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we discuss the main results in non-degenerate and degenerate cases. And we apply combination of
Krasnoselskii genus and the Hardy-Littlewood-Sobolev inequality to get the results of existence and
multiplicity.

Keywords: Choquard equation; critical nonlinearity; concentration-compactness principles;
variational methods
Mathematics Subject Classification: 35J20, 35J60, 35J62

1. Introduction

We study the critical nonlocal Choquard equations with variable exponents of the form:

{K(v“p(x)(u))((—mp(x)mv<x)|u|1’<x>-2u>=ﬂ( Joo TR AY) g6 ) R inRY,

1 N Jxmyfetey)
u € Wy ®V),

where

1
T (1) = f —— (V"™ + V() lul")dx,
P av p(x)

K: R — Ry is the Kirchhof function, V € C (RN , R*), a : RY xRN — R*, f is a continuous function,
A is a real parameter, p : R¥ — R is a function and p*(x) = Np(x)/(N — p(x)) is the critical Sobolev
exponent.
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In the sequel. if 1, h, € C (RY), we say that iy < hy if inf {hy(x) — hy(x) : x € R¥} > 0. And C > 0
may represent different constants.
Throughout this paper, we consider the following hypotheses:

(P) p: RN — Ris continuous and p satisfies

1 <p :=inf p(x) < p(x) < p* :=sup p(x) < N.
XxeRN

xeRN

(V) V € C(RY,R) satisfies inf V(x) > V, > 0, with V,, being a positive constant. Moreover, for any

xRN
D > 0, meas{x € RV : V(x) < D} < oo, where meas(-) denotes the Lebesgue measure in RY.

(K) (K1) K : Rj — Rj is continuous and there exists ko > 0 satisfying inf;o K(f) = k.
(K;) For all + > 0, there exists o € [l,p*(x)/2p") such that oK(r) > K(0)t,
where (1) = [ K(s)ds.
(K5) For all t € R*, there exists k; > 0 such that K(7) > k;#°~! and K(0) = 0.
(@) (g1) g : RY xR — R is a Carathéodory function and g is odd for the second variable.
(g2) r € C(RY) and there exist r(x) > 0 satisfying p(x) < r(x)g~ < r(x)g" < p*(x). There exist
a > 0 such that
p*g* Prg”
0 <ae L*RY) N Lro-or (RY) N Lro-or (RY)
and
lg(x, O] < a(x)|f|"™@t fora.e. x € RV and t € R.

For all x,y € RV,
1 N a(x,y) 1

™ N Ty

where
0<a := inf a(x,y) <A := sup a(x,y) <N.

x,yeRN x,yeRN

(g3) For all t € R*, g(x,1) and G(x,1) = fot g(x, s)ds, there exists 6 satisfying 0 < 0G(x,t) <
2g(x, Ht where p*/o < 0 < p*(x).

In 1931, variable exponents Lebesgue spaces appeared in [34]. It is known that the p(-)-Laplacian
is derived from the p-Laplacian, especially to the Laplacian (p = 2). From a practical point of view,
variable exponents problem has many applications in the life, such as in image processing [11] and
electrorheological fluids [40]. For these reasons, many authors have begun to study the existence of
solutions to variable exponents problem, such as the books of Radulescu-Repov§ [39] and Diening
et al. [13]. When it comes to critical problem, we know Brézis and Nirenberg studied in [8] at first in
1983 and then it is a nature extensions of [8]. However, many critical problems are confronted with
the lack of compactness. In 1984, Lions in [26,27] initially introduce the concentration-compactness
principles. And in [5, 6, 10], authors show that there exists a minimizing or a (PS) sequence at infinity.
In recent decades, it is nature for many scholars to consider more results for critical exponents p(x)-
Laplacian equations. In [7, 15], they study the variable exponents second concentration-compactness
principles in Q. Moreover, there are much more results regarding p(x)-Laplacian and fractional p(x)-
Laplacian equations, such as [1, 16, 18,20-22,29].
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On the other hand, the study of the Choquard equation began with Frohlich [17] and Pekar [35] who
dealt with the following quantum polaron model:

1
—Au+u:(ﬂ*|u|2)uinR3. (1.2)
X

Then in the following Choquard equation:

p
— Au+ V(x)u = ( f | u Iﬁ) jul’u in RY. (1.3)
x-y

In particular, when N = 3, p = 2 and A = 1, Lieb in [25] used problem (1.3) to get some significant
results about plasma. As is known to all, Penrose [31, 36] applied Eq (1.3) as the model to solve
gravity problem. Recently, more and more works pay attention to the problem (1.3) of existence and
multiplicity of solutions. When it comes to the whole domain RY of Choquard equations, we can
cite [32,33,43] to get more details. For the critical case in bounded domains €, Gao and Yang in [45]
considered about the following critical Choquard problem:

2, .
—Au = Au + (f L0 dy) lul**2u in Q.
o lx =yl

Then in [46], we got the existence of solutions for a series of equations by using variational methods.
When it comes to the Choquard problems with variable exponents, we found there is lack of relevant
results. Therefore, we call attention to [28], it is the first time to consider the nonhomogeneous
Choquard equation with p(x)-Laplacian operator by using variational methods. Secondly, in
combination with the truncation function and Krasnoselskii’s genus, they found the multiplicity of
solutions for the Choquard-type p(x)-Laplacian equations with non-degenerate Kirchhoff term.
In [41], the authors proved the existence of at least two nontrivial solutions for nonhomogeneous
Choquard equations by using of Nehari manifold and minimax methods.

