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Abstract: Many models of uncertain knowledge have been designed that combine expanded views of
fuzziness (expressions of partial memberships) with parameterization (multiple subsethood indexed by
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initiated by fuzzy soft sets. It is a mapping from a set of parameters to the family of all orthopair fuzzy
sets (which allow for a very general view of acceptable membership and non-membership evaluations).
To expand the scope of application of fuzzy soft set theory, the restriction of orthopair fuzzy sets that
membership and non-membership must be calibrated with the same power should be removed. To
this purpose we introduce the concept of (a, b)-fuzzy soft set, shortened as (a, b)-FSS. They enable
us to address situations that impose evaluations with different importances for membership and non-
membership degrees, a problem that cannot be modeled by the existing generalizations of intuitionistic
fuzzy soft sets. We establish the fundamental set of arithmetic operations for (a, b)-FSSs and explore
their main characteristics. Then we define aggregation operators for (a, b)-FSSs and discuss their main
properties and the relationships between them. Finally, with the help of suitably defined scores and
accuracies we design a multi-criteria decision-making strategy that operates in this novel framework.
We also analyze a decision-making problem to endorse the validity of (a, b)-FSSs for decision-making
purposes.
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1. Introduction

The purpose of this paper is to launch a novel model of uncertain knowledge that combines an
expanded view of fuzziness (with original expressions of partial memberships and non-memberships)
with parameterization abilities (in the standard form of multiple subsethood indexed by a parameter
set). In order to fully grasp the expected impact of such an innovation, let us first recall the streamlined
sequence of improvements leading to the state-of-the-art.

It is well known that Zadeh [48] expanded crisp sets by allowing the membership of an element to a
set to lie in the closed interval [0, 1], rather than being limited to {0, 1}. He called this type of set a fuzzy
set in 1965, and nowadays it has been extensively applied in many areas such as medicinal sciences,
engineering, economics, etc. Afterwards Atanassov [16] defined the notion of intuitionistic fuzzy
set (IF-set) which handles problems where the non-membership degree does not necessarily derive
from the membership degree. Like the case of fuzzy sets, this notion attracted many researchers that
investigated its main properties and demonstrated how it can be applied in practical situations [6, 19].

Once the independence of membership and non-membership had been laid out, many authors
engaged in the task of enlarging the admissible combinations of membership and non-membership,
while keeping mathematical tractability. Two new kinds of sets generalizing IF-sets, namely,
Pythagorean fuzzy sets (PF-sets) and Fermatean fuzzy sets (FF-sets), were defined by Yager [43] and
Senapati and Yager [39]. Their contribution hinges on the utilization of powers (either 2 in PF-sets
or 3 in FF-sets) to calibrate the membership and non-membership evaluations. A wider range of
situations producing a satisfactory generalization is encapsulated by g-rung orthopair fuzzy sets
(¢-ROF sets), introduced by Yager [44]. All the aforementioned extensions of fuzzy sets are particular
cases of g-ROF sets: IFSs, PFSs, and FFSs arise by giving the values 1, 2, 3 to q.

However, there are some cases and situations requiring evaluations with different importance
(whence calibration) for the membership and non-membership degrees. This requirement cannot be
met by the aforementioned generalizations of IF-sets. To achieve this goal, Al-shami [9] defined a
family of (a, b)-fuzzy sets (abbreviated (a, b)-FSs), where a,b > 1. Special cases of this family have
been introduced and studied, e.g., (2,1)-fuzzy sets [8], SR-fuzzy sets [11] and (3,2)-fuzzy sets [24].
Aggregation operators, as a prominent technique allowing to approach decision-making issues, have
been defined for some of these fuzzy environments [26,27,29,33,35]

The soft set defines another altogether different scenario to address vagueness and uncertainty [32].
A list of characteristics yields a family of subsets which are considered as approximate descriptions of
a concept (one for each viewpoint defined by a property). Soft sets quickly drew the attention of many
researchers with different goals [3, 5,10, 12-14,20, 25].

With the progression of communication and technology, the solutions to many complicated issues
need to resort to more than one analytical tool. In relation with this, Maji et al. [30] showed that fuzzy
and soft set theories can work in tandem. They prompted the ‘fuzzification of soft sets paradigm’
which describes a larger class of phenomena more accurately. These models were further investigated
in many articles like [7, 18, 28, 31, 38]. As an expected reaction, researchers developed this type of
hybridization further by introducing intuitionistic fuzzy soft sets (IFS-sets) [41], Pythagorean fuzzy
soft sets (PFS-sets) [34], Fermatean fuzzy soft sets (FFS-sets) [37] and g-rung orthopair fuzzy soft sets
(g-ROFS sets) [23]. Of course, these generalizations of IFS-sets have reasonable motivations that led
to studying them.

AIMS Mathematics Volume 8, Issue 2, 2995-3025.



2997

To complete this landscape and provide a more general instrument for the mathematical analysis
of uncertainty, in this article we introduce the novel concept of (a, b)-fuzzy soft sets, abbreviated as
(a, b)-FSSs, which is produced by hybridization of (a, b)-fuzzy sets and soft sets.

The motivation for this research is threefold. First, we shall launch a new family of generalized
fuzzy soft sets that encompass the IFS-sets. This family called (a, b)-fuzzy soft sets enlarges the space
jointly defined by membership and non-membership specifications beyond the space allowed by IFS-
sets. We shall also show that this new family does not obtain from the class of g-ROFS sets, i.e., it is
a rigthful novel extension of IFS-sets. Secondly, we shall present novel kinds of weighted aggregation
operators which have a potential to be applied to practical problems. They are especially adept for those
problems that need to be evaluated with different importance for membership and non-membership
grades. Finally, we shall design a multi-criteria decision-making method based on the accuracy and
score functions for the purpose of choosing optimal alternative(s) in the framework defined by the new
model.

The content of the rest of this manuscript is arranged as follows:

(i) In Section 2, we recall some the main concepts of fuzzy set theory and its extensions via classical
and soft settings.

