37,38]. To
the best of our knowledge, the GAS and the PIS for the fractional chaotic complex system have not
been investigated. As an innovation, in addition to proving the global boundness of the proposed
system, we calculate a family of GASs. In fact, by changing system parameters and other conditions,
we can create a variety of attractive sets. The boundaries calculated for the complex chaotic system in
this paper can be used for the purpose of global chaos synchronization via linear feedback controls.

This article is organized in the following sections. Section 2 presents the chaotic complex system
with the fractional-order derivative. In Section 3, we will study the Mittag-Leffler GASs of the
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fractional chaotic complex system. Section 4 discusses the global synchronization of two fractional
chaotic systems. Conclusions are drawn in Section 5.

2. System description
In this section, we introduce a complex chaotic system with Caputo’s fractional derivative. Some
dynamical properties of the fractional order system, including equilibrium points, bifurcation diagrames,

Lyapunov exponent spectra (LEs), and the largest Lyapunov exponent (LLE), will be presented.

2.1. The integer-order chaotic complex system

The complex chaotic system can be represented as follows [39,40]:

—dZ] =0(z—21) + 222
dl - 2 1 2435
dz,
12— 2125 — Do 2.1
o DT an T (2.1)
dZ3 1 _ —
— == + — Bz3,
o 2(2122 2221) — P23

where z; and 7z, are complex variables, z; = x| + jx2,22 = X3 + jX4,23 = X5, j = V—1,7; and z; are the
conjugates of z; and z,. The imaginary part and the real part of the complex system (2.1) are separated,
which can be expressed as follows :

dx1 ( ) n

- =03 — X X3X5,
dt

d)C2 ( ) n

— =04 — X2 X4X5,
dt

d)C3

— = rX; — X3 — X1 Xs, (2.2)
dt

dX4

— =TIXy) — X4 — X2X5,
dt

de + ﬁ
— = X1 X3 + XpX4 — OX5.
dt

The authors [26, 39, 40] derived some properties of system (2.2), including Lyapunov exponents,
chaotic attractor, and ultimate bound estimation.

2.2. The fractional-order chaotic complex system
The definitions of the Caputo integral and derivative are expressed in the following.

Definition 2.1. The fractional integral function X(t), is

1 !
I°¥(t) = — f (t — )" ' X(s)ds, r> 1o, (2.3)
r(a) )
where I'(.) is the Gamma function:
[(m) = f s"e7vds. (2.4)
0
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Definition 2.2. The Caputo fractional-order derivative of function X € C"([ty, +o0),R) is

1 t
DIX(t) = ——— f (t — 5)" "' X" (s5)ds. (2.5)
! I'(n-a) J,
Definition 2.3. The Mittag-Leffler function E,, ,(.) with two parameters is defined as
2.6
Eraltt) = Z v 20
where p > 0,q > 0, and m is a complex number. Obviously,
1 m
Ep(m) = Ep,l(m)’ Ey 1(m) = m’El,l(m) =e .
Here, we consider the five-dimensional fractional-order system
Dixi(1) = o(x3 — x1) + X35,
D xy(t) = 0(x4 — X2) + X4X5,
DY x5(t) = rx; — X3 — X1 Xs, 2.7
Dy x4(t) = rx; — x4 — XaXs,
Dfxs(t) = x1X3 + X2X4 — X5,
where o, 5, and r are parameters to be varied, and @ € (0, 1] is the derivative order.
The equilibrium points of the system (2.7) can be found by solving the equations
Dix;=0,(i=1,2,---,5).
After solving this equation, one can get the equilibrium points as
Ey =(0,0,0,0,0),
2 2 2
E =(mcos@,msiné, (r — ,Br-i-mmz ymcos b, (r— ﬁ:mmz )msin 6, %),
where,
»_ PBd
S—
r—o+ (o +r)?-4do
d= .
2
When the parameters are chosen as o = 35, 8 = % = 25 and a = 0.98, the system (2.7) is chaotic,

as depicted in Figures 1 and 2.
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Time series

Figure 2. The chaotic behavior of system (2.7) with oo = 35,8 = %, r=25and @ = 0.98.