Recently, Alves and Tavares [2] considered the following quasilinear variable exponent Choquard

equations:
G(y, u(y))

_ P2, _
(Bt + VP 2= | RS

dyg(x,u) in RV, (1.4)
The existence of solutions for Eq (1.4) was deduced from using the Hardy-Littlewood-Sobolev
inequality together with variational methods. Zhang et al. in [47] considered the following equation:

G(y, NP
{ —Apeott + plulPV 2y = f Mdyg(x, u) + Bl 2y inRY, (1.5)
RN .

b =y
u € WHORN),

where p : R¥ — R is radially symmetric and u > 0. The existence of infinitely many solutions for
problem (1.5) was obtained by variational methods, Hardy-Littlewood-Sobolev inequality and the
concentration-compactness principle. The results of critical Choquard-Kirchhoftf equations with
variable exponents Eq (1.1) does not obtain, especially for the degenerate cases.

The research complete and improve results for the critical Choquard-Kirchhoff type equations
involving variable exponents. Especially we discuss the results in non-degenerate and degenerate
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cases which are treated in many papers, for example, see a well-known paper [12]. In the recent
decades, more and more attention were paied to degenerate Kirchhoff problem. For example, in 2015,
Autuori et al. in [4] used the mountain pass theorem to demonstrate the asymptotic behavior of
non-negative solutions for Kirchhoff equations. Then Pucci et al. in [37] considered entire solutions
for the stationary Kirchhoff equations. Not long after, in 2016, Caponi and Pucci in [9] also
investigate existence of entire solutions for a class of Kirchhoff fractional equations. And we can refer
to [23,24,30,42,44] to get related content and details.
Andu € W‘l,’p <) (RN ) is a weak solution of Eq (1.1) if

K(T o (1)) f (Il ©2VuVy + V)" 2uv) dx
RN

i [ [ SOt 1y [ i
RN JRN

Jox =yt RV

(1.6)

for all v € W,," (RN ) The space W,"" (RN ) will be introduced in Section 2.
Now we are in a position to give the main theorems of this paper.

Theorem 1.1. Assume p, V, K and g respectively satisfy (P), (V), (K,), (K,) and (g1)—(g3), respectively.
In W‘l,’p (X)(RN ), there exists 1y > 0 and A > Ay, Eq (1.1) admits a nontrivial solution.

Theorem 1.2. Assume p,V,K and g satisfy (P), (V), (K1), (K>) and (g,)-(g3), respectively. In
W‘l,’p (x)(RN ), there exists constant 1, > 0 and A > A, Eq (1.1) admits at least s pairs of nontrivial
solutions.

Therefore, we obtain similar results in the degenerate case.

Theorem 1.3. Assume p,V,K and g satisfy (P), (V), (K,), (K3) and (g,)—(g3), respectively. In
W‘l,’p O(RN), there exists A3 > 0 and A > A3, Eq (1.1) admits a nontrivial solution in W‘l,’p (RN,

Theorem 1.4. Assume p,V,K and g satisfy (P), (V), (K,), (K3) and (g,)—(g3), respectively. In
W‘],’p (x)(RN ), there exists constant 14 > 0 and A > A4, Eq (1.1) admits at least s pairs of nontrivial
solutions in W‘l,’p DR,

The paper is organized as follows. Section 2 contains fundamental knowledge of spaces with
variable exponents. In Section 3, we verify the (PS). condition. Section 4 and Section 5 respectively
prove Theorems 1.1-1.4.

2. Preliminaries

In this section, we give fundamental knowledge on the Lebesgue spaces and the Sobolev spaces
with variable exponents. We refer to [13, 14] for more details.
Assume Q be a bounded domain of R, and

C.(Q)={feC): f(x)>1forall x € Q}.
We define

f~ =min f(x), f* = max f(x).
xeQ x€Q
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And we define the variable exponent Lebesgue space as
L’(Q) = {u : Q — R | u is measurable and f lu(x)|PYdx < +oo}
Q
endowed with the norm

|u|Lp(x)(Q) = |u|p(x) = lnf {/l > O . f
Q

The Lebesgue-Sobolev space with variable exponents W79 (RN ) is defined by:

u(x)

p(x)
dx < 1} .