(ii) We devote Section 3 to introducing the class of (a, b)-FSSs, which expands the grade space of
q-ROFS sets and provides a suitable environment to model some real-life issues. We study the
main properties of this class and define a set of operations via this class.

(iii) In Section 4, we present some new operations and aggregation operators on (a, b)-FSSs and show
the relationships between them.

(iv) In Section 5, we provide an application showing how the current class is applied to address
practical problems. For simplicity and preciseness, we have proceeded in the case where a = 1
and b = 2.

(v) In the end, we outline the main contributions of the manuscript and propose some future work in
Section 6.

2. Preliminaries

In this section we give some antecedents that lay the ground for the presentation of our novel model.
We need background on two initially independent areas, namely, fuzzy models and soft set theory. Both
approaches to uncertainty have been combined in various forms, and we shall describe the necessary
ideas too.

2.1. Classical fuzzification

Many models have succeeded in improving the scope of applications of fuzzy sets. The fundamental
fuzzy model is given in the next definition:

Definition 2.1. [48] The fuzzy set is defined over a universal set U as follows:
O = {(X,po(R)) : X € U}, where @o is a function from U to [0, 1] which represents the membership

degree of every X € U to O under the constraint 0 < go(X) < 1.
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A key improvement consisted of the separation of membership from non-membership evaluations.
This achievement was first formalized by the next concept:

Definition 2.2. [16] The IF-set is defined over a universal set U as follows.

O = {(X, po(%), wp(R)) : X € U}, where the functions ¢o and wo from U to [0, 1] respectively
represent the membership and non-membership degrees of every X € U to O under the constraint
0 < po(X) + wo(x) < 1.

The indeterminacy degree of each X € U with respect to this IF'S is given by

fo(X) = 1 = (¢o(X) + @o(%)).

One should bear in mind that if an IF set O satisfies pp(%) = 1 — wo(X) for every element & € U,
then O can be identified with a fuzzy set without loss of information.

Remark 2.3. If no confusion is likely to arise, we shall drop the subindex and simply write ¢, @ and {
instead of po, @wo and Lo, respectively.

Afterwards the power of the membership and non-membership degrees was introduced in order to
expand the mathematical tractability of wider sets of evaluations. The next concept subsumes other
interesting cases:

Definition 2.4. [44] Fix q > 1. The q-ROF set is defined over a universal set U as follows:

O = {(&, (%), @(R)) : X € U}, where the functions ¢ and @ from U into [0, 1] respectively represent
the membership and non-membership degrees of every X € U to O under the constraint
0 < (p(X)? + (w(x))? < 1.

The indeterminacy degree of each X € U with respect to this gROFS is given by

{(®) = 1= (e + (@(£))).

PF-sets [43] amount to the case g = 2, whereas FF-set s [39] consist of the case g = 3.

A different procedure for the expansion of the field of admissible membership and non-membership
evaluations has been recently introduced in [8]. The key idea is that membership and non-membership
evaluations are raised to the power of different indices. As a result, the model that arises lies strictly in
between IF-sets and PF-sets:

Definition 2.5. [8] The (2,1)-FS O over the universal set U is defined as follows.

O = {(X, (%), @(X)) : X € U}, where the functions ¢ and @ from U into [0, 1] respectively represent
the membership and non-membership degrees of every X € U to O under the constraint
0 < (p(X)* + (%) < 1.

The indeterminacy degree with respect to a (2,1)-FS O is a function { : U — [0, 1] given by
() = (1= (@(®)? + @(£)))3 for each % € U.
As mentioned above, it is pretty obvious that the next implications hold true:

IF-set = (2,1)-FS = PF-set = FF-set = ¢-ROF set.
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The next example shows that the converse of these implications fail to be true:

Example 2.6. Let Oy = {(£,0.7,0.5),(,0.6,0.3)}, O, = {{(x,04,0.1),($,0.8,0.4)},
O; = {{(%,0.9,0.5),(9,0.5,0.3)} and O4 = {{X,0.75,0.1),(9,0.8,0.8)} be defined over U = {X, }. Now,
by direct calculation we can check that Oy, O,, Oz, O, are (2,1)-FS, PF-set, FF-set, and q-ROF set
(for all g > 3), respectively. On the other hand, we have the following:

(i) O, is not an IF-set because ¢(X) + w(x) = 1.2 £ 1.

(ii) O, is not a (2,1)-FS because (¢($))* + w(P) = 1.13 £ 1.
(iii) O; is not a PF-set because (p(%))* + (w(%))* = 1.06 £ 1.
(iv) O, is not an FF-set because (¢(%))? + (w(8))® = 1.024 £ 1.

Motivated by the tractability and flexibility of the (2,1)-FS model, a related concept has been defined
recently:

Definition 2.7. [9] Let a,b be positive real numbers greater than or equal to one. The (a,b)-FS O
over the universal set U is given as follows.

O = {(&, (%), @(X)) : X € U}, where ¢, w : U — [0, 1] are functions that respectively determine the
degrees of membership and non-membership for every X € U under the constraint
0 < () + (w(®)’ < 1.

The degree of indeterminacy with respect to an (a, b)-FS O is a function { : U — [0, 1] given by
L(R) = (1 = (&) + (@(R)))w for each % € U.

In relation with the later definition, an (a, b)-FN or (a, b)-fuzzy number is a pair 6 = (¢, @), where
p,m€[0,1]and 0 < ¢* + w? < 1.

Figure 1 illustrates the boundaries of the acceptable evaluations in the IFS, PFS, and FFS models, in
addition to the case of a (2, 5)-FS. Together with Example 2.6, it is a further evidence that the (a, b)-FS
model has distinctive traits as compared to the previous IFS, PFS, FFS, and ¢-ROFS models.