For the fractional-order system (2.7) with o = 35,8 = %, r = 25 and @ = 0.9 in Figures 3 and 4,
chaos is suppressed, which means the system is controlled.
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Figure 4. The behavior of system (2.7) with o = 35,8 = %, r=25and a = 0.9.

For the values of the parameters o = 35,8 = %, and r = 25, Lyapunov exponents are shown
in Figure 5. The values of Lyapunov exponents at the 500th second are L; = 0.92, L, = 0.0007,
L; = -0.0194, Ly = -0.0194, Ly = —=3.5401, Ls = —3.6868.
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Figure 5. Lyapunov exponent spectra for system (2.7) with o = 35,8 = %, r = 25 and
a = 0.98.

By means of the bifurcation diagrams, Lyapunov exponent spectra (LEs) and the largest Lyapunov
exponent (LLE), the dynamical properties of system (2.7) are studied. The bifurcation diagrams of
the system with varying derivative orders are plotted, and the results are shown in Figure 6, where
o =358 = %, and r = 25. In Figure 6 derivative order a varies from 0.97 to 1 with step size
of 0.005. When a < 0.972, the system converges to a fixed point, where the LLE of the system is zero
or negative. There is a periodic window when a € (0.9941,0.9992). From Figure 6, it is clearly shown
that the fractional-order complex system (2.7) is chaotic over most of the scope @ € (0.97, 1), where
the LLE of the system is positive.

10 R . . . . .
0.97 0.975 0.98 0.985 0.99 0.995 1 0.97 0.975 0.98 0.985 0.99 0.995

-5
0.97 0.975 0.98 0.985 0.99 0.995 1
a

Figure 6. Bifurcation diagram obtained on variation of «, keeping the values of other
parameter values, with oo = 35,8 = % r=25and a € (0.97,1).
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The derivative orders can change the bifurcation types and dynamics of the system. Indeed, the
derivative order is a bifurcation of the fractional-order chaotic complex system.

3. Mittag-Leffler GAS estimation of the fractional chaotic complex system

In this section, we will calculate the Mittag-Leffler GASs for the fractional-order of complex chaotic
system (2.7). Let consider the following fractional-order system:

DiX = f(X), X(t) = X,, (3.1)

where X € R”, f : R" — R" is sufficiently smooth, and X(¢, ¢, X,) is the solution.

Definition 3.1. [35] For a given Lyapunov function V,(t) = V(X(t)) with A > 0, if there exist
constants L, > 0 and ry, > 0 for all X, € R" such that

Vat) = Ly < (Valto) = LOE(=ra(t — 1)), t = fo, (3.2)

for V(X)) > L, then U, = {X|'V(X(2)) < L,} is said to be the Mittag-Leffler GAS of system (3.1). If
forany Xy € U, and any t > ty, X(t, 19, Xo) € U,, then U, is said to be a Mittag-Leffler PISs, where
X = X(1), Xo = X(19).

Lemma 3.1. [36] If X(¢) € R is a continuous and differentiable function, then

D*(X*(1)) < 2X(t)D*(X(1)). (3.3)
Lemma 3.2. [36] For a € (0, 1) and constant k € R, if a continuous function X(t) meets

DY(X(1)) < kX(1), t>0, (3.4)

then
X(t) < X(0)E,(kt"), t=>0. 3.5)

The following theorem investigated the Mittag-Leffler GASs and the Mittag-Leffler PISs of the
system (2.7):

Theorem 3.1. Let > 0,0 > 0 and r > 0. Define

2
+r)d+
Uy, = {X(t) e R’ | Ax} + 203 + (A + g + (A + s +u(x5 _ w)

< Rﬁm} . (3.6
M

Then, U, is the ultimate bound and positively invariant set of system (2.7), where

R, = Bl + DA+ ) (3.7)
.