WO (RY) = {u e L7 (RY) : |Vul € L™ (RV)},

with the norm
||M||W1,p<x>(RN) = |ulpry + [V .-

For problem (1.1), we study in W‘l,’p ) (RN ) which is more suitable, with the norm

oyt vy = Vv + ooy

uw [P
”u”Lf,(X)(RN) = inf {7] >0: f V(x) E dx < 1}.
RN

Proposition 2.1 ( [14]). (1) Denote by L” ¥ (Q) the conjugate space of LP®(Q) with
there holds

where

I B
o trve =L

11 ,
luvldx < (— + —_) llpoy Wl s 1 € LPD(Q), v € LFO(Q).

fg P )T
() p : L'Y(Q) - R and p(u) = [ [ul"Wdx,

ulpy <1(=1,> 1) & p(w) < 1(= 1,> 1),

p” pt
Ul > 1= Wl < p(u) < [l

e < 1= lull,) < p(0) < luly,
Proposition 2.2 ( [2]). Assume p,q € C* (RN) ,welLr (RN) NLP (RN) ,ze LT (RN) NLY (RN) , and
a : RN xRN — R be a continuous function satisfying 0 < o~ := inf v a(x) < a™ := sup, gy @(x) < N
and for Vx,y € RN, there is

1 1
N a(x,y) N
p(x) N q(y)
Then, we have

‘fL dedy‘ < C(|W|LP+(RN)|Z|L‘1+(RN) + |W|LP_(RN)|Z|LQ_(RN))

o | X — y|a(x’y)

where C > 0 is irrelevant w and z.
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Corollary 2.1. For w(x) = z(x) = v(x)["™® € L (RY) N L (RY), there exists C > 0 which is irrelevant

r such that w .
T(X T y
ff v(OI™v()l dxdy
v Xy

7, r € C,(RY) satisfying 1 < 7 r~ < t(x)r- < t(x)r* < p*(x).

Remark 2.1. If (P) and (V) hold, then for all s € C* (RN ) and p(x) < s(x) < p*(x),¥x € RV,

Wl,p(x) (RN) oy SO (RN)

2
L (RY)

+ [

) 2
<c(lw )

v
is compact embedding. Hence,
”u”W‘l/P(X)(RN) < SlulLJ(X)(RN)a
where S is the best Sobolev constant.

Remark 2.2. We can find that there is b > 0 satisfying

f (quIp(x) n V(x)lulp(x))dx > b( f (IVuIP(") n |u|”(x))dx).
RN

RN

3. (PS). condition

Let’s first recall the definition of the (PS ), condition. The functional J; satisfies the (PS). condition
if any sequence J;(u,) — c and J(u,) — 0 has a convergent subsequence. In this section, we will
prove the functional J, satisfies the (PS). condition.

The energy functional J; : W‘l,”’ RNy - Ris

1 .
Lau) = K (T @) = AN ) - fR Bl 3.1)
where | G G
A = L f f (5 uGO W) |
2 Jpy Jrv |x — ylee

G(x,1) = fot g(x, s)ds. Obviously, J, € C 1(W‘1;” @(RN)). Moreover, for all u, v € W\l;” W(RN), we deduce
that

(J5@), v) =K (T (1)) f (IVulP©2VuVy + V)" 2uv) dx
RN

. f f GO UODGEUCNV) ) 2,
RN JRN

|x =yl RV

(3.2)

Hence, the solutions of problem (1.1) are the critical points of J,.

Lemma 3.1. Assume (P), (V), (G), (Ky) and (K,) hold. Let (u,), C W‘l,’p O(RN) be a (PS) sequence of

Jy, then
i) = ¢y and  Jy(uy) =0 in (WP @®RY)y (3.3)
as n — oo, where (W‘l,’p ORN)Y is the dual of W‘l,’p O(RN). If there is T(x) = p*’(’;)(fiﬁ such that
1 1 T \T
L in{(kos” )", (koS? } 3.4
cﬁ<(9 5 Jmin{{tas7) fas”) (3.4

where S is Sobolev constant. In W‘l,’p DRN), (up)y — u strongly.
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Proof. We prove (u,), is bounded in W‘l,”’ D(RN).
Assume (u,)n and c, satisfy (3.3) and (3.4), respectively. Then, from (f3), we can deduce that

cy+ 1+ o(Dluyll

1
> J,l(un) - 5(*],/1(1/171), un>

1 p*\k
> (— - p—) = [ f Vit [P + V() lu | x
RN

11 .
+f (—— )Iunlp(x)dx
v \0 p(x)

o 6 )pt

1 p*\ ko -
> — == —|lull” . 3.5
_(G 6)p+llull (3.5)

So (uy), is bounded in W, (RV).
Then we need to demonstrate

(N (u,) = N (u),u, —u) - 0 asn — oo.

In fact, since u,, — u weakly in W‘l,’p ) (RN ) as n — oo, when A’(u) € (W‘l/’p @ (RN )) , we yield that
(N'(u),u, —uy > 0 asn — oo.

So we only need to prove that
<A,(un)7un_u> — 0asn — oo.