The set-theoretic operations of subsethood, union and intersection via the fuzzy soft environments
were formulated by integrating their counterparts via soft and fuzzy environments. To illustrate this
matter, we present these operations via the environment of [F-sets. Recall that:

(1) (X, ¢1(2), m1(D)) : X € U} 2 {(X, p2(X), @a2(X)) : & € U} provided that ¢ (%) < ¢2(X) and @y (X) >
w(X) foreach X € U.

(ii) Union is defined by the expression {(X, ¢;(X), @ (X)) : X € U} U {{(X, p2(X), @2(X)) : x € U} =

{(X, max{e) (%), 2(R)}, min{w (), w2 (%)) : X € U}.

(iii) Intersection is defined by the expression {(X, ¢;(%), @ (X)) : X € U} N{(X, p2(X), @1(X)) : X € U} =

{(X, min{1 (), p2(R)}, max{w(2), wx(%)) : X € U}.

The operations above were generalized to the environments of PF-sets, FF-sets and q-OPF sets.
They follow a similar structure.
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3000

Non-membership

— Intuitionistic FS
Pythagorean FS
Fermatean FS

— (2,5-FS

Membership

0.2 0.4 0.6 0.8 1.0

Figure 1. A graphical comparison of the models in Definitions 2.4 and 2.7.

2.2. Soft fuzzification

The crude idea of a soft set means an expansion of subsethood of a set that embeds a multiplicity of
subsets, indexed by a set of parameters, attributes, or characteristics:

Definition 2.8. [32] An ordinary mapping f from nonempty set of parameters A to the power set 2V
of the universal set of objects U is called a “soft set”. It is denoted by the pair (f, A) and one can write
this as (f,A) = {(o, f(0)) : o € A and f(o) € 2Y}. We call f(o) a o-component of (f, A).

A deep discussion of the semantical interpretation of this definition has been given in [47], see
also [4] for an update view.

We have discussed how subsethood can be understood in generalized fuzzy manners in Section 2.1.
Whence these ideas can be naturally added to the notion of a soft set as follows:

Definition 2.9. Let A be a set of parameters and FS(U),IFS(U), PFS(U), FFS(U) and gROS (U)

be respectively the families of all fuzzy sets, IF-sets, PF-sets, FF-sets and q-ROF sets defined over the
universal set U. Then

(i) [30] a mapping f from A to FS(U) is called a fuzzy soft set (briefly, FS-set). It can be written as
follows:

(f, 8) = {(0, (%, ¢(X))) : 0 € A and (X, p(%)) € FS(U))}.

(ii) [41] a mapping f from A to IFS (U) is called an intuitionistic fuzzy soft set (briefly, IFS-set). It
can be written as follows:

(f, A) = {(0, (%, (%), @(X))) : 0 € A and (X, p(X), w(X)) € IFS(U)}.

(iii) [37] a mapping f from A to PFS (U) is called a Pythagorean fuzzy soft set (briefly, PFS-set). It
can be written as follows:

(f, A) = {(0, (X, (%), @(X))) : 0 € A and (%, (%), w(X)) € PFS(U)}.
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3001

(iv) [37] a mapping f from A to FFS (U) is called a Fermatean fuzzy soft set (briefly, FFS-set). It can
be written as follows:

(f, A) = {(0, (%, (%), @(X))) : 0 € A and (X, p(X), w(X)) € FFS(U)}.

(v) [23] a mapping f from A to gROS (U) is called a g-rung orthopair fuzzy soft set (briefly, g-ROFS
set). It can be written as follows:
(f; A) = {(o, (%, ¢(%), w(X))) : 0 € A and (%, ¢(%), w(%)) € gROS (U)}.

Put shortly, what is requested in the previous definition is that for each o € A, f(0) must
respectively be a fuzzy set, an IF-set, a PS-set, an FF-set, and a q-ROF set.

For our purposes it will suffice to recall the performance of algebraic concepts in the IFS-set setting.

Definition 2.10. (see [1]) Let (f,A) and (h, Q) be two IFS-sets. We say that (f,A) is an IFS subset of
(h,Q), denoted by (f,A) T (h,Q), if A C Q and f(0) < h(o) for each o € A.

Definition 2.11. (see [1]) Let (f, A) and (h, Q) be two IFS-sets, where AN Q # (0. Then
(i) the IFS-union of them, denoted by (f,A) U (h,Q), is an IFS-set (g, A U Q) given by

f(0) when 6 e A - Q,
g = h(9) when 6 € Q — A,
f(6) U h() when e ANQ,

(ii) the IFS-intersection of them, denoted by (f,A) U (h,QQ), is an IFS-set (g, A N Q) given by g(0) =
J(6) N (o).

3. A new model: (a, b)-Fuzzy soft sets

In this section, we shall introduce the novel model that justifies our study. Afterwards in Section 4
we shall define operations and aggregation mechanisms that apply to this framework.

Definition 3.1. Let A be a set of parameters and (a, b)-FS (U) be the family of all (a, b)-FSs defined
over the universal set U. Then, a mapping f from A to (a,b)-FS (U) is called an (a, b)-fuzzy soft set
(briefly, (a,b)-FSS ). It can be written as: (f,A) = {(0, (X, (%), @(X))) : 0 € A and (X, p(X), @(X)) €
(a,b)-FS(U)).

The degree of indeterminacy with respect to an (a, b)-FSS (f,A) is a function { : U — [0, 1] given
by: For each x € U,

{®) = (1 = (e(R)" + (@R

It is obvious that this degree of indeterminacy satisfies the equality (¢(£))* + (@ (%))’ + (£(%))* = 1.
Note that £(%) = 0 whenever (¢(%))* + (@(%))” = 1.

Remark 3.2. For the sake of simplicity, an (a,b)-FSS (f,A) = {(0,(X,¢(X),@w(X))) : o € A and
(X, 0(X), w(x)) € (a,b)-FS(U)} is denoted by the symbol (f,A) = (o, ¢, @). The family of all (a, b)-
FSSs defined over U is symbolized by I'“?=F5S,
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Throughout this manuscript, we deal with (a, b)-FSSs that are defined with respect to a fixed set of
parameters A.