and n = min{1, o, B} > 0.
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Proof. Define the following generalized positively definite and radically unbounded Lyapunov function
Vau(xi, X2, X3, X4, X5) =

1 1 1 1 1
—A + A+ S+ Wx3 + S+ WX+ ~u

(c+rd+ru 2
> > > (x5 - —) , (3.8)

where 4 > 0, u > 0.
Computing the fractional derivative of V, , along the trajectory of system (2.7) and using Lemma 3.1,
we have

DIV, (X() < Ax 1Dy x; + Ax:D%x; + (A + p)x3D; x3

(0'+r)/l+r,u) N
r X5
u

= Ax; (0(x3 — x1) + x3%5) + Ax2(0° (x4 — X2) + X4X5)

+ A+ xsDixy + (xS -

+ (A + p)x3(rx; — x3 — x1x5) + (A + p)x4(rxy — x4 — X2X5)

(C+nrd+r
+ U (Xs - Tﬂ) (x1x3 + X2x4 — Bx5)
= —/10')6% - /lcrx% -+ ,u)x% -1+ ,u)xﬁ - ,u,Bxg + B((o + r)Ad + ru)xs
1 1 1 1 1 (o + )+ ru\
= —E/lovcf - E/ltrxg - 5(/1 +,u)x§ - 5(/1 +,u)xi - E'U'B X5 — T + F(X),
where,
1 1 1 1 1 B0+ A+ ru)?
F(X) = —wa% - wag - 5(/1 + W)x3 — 5(4 + u)x; — Euﬁxg + 2 . (3.9)
+ 1)+ ru)?
It is obvious that F(X) < sup F(X) =1, = plo+n 1) . From there we have
XeR5> | 2:“
DIV, (X() < —nVa, + L, (3.10)
i.e.,
@ l/l’# l/L#
Dy (Vo () — —) < (Vo (1) — —). (3.11)
n n
Based on Lemma 3.2 , one can obtain
l/l,/l l/l’ﬂ @
Vau() — 7 < (Vau(0) — F)Ea(—nt ), t>0. (3.12)

Based on Definition 3.1, from (3.12) we conclude that the ellipsoid U, , for 8 > 0,0 > 0 and r > 0 is
a Mittag-Leffler GAS and Mittag-Lefller PIS for the system (2.7). This completes the proof. O

By changing the values of A and u, we can achieve different bounded sets. An interesting property
about the the fractional-order parameter is that the change of « leads to a change in the behavior of the
dynamical system from a chaotic state to a steady state.

AIMS Mathematics Volume 8, Issue 2, 3523-3541.
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(i) If wetake A = 1,u = 1, then
U, = {(xl, X2, X3, X4, x5)|x% + x% + 2x§ + 2xi + (x5 — (0 + 2r))2 <B(oc + 2r)2} ,

is the Mittag-Lefller GAS of system (2.7).
When o = 35,6 = 3, and r = 25, we have

U, = {(xl, X2, X3, X4, x5)|x% + x% + 2x§ + in + (x5 — 85)% < (138.8)2} .

Figure 7 shows the chaotic attractors and the Mittag-Leffler GASs of the system (2.7) in the different
spaces defined by U, 1, for o = 35,5 = %, r =25, and @ = 0.98. Considering the value of @ = 0.95, the
solutions of (2.7) change from chaotic to steady-state. In this case, we found that chaos does not exist
in the nonlinear fractional-order model. The phase portraits and Mittag-Leffler GAS of system (2.7)
are shown through Figure 8.
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Figure 8. Mittag-Leffler GAS of the system (2.7) with o = 35,8 =

,r=25,and @ = 0.95.
(ii) Let us take A = 1, 4 = 2, and then we get that the set

o+ 3r
U, = {(xl, X2, X3, X4, x5)|xf + x% + 3x§ + 3)@21 +2(xs5 —

)2 < Blo + 3r)?
5 < )

2
is the Mittag-Lefller GAS of system (2.7).
When o = 35,b = %, and r = 25, we have

U, = {(xl, X2, X3, X4, x5)|x% + x% + 3x§ + 3xi +2(xs — 55)* < 127.012}.