We deduce from Proposition 2.2 that

KA () s 1t = )] SCIIG (x| vy g (6, 14) (. = W)l (v

(3.6)
+ CIG (x, un)llpm gy 18 (6, 1) (utn = Wl o (v -
Combining (g;) and (u,),,
1L
r(x) ”
IGCx, )l (e SC( fR (e )dx)
- - 3.7
<Cmax {1l oy 101
<C
and
G (x, un)”Lp’(RN) < Cmax {”un||2p_r(x)(RN) > ||un||2p_r()«)(RN)} <C (3.8)
According to (g,) and Remark 2.1, we can yield that
lg o) Gty = I}
*(r(x)-1) "
< " gyl = e
S CmaX {”un - u”Zqur(X)(RN) > ||uﬂ - u”L:fr,(x)(RN)} (3‘9)
ata +
+ Cmax {”un - M”L:I;"(X)(RN) 4 ||ul’l - u||iq+’(x)(RN)}

=0,(1) asn — o
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and )
q

llg (-, ) (u, — u)llL‘,_(RN)

< C |l OV

|un - u|q

r(x) |

Lro-1 (RN)

L (RN )

< C max {”un - u”z;l_f(x)(RN) s ”un - ””L;tr(.o(sz)} (310)

g rt

N q
+ Cmax {llul’l - u”Lq—,(X)(RN) B ||u}’l - u”Lq—r(X)(RN)}
=o0,(1) as n — .

Combining (3.6)—(3.10), we can obtain (A’ (u,,) ,u, — u) — 0 as n — oco. So we deduce that
(N (u,) = N'(w),u, —u) > 0, asn — oo,
Then, in view of the concentration-compactness principle for variable exponents in [19], we get

u, » u ae.inRY,

w, —=u in  W,PORY),

Un(0) = 2 UG + ) St
icl 3.11)
a7 Sy =+ 5,
i€l
1 e
Sy <p’ for el

where
U, (%) := [V, ()P + V()| ()P

and
U(x) := [Vu(x)P® + V(O)lu(x)|P™.

Furthermore, we yield that
lim supf U,(x)dx = p(RY) + oo,
RN

n—oo

lim Supf lu,l” Pdx = v(RY) + v, (3.12)
RN

n—oco

1/p% 1/pes
Svel= < ullpe,

where
Moo = lim lim sup f (Vi ()Y + V() (X))l x,
R=eo poeo ™ Jii>R)
Veo = lim lim sup f lun? Pdx,
Rooo oo JYn>R)

Peo = lim p(x) and pf, = |1|im p (x).

[x] >0

Now we demonstrate
I=0 and v, =0.
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We assume that / # (. For any i € [ and any £ > 0 small, we define a function ¢,; centered at z;
satisfying

0< ¢s,i(x) <1, ¢8,i(x) =1in B2£(Zi)’ ¢£,i(x) =01in Ba(Zi)C’ |V¢8,i(x)| < 2/8

Combining with (J'(u,), u,¢.;) — 0, we deduce that

K(Tp(x)(un))f (|Vun|p(X)¢a,i + V(x)lun|p<X)¢s,i + |Vun|p(X)_2VMnV¢a,iun) dx
RN

G s Yn s Un nWe,i *
= /lf f O, Un YD, 1 X))tk P dxdy +f || P idx + 0,(1).
RN JRN RN

= 517

(3.13)

We deduce from u,, — u in L”¥Y) (B,.(z;)) that

||V¢e,iun

LP(X)(RN) — ||V¢s,iulllp(x)(RN) as n — oo,
So,

lim

n—oo

f |Vun |p<x>_zvunv¢s,iundx
RN

<limsup | |Vu, [ \Ve, u,ldx
RN

n—oco

(3.14)

<limsupC |||Vu,,|p(x)_l|| ) ||V¢8,,-u,,
n—0oo

LT (RN) Lp(x)(RN)

< C||V¢a,iu||LP(X)(RN)

and in RY, we can choose wy to be the unit sphere,

f Ve ul”dx
RN

= f Vgeaul"Vdx < C Vool oy o [1d”]| o
Boe(zi) L

* L P (Bys(z;))

p*(x)—=p(x)

)+

-
N N
< C'max ( f |V¢s,i|Ndx) ( f |V¢g,,-|Ndx) "] o (3.15)
Boe(zi) Bo(z) L P& (Bae(zi)

4N % 4N %

w w

< C max 5, ~ 1|
N N L PO (Byu(z:))

=0,(1) ase — 0.

Next, as n — oo, we claim

f f G()’, Mn()’))g(xa un(x))un¢s,idxdy — <A' (uy),u [ >
RV JRY ’l

=yl

R f f Gy, u(y))g(x, u(x))u(x)pe i(x)
RN JURN

x — ylre» dxdy = (@' (u), uz) .
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According to Proposition 2.2 and the Lebesgue dominated convergence theorem,

|<A/ (un) s un¢8,i> - <A’(u)’ u¢a,i>|

3 f f G (3, 1,() (8 (5, 4,(5)) () = g, uCxu(x) ‘
= xdy
RN JRN |x y|a/(x )
" f f (G (1)) = GO u() g uux) ’
RN JRN |lx — y|fl(xy)

=0,(1) asn — co.