Remark 3.3. The family of all (a, b)-FSSs coincides with
(1) IFS(U)ifa=b=1.
(2) PFS(U)ifa=b=2.
(3) FFS(U)ifa=b=3.
(4) gROFS(U) ifa=b=q.
In the next result we compare (a, b)-FSS with the previous generalizations of IFSs.
Proposition 3.4. The following statements hold true:
(1) Any IFS-set is an (a, b)-FSS.
(2) Ifa>?2and b > 2, then any PFS-set is an (a, b)-FSS.
(3) If a >3 and b > 3, then any FFS-set is an (a, b)-FSS.
(4) If a > g and b > g, then any q-ROFS set is an (a, b)-FSS.
Proof. Straightforward. O

Example 2.6 demonstrates that the converses of the assertions given in Proposition 3.4 are generally
not true.

Now we proceed to define algebraic operations on the new model. We begin with union,
intersection, and complement.

Definition 3.5. Let (fi,A) = (o, @1, @) and (fo, A) = (0, @2, @2) be (a, b)-FSSs on U. Then
(1) (. ) U (s, A) = (0, maxie, g2}, min{, @),

(2) (1, )11 (s, A) = (o, minlpr, @o), max{@, @),

(3) (fi, A = (0, @1, ).

These concepts are well defined. Note that it can be easily seen that the family of (a, b)-FSSs is
closed under the operators of Ll and M, i.e., (fi, A) U (f>, A) € I“P=FSS and (£, A) M (fo, A) € [@D-FSS,
Also, (wg)” +(¢h)? = @b + ¢ < 1,50 (f, A is an (a, b)-FSS. It is obvious that ((f, A)) = (0, ¢, @) =
(fs D).

The next example shows how these operators are calculated in practice.

Example 3.6. Assume that (f;,A) = (0,0.6,0.45) and (f>,A) = (0,0.8,0.5) are (5,3)-FSSs on U.
Then

(1) (f1,A) U (f2,A) = (o, max{ey, g2}, min{w,, @>})
= (0, max{0.6, 0.8}, min{0.45,0.5}) = (0, 0.8,0.45).
(2) (f1,A) 11 (f2,A) = (o, min{gy, 2}, max{w,, @>})
= (o, min{0.6, 0.8}, max{0.45,0.5}) = (0.6,0.5).
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(3) (ff, D) = (0,0.736,0.55186).

The operators LI and M given in Definition 3.5, can be generalized for arbitrary numbers of (a, b)-
FSSs as follows.

Definition 3.7. Let {(f;, A) = (0, ¢, @;) : i € I} be a family of (a,b)-FSSs on U. Then
(1) U(fi, 8) = (o, suply; » i € I} inflw; 1 i € I}).
(2) il;ll(f,-,A) = (o, infly; : i € I}, suplw; 1 i € I}).
It is straightforward to prove that the operators LI and 1 are commutative:
Proposition 3.8. Let (f1,A) = (0, ¢1, @) and (f2, A) = (0, 2, @2) be (a,b)-FSSs on U. Then
(1) (fi,0)u(f2,8) = (f, D) U (fi, D).
(2) (f1,0) (2, 8) = (/o, D) T (f1, D).

With respect to associativity, the next proposition assures that it holds true for the operators LI and
M too:

PrOpOSition 3.9. Let (ﬁ s A) = (0-, ®1, W1 )’ (fZ’ A) = (0-’ ©2, wZ) and (f3a A) = (0-7 @3, w3) be (a’ b)'FSSS
on U. Then

(1) (fi, ) L (2, D) U (f3, ) = ((f1, ) U (2, A) L (f3, D).
(2) (f1,0) N ((f2, A) M (f3,8)) = ((f1,8) 11 (2, A) T (f3, D).
Proof. For the three (a, b)-FSSs (f1, A), (f>,A) and (f3, A) on U, according to Definition 3.5, we obtain:

(D) (fi, D) U((f2, D) U (f3, D) = (0,01, @) U (0, max{e,, g3}, min{w,, w3})
= (o, max{gy, max{p,, p3}}, min{w, min{w,, @3}})
= (o, max{max{pi, p2}, o3}, min{min{w, @,}, w3})
= (o, max{pi, >}, min{w, @,}) U (0, @3, @3)

= (/1,0 11 (2, A) U (f3, D).
(2) Similar to 1 above.

O

Theorem 3.10. Let (fb A) = (O-a @1, wl)a (.f29 A) = (O-a ©2, wZ) and (.]%9 A) = (O-a ©3, w3) be (a9 b)_FSSS
Then

(D) (i, ) U (f2,2) N (f5,4) = ((fi, D) T (f5,4) L ((f2, A) N (f5, A)).
(2) ((fr. ) T (f2, D) L (f3,8) = ((f1, A) U (3, ) T ((f2, D) L (f3, A)).
Proof. For the three (a, b)-FSSs (fi,A), (f>,A) and (f3, A), according to Definition 3.5, we obtain:

(1) ((fl’ A) U (fZ’ A)) M (f3’ A) = (O-a max{é”l, 902}’ min{wb wz}) M (O-’ ©3, ’ZD'3)
= (o, min{max{ey, @2}, @3}, max{min{w,, @,}, ws}). And

(S, ) (3, M) U ((f2, D) (3, A) =
(o, min{py, @3}, max{w, ws3}) U (o, min{p,, @3}, max{w,, ws3}) =

(o, max{min{e, @3}, min{p,, p3}}, minimax{w,, @3}, max{w,, @3}}). Then,
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min{max{e, 2}, 3} =

max{min{w,, @,}, @3} =

P2
$1
Y3
®3
®3
¥3

if o <y < g3,
if o < 1 < @3,
if o1 < @3 < ¢,
if o3 < 1 < ¢,
if gy < 3 <y,
if o3 < ¢y < ¢y,

if o, < w, < w3,
ile'z < w < w3,
ifzm < w3 < Wy,
if w3 < @ < w,,
if w, < w3 < @y,
ile'3 <w, < wi,

max{min{e, @3}, min{e,, p3}} =

min{max{w,, @3}, max{w,, ws}} =

o ifgr <o <3,
o1 if gy <1 < g3,
e3  if o1 <3 < ¢,
p3 if g3 <1 < ¢,
w3 ifpr <3<y,
w3 if 3 <@ < gy,
w3 1fw1 < w, £ w3,
w3 iwaSwl < w3,
w3 1fw1 < w3 < Wy,
(O3] 1fw3 < w; < Wy,
w3 ifw'zSTD'3 < wi,
w, ifw; <@ <.