Figure 9 shows the phase portraits and the Mittag-Leffler GAS of system (2.7) in the different spaces
defined by U, ».

AIMS Mathematics
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Figure 9. Mittag-Leffler GAS of the system (2.7) with o = 35,8 = %, r =25, and o = 0.98.

(iii) Let us take A = 2, 4 = 1, and then we get that the set
Upy = {(x1, X2, %3, X4, 151207 + 33 + 323 + 325 + (x5 — 20+ 31)) < B20 + 3r)7},

is the Mittag-Lefller GAS of system (2.7).
When o =35,b = %, r =25, and a = 0.98, we have

U, = {(xl, X2, X3, X4, x5)|2x% + 2x§ + 3x§ + 3)@21 + (x5 — 145)2 < 236.72}.
4. Global synchronization via linear feedback
In this section, we study the global synchronization of the complex chaotic system via linear
feedback control. Let us state the following two lemmas which are used to prove synchronization

in the presented system.

AIMS Mathematics Volume 8, Issue 2, 3523-3541.
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Lemma 4.1. [32] For any € > 0,a € R,b € R, the inequality 2ab < ea’ + éb2 holds.

Lemma 4.2. [32] Fork > 0,a € R and b € R, the inequality —ka* + ab < —1ka* + 5-b? holds.

Let system (2.7) be the drive system with the response system

Dy (1) = o(y3 — y1) + y3ys + ui,
Diyy(t) = 0(ys — y2) + yays + Uz,

Diys(t) = ry1 —y3 — yiys + us, 4.1)
Dyi(t) = ry, — ys — y2ys + us,
D{ys(t) = y1y3 + y2y4 — Bys + us,

where yy, y2, - -, ys are state variables and u,, u,, - - - , us are controllers to be designed so as to achieve

global chaos synchronization between systems (4.1) and (2.7). From (3.6) in Theorem 3.1, we have

max max max max max

x| <

’ |-x2| < » |x3| < ’ |.X4| < ’ |x5 - 0| <

Therefore, we can get the maximum boundness of states as the following:

_ Rinax

S
Il

where 6 = W Then, we have the following theorem.

Vi \Z VA+pu VA+pu Vi

Theorem 4.1. The global synchronization between the drive system (2.7) and response system (4.1)

will occur via the control laws
up =up =us =0, uz =—kzes, uy = —ksey,

where
k3>%+%—2, ky > ZX2Ms | My

2e 2e 2

o

-2, 0<e<miame

4.2)

Proof. Let the state errors be e; = y; — x;,i = 1,2, --- ,5. By subtracting (2.7) from (4.1), we obtain the

error dynamical system:

Dfe (1) = o(e3 — e1) + ezes + e3Xs + esx3,

AIMS Mathematics Volume 8, Issue 2, 3523-3541.
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Dies(t) = o(es — €2) + eges + e4Xs + esxy,
Dfes(t) = rey —e3 —ejes — e1xs — esx; — kses, 4.3)
D?€4(Z‘) = re; — €4 — €285 — €3X5 — esXy — kyey,

D?€5(I) =e1e3te1x3+e3x; +eeq4 +er2x4 + €4X2 —ﬁ€5.

Let V(e) = 1l + 1e2 + €3 + €2 + 1¢2. Based on Lemma 3.1, the fractional-order derivative of V along
the system (4.3) is

D?V(e) < e1Dfe; + e;Df ey + 2e3D7 e3 + 2e4Df ey + esD es
=e1(o(ez —e1) + ezes + e3xs5 + esx3) + ex(0(es — e3) + eses + esxs + esxy)
+2e3(reg —e3 —ejes — e x5 — esx) — kzes) + 2e4(res — ey — €xe5 — €2x5 — e5xy — kyey)
+ es(ejez + e1x3 + e3x) + eeq + exxy + egx; — fBes)
= —ce; —0e; — (2 +ks)e; — (2 + ky)e; — Bel