(D (), uhe )| < Cllg(x, wuge lly - (zy + Cllg(x, wugde ll gy

i BRY
<C /@ dx| +C || ™9 dx
B2S(Zl) BZ&(Zi)

=0.(1) ase — 0.
Combining (3.13)—(3.17), we deduce that

K(T o (12)) f (I g+ VOOl ) dx = f nl?” O + 0,(1).
RN RN

Since ¢.; has compact support and (K ), choosing n — oo and & — 0 in (3.18), we get

kopi < vi.

In view of (3.11), we yield that

P ()

2 (ko$”" )75 > min {(kOS‘”)ﬁ ,(kOSP*)’},

where 7(x) = —2%___ On account of (3.3), (3.19) and (3.5),

p*(x)—p*(x)

1
cy = r}ggo Ja(u,) = ,}gg (J/l(un) - 5<J3(un), un>)

[t
S
(1l 105

We get a contradiction, so I = 0.

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Then we show v, = 0. In the first, we assume v., > 0. Similarly, we define ¢z € C3’(R") satisfying

¢r(x) = 0in Bg and ¢r(x) = 1 in B, .

K(T po () f (IV2/P 5 + V)it Pt pr + Vit ">V, Vb, ) dx
RN

. f f G(y,un(y))g(x,“n(X))”"‘f’Rdxdy+ | |” P prdx + 0,(1).
RN JR¥V

Jox — yjee) RW

According to (J'(u,), u,¢r) — 0 as n — oo, we deduce

(3.21)
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We have
lim lim sup f Vi, |P 2V, Vpgu,dx| = 0
R—o0 n—oo RN
and G
lim lim sup f f 0’ tn(7))g (X, u",(x))u"%dxdy = (N (u,) , undr) = 0.
R—eco oo RN JRN |)C - y|“(x”)
So we get

K(T o (t4)) f (V@ + VOlity "1, pr) dx = f 4] el + 0,(1).
RN RN

Letting R — oo in (3.22), we deduce
k(),uoo < V.

According to (3.12) and (3.24), we can also infer

1
¢ = lim Jy(u,) = lim (Jﬂ(u,» - 2w, un>)

1 1 .
> [ (—— )|un|P dx
rv \0  p(x)
1 1 . 1 1
(x)
2 (5 ) L b v = )
1 1 . + T+ \T
> (5 - I;)mm{(koS” ) ,(koSp ) } > Cj.

Then we get a contradiction, so v, = 0.
Therefore, combination of / = @ and v, = 0,

limsup | |u|P Pdx = f |ulP"Pdx.
RN RN

n—oo

According to the Brézis-Lieb type lemma, we get

f lu, — ul” Pdx — 0,
RN

thus ||u,, — ul| Lr@(Ry) 0. Consequently, we have

lim (|un|1”‘<">—2 u, — |u|P*(x>—2u) (u, — u)dx = 0.
n—oo RN

Then we get
lim (K (T0(102)) = K (T () (L), w, — u) = 0,

where w € Wy"(RY), L(v) in W, (RY) was

(L(v),w) = f (|Vv|p(x)_2Vva + V(x)lvlp(x)_sz) dx
RN

2 f f GO.vONSx VW) | dy + f WP D2,
RN JRN RN

x = 317

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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Combining the weak convergence of (u,), in W‘l,’p (x)(RN ) with the boundedness of (K(T . (u,)) —
K(T (), in RV, we obtain that

lim (K (T ) = K (T (@0))) (LAw), 1, = u) = 0. (3.28)

In view of (J(u,),u, — u) = 0 (n — 00),

o(1) = (J(uy) = J3(u), 1, = u)
= K (T piay ) (L), 1ty = ) = (L), 1ty = ] + [K (T (1)) = K (T iy 10) )KL, 0, = )
— AN () = N (), — ) - f (Iotal”" 7 s = ") (= w0) dx
RN

= K (T (t0)) [{L (1), 0y = ) = (L), 4, = )] + o(1).
(3.29)
Hence, we obtain that

f (IV(un — )X + V(X)|u, — ul”(”)) dx =0.

RN

Therefore, in W‘l,"’ (RN, we get (u,), — u strongly. m]
4. Non-degenerate case for Eq (1.1)

We respectively demonstrate Theorems 1.1 and 1.2 by using the mountain pass theorem [3] and the
Krasnoselskii genus [38].

4.1. Proof of Theorem 1.1

First of all, we demonstrate there exists mountain pass structure for J,.

Lemma 4.1. Let E is a real Banach space, and J, € C'(E), with J,(0) = 0. If the following conditions
hold true:

(1) Forany u € E and ||u|lg = p, there is p, x > O satisfying J (u) > x;
(2) For any ||wl||g > p, there is w € E satisfying J(w) < 0.