It follows that min{max{p,, .}, @3} = max{min{e,, @3}, min{e,, p3}} and max{min{w,, @,}, w3} =
min{max{wl» 'ZD'3}, max{wz, 'ZD'3}} Hence» ((f19 A) ( (f29 A)) M (f3’ A) = ((fl’ A) M (f3’ A)) U ((f25 A) M

(f3,4)).

(2) (fi, D) N (f2, M) U (3, A) = (o, min{ey, g2}, max{w, @2}) U (0, @3, @3)
= (o, max{min{ey, @2}, @3}, minimax{w,, @,}, @ws}). And,

((f1.8) L (/3. 4)) n ((f2,4)

L (/3. 4))

(0, max{ey, g3}, min{w, ws}) N (0, max{p,, g3}, min{w,, ws3}) =

(o, min{max{e, @3}, max{y,, ¢3}}, max{min{w,, @3}, min{w,, ws}}). Then,

max{min{gy, 2}, p3} =

AIMS Mathematics

®3
Y3
®3
¥1
¥3
Y2

if o1 <y < g3,
if o < 1 < @3,
if o1 < 3 < ¢,
if o3 < 1 < ¢,
if o < @3 < ¢y,
if o3 < ¢y < ¢y,
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min{max{w,, w,}, w3} =

®3
®3
¥3
¥1
®3

min{max{ey, 3}, max{e,, g3}} =

max{min{@, w3}, min{w,, w3}} =

() 1fw1 < w, < w3,
w1 isz2§w1 < w3,
w3 1fw1 < w3 < Wy,
w3 leD'g < w; £ Wy,
wy ifwo, < w3 <oy,
w3 ifw; < w, <y,

if o1 <y < o3,
if or < 1 < g3,
if o1 < @3 < ¢,
if o3 < 1 < ¢,
if gy <3 < ¢y,
if o3 <y <oy,

if o < w, < w3,
ifZD'z <w £ w3,
if w; < w3 < @,
if?D'3 <@ < Wy,
ifiD'2 <w3; <{w,
ifID'3 < w, < Wg.

It follows that max{min{e;, ¢.}, @3} = min{max{e;, @3}, max{y,, ¢3}} and min{max{w,, @,}, w3} =

max{min{@,, w3}, min{w,, ws}}. Hence, ((fi, ) M (f2, A) U (fz,A) = (f1, A U (f3, M) 1 ((f2, AU

(f3,A)).

Theorem 3.11. Let (f1,A) = (0, ¢1, @) and (f>, A) = (0, @2, @>) be (a, b)-FSSs on U. Then

(1) ((fi, D) U (f2,8)) = (fi, D) 1 (f2, A).
(2) (f1,8) (2, 8)) = (f1, A L (f2, A).

Proof. (1) For the (a, b)-FSSs (f1, A) and (f>, A), according to Definition 3.5, we obtain

((fi, AU (fz,Ab))C = ((Z-’ max{ey, g2}, min{w, @, })°
= (o, min{(bwl);, (wz)Z},max{b(gol)%, (p2)t})

= (o, (@), (p1)?) N (0, (@) e, (92) )

= (fi,A) 1 (f2, A

(2) Similar to 1.

O

To offer tools for comparisons, we define the score and accuracy functions of (a, b)-FSSs which will

be helpful to rank (a, b)-FSSs.

Proposition 3.12. Let (f,A) = (0, ¢, @) be an (a, b)-FSS on U. Then, the value of ¢* — @’ lies in the

closed interval [-1, 1].

Proof. For any (a,b)-FSS (f,A), we have ¢° + @’ < 1. This implies that ¢ — @’ < ¢* < 1 and

¢ — @’ > —w’ > -1 . Hence, -1 < ¢* — @w” < 1, as required.

AIMS Mathematics
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Definition 3.13. The score function score : I'“P=FS — [~1,1] of any (a, b)-FSS (f,A) = (0, ¢, @) is
given by the formula score(f,A) = ¢* — w".

Definition 3.14. Let (f1, A) = (0, ¢1, @) and (f>, A) = (0, 2, @,) be (a, b)-FSSs. We say that
(i) If score((f1,A)) > score((f2, A)), then (f1,A) > (f2,A).
(ii) If score((fi,A)) < score((f>,N)), then (fi,A) < (f>, N).

(iii) If score((f1,A)) = score((f2,A)), then (fi,A) = (f2, D).

The score function is not a sufficient tool to specify which better (a, b)-FSSs can be chosen in some
cases. This occurs when the two (a, b)-FSSs satisfy ¢* = A°. But we know that these (a, b)-FSSs may
not match with each other. So that, comparison depending on the score function is not acceptable (or
appropriate) to address these cases. For this reason, we introduce the concept of accuracy function for
(a, b)-FSSs to make a comparison of (a, b)-FSS.

Definition 3.15. The accuracy function acc : 1“P=F5 — [0, 1] of an (a, b)-FSS (f,A) = (0, ¢, @) is
given by the formula acc(f,A) = ¢* + @?.

As is standard in related models, we can make use of the score and accuracy functions to compare
between (a, b)-FSSs.