+ (0 +2r)ejez + (0 + 2r)eses + 2e1e5x3 + 2epe5X4 — €385X] — €4€5X) — €2€4X5 — €1€3X5.
From Lemmas 4.1 and 4.2, we have
€ 1 2
g r—Xs)e ez < (o r 5 elles| = (o r 5 e —O r 5 €s,
(c+2 ) < (0 +2r+ Ms + 0)le|| |<2( +2 +M+9)1+2( +2r + Ms + 0)e;
p :
€ 1
O + 2r — X5)€264 < (O + 2r + M5 + eleq) £ z(O+ 2r + M5 +6)e; + —(0 + 2r + M5 + 0)ey,
2 < 2M(9||||<2 2Mer§2 2r + Ms + 0)e;,
€
2 2 1 5, 2 5,
—oe] +2ejesx3 < —oe| + 2Msle|les| < —50'61 + —Mjes,
o
1 2
—O'eg + 2ese5x4 < —0'e§ + 2Myles|es| < —Eaeg + —MZeg,
o

M2 2 2 Ml 2 2
—egesxy — ezesx) < Moleylles| + Miles|les| < 7(64 +e5) + 7(63 + e3).

Then,
a 1 2 1 2
D/V(e) < —5(0' —0€—2re — eMs — el)e] — 5(0‘ — o€ —2re — eMs — eb)e;
oc+2r+Ms M, , oc+2r+Ms M, ,
) e b Rl Y ) e v 72
@tk 2e )G~k 2¢ 2 )%
1 4 4
- E(Zﬁ - ;Mé - O_'MZ - M1 - Mz)eg.
Set

o+ 2r+ Ms M,

m=0c—-—oc€e—2re—eMs—€0, =0 —0€—2re—eMs—€0, 13 =2+ k; — 5 7
€

oc+2r+Ms M, 4 4

=24k - ——— 2 = e =2B——M:——M?>— M, - M,.
N4 4 e ) s /e p 3 p 4 1 2

Then, DV(e) < —nV, where n = min{n;, 12, 73,74,75}. By Lemma 3.2, one can obtain V(¢) <
V(0)E,(—nt*), t > 0; and thus the error system (4.3) is global stable at e = 0, implying the global

AIMS Mathematics Volume 8, Issue 2, 3523-3541.
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Mittag-Lefller synchronization of trajectories in fractional-order systems (2.7) and (4.1) by control
laws (4.2).

To check the correctness of the presented theory for synchronization, we used simulation using
MATLAB version 2021. The parameters of both systems are taken as oo = 35,8 = % r = 43, and
a = 0.98. The initial values of the master and slave systems are (1,-1,2,1,1) and (0,0.1,-1,0,0).
Controllers (4.2) with k3 = 150, (4.2) and k4 = 160, are chosen, and then response system (4.1)
synchronizes with drive system (2.7), as shown in Figures 10. Figure 11, shows synchronization errors
between systems (2.7) and (4.1). From these figures, it is evident that the response trajectories fully
converge to the drive, and the synchronization errors e¢; = y; — x; fori = 1,2, 3,4, 5 converge to zero.

Figure 10. State trajectories of the drive-response systems for the fractional-order chaotic
complex system.

AIMS Mathematics Volume 8, Issue 2, 3523-3541.
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Errors
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0 1 2 3 4 5 6 7 8 9 10

Figure 11. The synchronization errors of fractional-order chaotic complex system.

5. Conclusions

In this paper, we introduced the fractional-order chaotic complex system. Using the Lyapunov
function and fractional-order derivative, the Mittag-Leffler GASs and Mittag-Lefller PISs for this
system are obtained. Furthermore, we investigated some dynamical properties of the system, including
phase portraits, bifurcation diagrams, and the Lyapunov exponents. Finally, based on the Lyapunov
theory, we designed a linear feedback control to synchronize the two chaotic complex systems.
Simulation results are given to show the validity of the proposed schemes.
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