We can define I' = {y € C([0,1],E) : y(0) = 1,y(1) = w}. Hence,
¢ = inf max J,(y(¢)) > x
yell 0<t<1
and (u,), C E.

Proof. First, we verify condition (1) of Lemma 4.1. In view of (K;), we have inf,so K(#) = k9. Then
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according to Remark 2.1, we get ||u||W¢,p(x)(RN) < Sy L0 (RN)- So,

Ta(u) = K (T () = AA(w) - f ol x

ko
P P
> S0y = 0y = CUOE 0 e ) = €O 0 e
ko .
p p
> _” | lp(v)(RN) *”M”Wl,p(x)(RN) C max {”u”Lq RV ? ||u||Lq r()()(RN)}

—_ CmaX {”u“Lq r(x)(RN) ||u||Lq r(x)(RN)}
2C

ko
p P
2 _” ” IP(‘)(RN) *”u”W‘l/sP(X)(RN) - SZr

=l for any u € W"V(RY),

L, P(’C)(RN)

where ||u|| < 1. Hence, let p, y > O, |lu|| = p and the fact p~ < g r(x) < ¢'r(x) < p* satisfying
Jo(u) > x. So we prove (1) of Lemma 4.1.

In order to prove the conclusion (2) of Lemma 4.1, we choose ¢ € C*(RY) and ¢ > 0, combination
with (K3), for all t > 1, we get

K1) < K. 4.1)

According to the conditions of f, we obtain that

L) = K (T poo(t)) — AN () - f P Ydx

*(x)
< K Ty @) - f Pl 4.2)
*(x)
<KW T ) = ;(x) f P @dx forallt > 1.
RN

In view of op* < p*(x) and for 7, large enough, we obtain J,(foy) < 0 and #y||y|| > p. Set w = tY,
so e satisfies the conditions and the conclusion (2) is true. O

Proof of Theorem 1.1. Next, if A large enough, we prove that

1 = inf max J,(y(1)) < (% _ T) min {(kOSP*)T+ ,(kOSP*)T_}. 4.3)

Combining (4.3), Lemmas 3.1 and 4.1, it is obvious that we can deduce J, exists nontrivial critical
points. So we need to demonstrate (4.3). Let vy € W‘l,’p @ (RMN) such that

Tp(x)(\)o) =1 and lim J(tvg) = —
[—o0

Hence, for some 7, > 0, we get sup,., Ja(tvo) = Ji(tavo). And

K(TP(X)(tVO))f (|VZV0|p(x) + V(x)|tv0|l7(x)) dx
RN
G 2 ! s t t B
) ﬂf f 2 OOPEL Dy + f tvol” D,
RN JRV oy

=yl

4.4)
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Next, we need to prove the boundedness of {f;},-9. First, for any 4 > 0, let #; > 1. According

to (4.4), we obtain that

\%

p oKW 2 pta K1) (Twtav)
pM (Tp(x)(t/lvO)) T 0 (t1vo)

K (T o (£v0)) [ V120017 + V)l |

' f Ivol” “dx.
RN

Since o € [1, p*(x)/2p*), so 2p*o < p*(x) and (4.5), hence we get the boundedness of {¢,},.

\%

\%

\%

4.5)

The next step is to demonstrate t; — 0 as 4 — oco. Similarly, we get 4, — co and t;,, — #,. we yield

ffG(y,tanvo()’))g()@tﬂnvo(x))l‘ﬂnvod ffG(y,fovo(y))g(xJovo(x))fovo
xdy — dxdy
RN JRN RN JRN

b = Yo b = Yo

as n — oo. And

G(y, 12,v0())8(x, 14,vo(X))14,v0
A, dxdy — o0 as n — oo,
RN JRN |x — yletey)

So it results K (Tp(x)(tovo)) = oo thanks to (4.4). Hence, t; — 0 as A — oo. Then we have

i G(y, tavo(»)g(x, tavo(x))t,vo
im

=00 Jon |x — yla»

dxdy =0

and
lim f ltvol” Pdx = 0.
RN

A—o0

Moreover, an easy computation gives that

lim (sup J,l(l'VO)) = }1m Ja(tvg) = 0.

A—0o0 =0

Then we can find 4, > 0 satisfying for any 4 > 4;, we have
sup J(tvg) < .ot min {(kOSp+)T+
>0 6 pr(x)

Let w = 7y satisfying J,(w) < 0, so choosingy(t) = ttvy, we get

(koS P)} .

<
€1 < max Ja(y(2)).

Finally, if A large enough, we obtain

g 7)

>0

Hence, Eq (1.1) admits a nontrivial solution.
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4.2. Proof of Theorem 1.2

In this part, we demonstrate Theorem 1.2 by using similar method in [38]. Assume IT is a set which
includes closed subsets A. A are symmetric and A are subsets of X\ {0} which is an infinite dimensional
Banach space.