Definition 3.16. Let (fi,A) = (0, @1, @) and (f>,A) = (0, 2, @3) be (a, b)-FSSs, where score(fi, A)
and acc(fy, A) respectively denote their evaluations by the score and accuracy functions (k = 1,2). We
declare that:

(i) If score((f1,A)) > score((f2, A)), then (f1,A) > (f2, A).
(ii) If score((fi,A)) < score((f>,N)), then (fi,A) < (f2, D).
(iii) If score((f1,N)) = score((f>, N)), then

(1) If acc((f1,8)) > acc((f2, D)), then (fi,A) > (f2, A).
(2) If acc((f1,8)) < acc((f2, D)), then (fi,A) < (f2, D).
(3) If acc((f1,8)) = acc((f2, D)), then (fi,A) = (f2, A).

Definition 3.17. Let (fi,A) = (0,1, @) and (2, A) = (0,2, @,) be (a,b)-FSSs on U. A natural
quasi-ordering on the (a, b)-FSSs is defined as follows.

(f1,0) = (2, N) iff o1 > ¢ and @ < @».
4. Operations on (a, b)-fuzzy soft sets and aggregation procedures

In this section, we do two things. First we deal with some standard arithmetic operations on (a, b)-
FSSs. Then we shall start a tentative approach to the combination of (a, b)-FNs.

AIMS Mathematics Volume 8, Issue 2, 2995-3025.
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4.1. Some arithmetic operations on (a, b)-FSSs

Arithmetic operations should at least include the notion of a sum, a product, a product by scalar,
and exponentiation. We proceed to define these concepts in the framework of (a, b)-FSSs. Subsequent
theorems prove that these operations are well-defined.

Definition 4.1. Let (f1,A) = (o, ¢, @) and (f>,A) = (0, ¢y, @,) be (a,b)-FSSs on U, and 6 be a
positive real number (6 > 0). We define the following operations.

(1) (f1.8)® (. A) = (0, 3JT + @5 — &5, @132,
(2) (1D (3, 8) = (00162, A} + % - it
(3) 6(f1.8) = (o {T= T =¥}, @)

(@@=@%&hﬂhwﬁ)

Theorem 4.2. If (fi,A) = (0, ¢1, @) and (f,,A) = (0, ¢, @>) are (a,b)-FSSs on U, then (fi,A) &
(f2,A) and (f1,A) ® (f2, A) are (a, b)-FSSs.

Proof. Let (f1,A) = (0, ¢, @) and (f>, A) = (0, @2, @,) be (a, b)-FSSs. Then, for each o we obtain
0<¢'+w’<1land0< ¢+ <.
Then, we have
¢l 2 i, ) 2 9195, 0 < ¢fps < 1
and

b b b b b_b b._b
w| > w|w,, w, 2 w|w,,0 < wjw; < 1.

This implies that {/¢{ + ¢ — @] > 0.

Since ¢5 < 1and 0 < 1 - ¢f, ¢5(1 — ¢]) < (1 — ¢f), we get that ¢f + ¢5 — ¢jp; < 1. Thus,
Vel + @5 — @i < 1. Ttis clear that 0 < @ <1-¢land 0 < @) < 1 - ¢l

Now, (/] + ¢ — ¢193)" + @y < ¢ +¢5 — iy + (1 - D1 - @) = 1.

Hence, 0 < ({/¢? + ¢4 — ¢¢2)" + wbwh < 1 which means that (f;, A) @ (f2,A) is an (a, b)-FSS.

Following similar arguments, we prove that (f;,A) ® (f>, A) is an (a, b)-FSS. O

Theorem 4.3. Let (f,A) = (0, ¢, @) be an (a,b)-FSS on U and 6 be a positive real number. Then,
O(f, A) and (f, A are (a, b)-FSSs.

Proof. Since 0 < ¢“ < 1,0 < @w” < 1and 0 < (¢)* + @’ < 1 for each o, we find
0<w <1-¢°

=0<(1—¢Y

=>1-(1-¢9 <1

=S0<1-(1-¢yY <VI=1.
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It is clear that 0 < @° < 1, then we get
0< (1= -9 + @) <1-(1=-¢" +(1-¢) =1
Following similar arguments, we obtain
0< (@) +1-(1-w°<1.

Hence, 6(f, A) and (f, A)° are (a, b)-FSSs. O
Theorem 4.4. Let (fi,A) = (0, ¢y, @) and (f>,A) = (0, ¢, @>) be (a,b)-FSSs on U. Then
(1) (fi, D@ (f2,A) = (/.M & (f1, D)
(2) (1, H®(f2,A) = (/M) ® (f1, ).

Proof. From Definition 4.1, we obtain:

(D) (fi. D) @ (f2. A) = (0, JoT + &5 — G165, w102
(0, 35 + o = G365 T ) = (. D) @ (fi, A).

@ (.0 (1) = (00162, ! + @ — o)

= (o1, ot + ot - Dhot) = (B @ ()

O

Theorem 4.5. Let (f,A) = (0, ¢, @), (fi,A) = (0, o1, @) and (f», A) = (0, 2, @) be (a, b)-FSSs on
U. Then
(1) 8((fi, ) @ (f3,8) = 6(fi, A) ® 5(f3, A).
(2) (61 + &), A) = 61(f, A) @ 6a(f, A).
(3) (1, 0) & (f, D)) = (fi, AP ® (f2, AY”.
(4) (f; O = (f, A @ (f, A2,
Proof. (1) 8((fi,8) @ (f5, A) = 6 (0, 7 + &5 — #1905, @12)
= (o, T=T =4} = &5 + 9793, (@)
= (0 YT=(T = ¢ - &Y. Bw).
And 5(fi, ) © (2. A) = (0 T = (L = @), @) @ (o, {T= (1 - @3, w3)
= (o, T=(T =g + T= (T =57 — (1 = (1 = ¢D)T = (1 = g3)°), wi )
= (o, YT= (T = (T = 5P, @i w3) = 6((fi, D) @ (f3, M)
(2) 61+ 8N, A) = (81 + 620, 0, ) = (0, T = (T = )17%2, %)
= (0" \”/1 — (1 —¢2y1(1 — ‘pa)éz’wélﬂiz)
(o AT= (=g + 1= (T =% = (1= (1= )1 = (1 - ¢)2), w" @)

(AT ==y 2" (o T = ¢y, o)
61(fs A) ® 6:(f, A).
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o
() (h D8 (DY = (719, [} + % - )
= (@20, \/1 - (1 - o} - @b + tdy)
= (g A1 - (1 - apr1 - iy
= (e 1= =y )@ (o6 41 - (1 - wby)
= (fl’ A)(5 ® (fZ’ A)(S
@) (L0 @ (f,0) = (0o ¢, {1 = (1 = @")1) @ (0, ¢, Y1 - (1 - &)%)
= (U’ e T—(-w) +1-(1-w)> —(1- (- wb)él)(l —(- wb)éz))

— (0_’ ()061+(52’ \”/1 _ (1 _ w—h)(51+(52)
= (.20,

O
Theorem 4.6. Let (f1,A) = (0, ¢y, @) and (f>,A) = (0, 2, @3) be (a,b)-FSSs on U, and 6 > 0. Then
(1) 6((f1,A) L (f2,8)) = 6(f1, D) U 6(f2, A).
(2) (fi,A) U (o, ) = (fi, A U (f,A).

Proof. For the two (a, b)-FSSs (fi,A) and (f>,A), and 6 > 0, according to Definitions 3.5 and 4.1, we
obtain

(D) 6((f1,A) U (f2,A)) = 6(o, max{e;, g2}, min{w,, @,})

= (o, T=(1 = max{c,o‘f,gog})é,min{ﬁf’Wg})-

And §(fi, A) U S(f>, A) = (0', JT=(T = ¢, wf) L (0', JT=(T = g8y, wg)
= (0’ max \“/1 — (1 = ¢?)e, \/1 — (1 = ¢5)°}, min{w‘s wg})
= (o, \T= (T = max{gf, g3}, min{w?, @3}) = 8((fi, A) U (f3, A)).

(2) Similar to the proof of claim 1.

O

Theorem 4.7. Let (f9 A) = (O-’ 2 'ZD'), (fl’ A) = (O-a ®1, wl) and (.f29 A) = (O-’ ©2, 'ZD'Z) be (Cl, b)_FSSS on
U, and 6 > 0. Then

(1) (i, ) @ (f, D)) = (fi, A ® (5, A,

(2) (1, ) @ (S, D)) = (fi, A @ (o, A,

(3) ((fs ) = (3, b)Y

(4) 8(E)° = ((f, A))".

Proof. (1) ((fi,) @ (f3, M) = (0, ] + &5 — #1465, w12
= (0, \/@ V¥i + ¢ - 907903)
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= (0, [t ) @ (b 6)
= (. AY ® (fo A

@) (8 (3, A = (0, 0162, Y, + 0~ )
( \/wl + 'ZD'Z wbw2 W)
= ( g, \/wl + @] - @, W\h/‘p_g)
= (o, \/;]f Ve e (o, m JEiran)

= (fi, A @ (fo, A

3) ((f, A = (o, Vb, {7’
= (o (Va?)’, 1= (1 - ¢))
= (o T=(T =9 @)

= (6(f, ).
@) 8(f, A = 8(o, V&b, g = (o, JT= (T = @), (7)) = (0. ¢*, VT = (1 = w?))
= (£, A°).

O

Theorem 4.8. Let (fi,A) = (0, ¢1,@1), (f2,A) = (0,2, @) and (f3,A) = (0, 3, @3) be (a, b)-FSSs
on U. Then

(1) (f1,8) 11 (2, A) & (f3,8) = ((f1,8) & (3, ) T (2, D) & (f3, A)).
(2) (i, DU (K, A) 8 (f5,4) = ((fi,4) & (f3,4) U (2, ) & (3, 4)).
(3) (/1,8 11 (2, A) ® (f3,4) = ((f1,8) ® (3, 4)) T ((f2, D) ® (f3, A)).
(4) (i, HU (K, A0)) @ (f,4) = (i, @ (f3,4) U (2, ) ® (f3,4)).
Proof. (1) ((f1,A) 1 (f2,A) & (f3,A) = (o, min{py, g2}, max{w, @,}) ® (0, 3, @3)

= (rf, \Jmin{g], 95} + 5 — @imin{g], o3}, max{w,, @, }w;

= (o, (T = Dminiey, ¢35} + 5, maxiw  @s, @rw3}).

And ((f1,4) @ (f3,4) (2, 4) & (f3,1))

= (0 o7+ &5 — G1g wiw3) 11 (0 Vs + ¢ — #35. T

= (o min{ {feeT+ &5 — G165, N5 + &5 — P33, max|w w3, wyw3))

= (o min{ T =] + &5, [T = )5 + ¢5), max(w @3, wraws))

(0' A = gmin{e|, g5} + ¢S, max{w @s, wzm})

Hence, ((f1. A)I'I(fz A) & (f3,8) = ((f1,8) & (3, ) T (2, D) & (f3, A)).
(2) Similar to the proof of claim 1.

(3) ((fla A) r (fZ’ A)) ® (f}” A) = (O-, ml.l’l{QOI, 902}9 max{w'l, wZ}) ® (f35 A)
= (0’, min{e1, ¢2}¢s, f/max{w}l’, w’;} + w;’ - wgmax{w’l’, wg})

= (o mintgros, @2, (1 = ymaxiart, @) + b))
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A () © (A) N (5D 8 (BA) = (nee o+ @ - ol
M (0', 0203, \"/wlz’ + @} — wlz’wg’)
= (cr, @193, i/(l - w)w’ + wé’) M (cf, 023, i/(l - o))w) + wé’)

= (0', min{p¢3, Y23}, max{\b/(l - w’;)w’l’ + w;’, (1 - wg’)wg + wg’})

= (o mintgros, @2, (1 = ymaxiart, @) + b))

Hence, ((f1,4) N (/2,4) ® (f3,4) = (f1,4) @ (f3, 1) 1 ((f2, D) ® (f3, A)).