Lemma 4.2 ( [38]). X is shown above. There exists U satisfying X = U® V. Assume J; € C'(X) be an
even functional and J,(0) = 0. J, meets

(I1) for any u € 0B, (" Z, there is constant p, y > 0 satisfying J,(u) > x;

(L) for any c and ¢ € (0,&), there is constant & > 0, J, satisfying the (PS). condition;

(13) there exists R = R(X) > 0 satisfying J,(u) < 0 on X \ Bg where X C X ia any finite dimensional
subspace.

Let U is s dimensional Banach space and we give the definition of U = span{uy,--- ,u;}. When
n > s, we have u,., ¢ Q, = span{uy,--- ,u,}. So we assume R, = R(Q,) and Q,, = Bg, () Q,. Then we
give the definition of Q,, that is

Zn = {]7 S C(QH,X) . nlﬁBR,, N0, = ld, (,[/lS Odd}

We have
Ft:{n(Qn\V) :neZ, nxt, Dell, y(D)Sn—t},

where y(D) is genus of D. Let

¢; = inf max J;(u) te€N.
Eel'y ucE

Therefore, when t > s, we find 0 < ¢, < ¢;41 ,with ¢, < & For any t > s such that ¢, = ¢,y = -+
Crra = € < &, T, denote the set of critical points in X and we have y(T,) > a + 1.

Proof of Theorem 1.2. According to Lemma 4.2, we can prove Theorem 1.2.

First, we verify conditions. Since J, € CI(W‘l,”’ “(RM)). According to (3.2), we have J;(0) = 0.
Therefore, the demonstration is analogous to (1) and (2) in Lemma 4.1. Since J, meets conditions (/)
and (/;) of Lemma 4.2.

Therefore, we can demonstrate there exists (Y,), C R*, and T, < T, satisfying

/l .
¢, = inf max Jy(u) < 7T,.
Eel', uceE

A

n’

According to the definition of ¢, we deduce that

Eel', u€eE Eel', uceE

1 .
¢! = inf max J;(u) < inf max {7( T o)) = f |u|? (x)dx}.
! o) =55 Lo

1 *
_ _ (x)
Trg%%mw»ﬂdwwﬂ,
so that T, < co and Y, < T,;;. We show that Eq (1.1) has at least s pairs of solutions. And we have
two possibilities:
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(I) In the first case, we assume A > 0. There exists ko such that

sup‘Y‘ < (% - > l(x))min {(lc()S‘”+)T+ ,(kOSp+)T}.

(IT) In the second case, similarly, in (4.3) and A > A,, we deduce from A, > O that

1 1 +\T
A< S i { SP
c, <1, < (9 p*(x))mm (mo )

+ -

,(mosf)T }

Hence, we yield

O<cl<cd< <cl<, < (; - l(x))min{(koS”+)T+ ,(kOSP+)T_}.

By means of Proposition 9.30 in [38], we get that J, has many critical values. And there exists ¢ =

1,2,---,5—1such thatc = ct e TC? has a lot of critical points. So we demonstrate Theorem 1.2.

5. Degenerate case for Eq (1.1)

In this part, we consider Eq (1.1) in the degenerate case. We give a crucial lemma at first.

Lemma 5.1. J; has a (PS) sequence (u,), in W‘l,’p DRN). Let 1,(x) := = (fc ;(_J;a,
Y L N {(p-klsp*ff)’ff (p—klsp*cr)”} G.1)
o px ’ ’

then (u,), — u strongly.

Proof. If inf 5 ||u,|| = 0, then there is a subsequence of (u,), such that u, — 0 as n — co. Hence, we
suppose d := inf,>; ||u,|| > 0 and ||u,|| > 1. In view of the definition of the (PS) sequence, we get

ca+ 1+ o(D)lu,ll

1
> J/l(un) - 5<J;l(un)’ un)

1
= 7(( p(x)(un)) 0 (Tp(x)(un)) [f |Vun|P(X) + V(x)lunlp(x)dx]

") G(y, un(y)) (g(x, ), G(x, un))
+ fRN (9 o (x)) |, [P Vdx + /lffRN I — y[at 9 > dxdy.

According to the conditions of (K5), (K3) and (g3), we can deduce

1
cy+ 1+ oMlu,ll > Ja(uy,) - 5<J;(un), Up)
+

1
> (_ - %) K( p(x)(un)) p(X)(un) (5.2)

o

1 + .
> (— - p—)klnunn" .
o 0
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Since p*o > 1, we deduce (u,), is bounded.
Refer to Lemma 3.1, we can assume / # (. For any i € [ and any € > O small, we define ¢, as
Lemma 3.1. In view of (J'(u,), u,$c;) — 0 as n — oco. Thus we have

K(T () f (V27O + VIt ttypes + V11OVt Vs iy ) dx
RN

(5.3)
G s Up s Up nWe,i *
_ /lf f O, un(y)g(x, u (x))u be, dxdy+f |u, | (x)¢&idx+ 0,(1).
RN JRV |x — ylet» RV

Similarly,

lim sup lim sup f Vit [P 2Vu, Vb, iut,dx| = 0

-0 n—oo RN

and

G s Un s Up nWe,i
i sup i s f f OOV UMby 1y
RN JRN

£—0 n—oo |X - yla(x,y)

By (K3) and (5.3), we have

K(Tp(x)(un))f (lvun|p(X)¢’a,i + V(x)|un|p(X)un¢£,i) dx
RN

= K(T (1)) fR X U, (X)¢eidx = K(T i) (Unei)) fR ) U, (X)eidx

> P (T b)) T ttabsd) = p k1 (Toi b)) (5.4)
> (p) "k ( f ) Un(x)cpg,idx)a

> (p‘)‘f“lqy;f.R

According to (5.3), we get
(P < vi.

Then we find that either v; = 0 or

JD) + _

vz (pas ) z min{ (p kST (ST )" (55)

We deduce from (K>), (g3) and (5.5) that

11 f .
ca>|=- |t |P" O e idx. (5.6)
: (0 p*(x)) Y

So we get

0 p(x

Thus we get a contradiction with (5.1). Hence v; = 0.

cdz(l ! )min{(p_lep+U)T; ,(p-klsp*")T‘_’}.
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Next, we claim that v, = 0. Similarly, we give a smooth cut-off function ¢z and because of
<J/’l(1/tn), un¢R> - 0,

K(T o () f (IV2P g + VOl 1ty b + V10, Vet Vs, ) dx
RN

5.7
G s Un s Un n «
_, f f R O T R RO T
RV JRV |x — ylate) RN
Similarly, we get
lim lim sup f Vi, [PV, Vpgu,dx| = 0
R—oo 0 RN
and G
lim lim sup f f 0, 40, u"(x))u"¢Rdxdy = (N (u) , unpr) = 0.
R—co n—oo RN JRN |-x - )’|a(x’y)
According to (5.5), we obtain that
K(T py(un)) f Un(X)¢rdx > (p7) " kipu, (5.8)
RN
and
()7 ki, < Voo
Combining with (3.12), we find that either v, = 0 or
P& . T+ . T;.
Ve = (piS7 )T min{(p_le” N (phis?) } (5.9)
Then we prove (5.9). Similarly, in view of (3.21), we deduce that
1 1 + \To + \To
o in{(pkas7) ‘kS’”’”}. 5.10
Ca (6 p*(x))mln{(l? 1 ) (P 1 ) ( )

By (5.1), it is an obvious contradiction. Thus v, = 0.
Hence, we have I = @ and

limsupf Iunlp*(x)dx:f | Ddx.
n—o00 RN RN

According to a Brézis-Lieb lemma with variable exponents (see [19], Lemma 3.9) and last equality,

we get
f |, — ulP ©dx — 0
RN

f ltt? 2w, (1, — w)dx — 0.
RN

In view of (3.27), (3.29) and (J,(u,), u, — u) — 0, we deduce

and

f (IV(u,, — w)PY + V(x)|u, — u|P<x)) dx = 0.
]RN
So (u,), — u strongly where u € W‘l,’p DR, m]
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Lemma 5.2. J, satisfies the conditions (1) and (2) of Lemma 4.1.

Proof. By (K3), (g2) and Remark 2.1, forany 1 > 0, u € W\l;p(x)(RN) and ||u|| < 1, we deduce

|l/l|p*(x)d.x

Jaw) =K (Tp(x)(”)) — AAW) - fRN pH(x)

1 S * 2 2
z—K(nmwnvﬂMm——;ﬂMQMWMf4mGaMMMTM)—meuwmfww

P’ 2r”
( +)O’ || | lp(x)(RN) * ||u||W1,p(x)(RN) C max {”u”Lq r(x)(RN) ||u||Lq+r(x)(RN)}
_mehwummﬂ|wbmmﬂ} 5.11)
2
” | P 10;;()() - _H ”p 1.p(x) D) ” ” rl P N
0'( +)‘T (RN) wy (RN) S r ®Y

Since p*o < p*(x) and p(x) < rqg~ < rq* < p*(x), choosing p, y > 0 and ||u|| = p, we have J,(u) > y.
Thus we prove (1) in Lemma 4.1. Similarly, we prove (2) of Lemma 4.1 is true. |

Proof of Theorem 1.3. The proof is analogous to Lemma 4.1, we can obtain

yeT €]0,1]

1 1 . _ +o T4 _ +o\To
¢, = inf max J(y(?)) < (9 *(x))mln {(p k;S? ) ,(p ki S? ) }
The remaining steps are analogous to Theoreml.1.
Proof of Theorem 1.4. The proof of Theorem 1.4 is analogous to Theorem 1.2.

6. Conclusions

In this paper, we consider the critical nonlocal Choquard-Kirchhoff type equations with variable
exponents in the degenerate cases and non-degenerate cases. Because of the existence of critical
reaction, we apply the concentration-compactness principle to overcome the lack of compactness. By
using the variational methods, the Hardy-Littlewood-Sobolev inequality and Krasnoselskii genus, we
get the results of existence and multiplicity of solutions for a class of critical Choquard-Kirchhoff
type equations.
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