(4) Similar to the proof of claim 3.
m]

Theorem 4'9' Let (fl, A) = (0-7 D1, W]), (fZ’ A) = (0-’ ©2, ’ZD'Q) and (.f3’ A) = (0-’ @3, ’ZD'3) be (Cl, b)_FSSS
on U. Then

(1) (fr,A) @ (2, 8) & (f3,A) = (f1,4) @ (f3,4) & (2, A).
(2) (f1,0)® (£, 8)®(f3,4) = (/1,0 @ (f3,4) ® (f2, A).

Proof. (1) (f1,A) @ (f2,4) & (f3,4)
= (0,91, @1) @ (2, @2) ® (0, 3, W3)
Ve 5 — eles, Wlwz) ® (0, ¢3, @3)
e+ 65— O+ s — P+ 7 — D), T mws)

a . ~a, ~a

g,
g,
0, [T+ 95+ 95— PP — P — P + P TITws)
g,
g,

JOT+ 9 — F + 05 — G+ 6L — P, T @)

T+ @5 — F165. ©1w3) © (0, 2, @)

(2) Similar to the proof of claim 1.

(
(
(
(
(

4.2. Aggregation of (a, b)-fuzzy soft sets

Definition 4.10. Let (f;,A) = (0,9, w;) (j = 1,2,...,5) be a family of (a,b)-FNs on U, and w =
(V1, V2, ..., vs)! be a weight vector of (fj,A) with v; > 0 and Z‘;zl v;j=1. Then

(1) an (a, b)-fuzzy weighted average ((a, b)-FWA) operator is given by

((l, b)'FWA((fl, A)’ (fZ’ A)’ seey (f:w A)) = (0-7 Z;’:l VjS”j’ Zj’:l ij])

(2) an (a, b)-fuzzy weighted geometric ((a, b)-FWG) operator is given by

(@,6)-FWG((f1, A), (foo ), oes (fin D) = (@ [Ty 07 [Ty @),

(3) an (a, b)-fuzzy weighted power average ((a, b)-FWPA) operator is given by
(@, b)-FWPA((f1, A), (f2. A), ooy (. A)) = (0, (T iy vig7, (Ziey vimh)b).
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(4) an (a, b)-fuzzy weighted power geometric ((a, b)-FWPG) operator is given by

(a,b)-FWPG((f1, ), (f2,A), ..., (f, &) = (o, (1 = [T}, (1 - ¢§)Vf)5, (1 -1l - W?)”)i)-
Remark 4.11. It should be noted that the values obtained from the operators presented in the above

definition need not be an (a, b)-FSS, in general.

Theorem 4.12. Let (fj,A) = (0, ¢, w;)(i = 1,2, ..., 5) be a family of (a,b)-FNs on U, (f,A) = (0, ¢, @)
be an (a,b)-FN and w = (v1, 2, ...,v,)| be a weight vector of (fj, A) with Zj-zl vj = 1. Then

(1) (a,b)-FWA((f1, D)®(f, A), (2, A)B(f, A), ... (i A)B(f, A)) = (a, D)-FWA((f1, A)B(f, A), (2, A)®
(f, ), ... (f5, D) ® (f, D).

(2) (a,b)-FWG((f1, D)&(f, D), (f2, D&(f, A), ... (f5: DS(f, A)) 2 (a, D)-FWG((f1, A)(f, A), (2, A)®
(f, ), ... (f5, A) ® (f, D).

(3) (a,b)-FWPA((f1,8) & (f,8),(8) & (f,4),...(f,d) & (f,4)) > (a,b)-
FWPA((fl’ A) ® (f’ A)’ (f29 A) ® (f’ A)» ceey (fx’ A) ® (f’ A))
(4) (Cl, b)'FWPG((fl’ A) ® (f’ A)7 (f29 A) ® (f’ A)’ SEE) (fsa A) ® (f’ A)) 2 (Cl, b)'

FWPG((f1.4) @ (£, A), (2, 8) @ (f, A), ... (fs» A) @ (f, A)).

Proof. We shall give the proofs of 1 and 4. Following similar technique, one can prove the other
affirmations.

(1) For any (f;,A) = (0, ¢j, @) (j=1,2,...,5) and (f, A) = (0, ¢, w), we obtain for each o

(/sojf + @t = @l 2 (/2sojf<p“ — @9 = ¢jp, and

(/w? + ot - oo’ > f/Zw?wh - oo’ = oo

That is,
Z Vi#) + e = gt 2 Z Vipip (4.1)
=1 =1
and . .
Z v; i/wi’. + @b — wlj’.wb > Z VW . 4.2)
=1 =1

According to item 1 of Definition 4.10 and items 1 and 2 of Definition 4.1, we have
(a,b)-
FWA((f1,8) & (f, A), (2, 8) & (f, A), ... (f5, D) & (f, A)) = (0, Koy v 95 + % — %, ey Vi@ @)
and
(a,b)-
FWA((f1,0) ® (. D), (f2, D) ® (f, A), ..., ([ D) & (f, A)) = (0, Xy Vi, X1 Vi f/wl]’ + @ - @lwb).
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Hence, from (4.1) and (4.2), we complete the proof.

(4) For any (f;,A) = (0, ¢, @w;)(j = 1,2,...,s) and (f, A) = (0, ¢, @), we obtain
@+ ¢ = @l 2 2050 - Ple* = @iyt
= 1= (¢ +¢" = ¢l < 1 = ¢gly”
= (1 = (¢ + ¢" = @l < (1 = ¢fp*)"
= [T (1 - (@8 + 6% — i) < [Ty (1 — gl
= 1= [To (= (¢ + ¢ = )7 2 1 = [T, (1 — e
Similarly,
= 1-][.0- (w? + @’ - w?wb))vf >1-]].,0- w?wb)vf.
According to items 1 and 2 of Definition 4.1, we have

(Cl, b)_FWPG((fl’ A) @ (f? A)’ (fz’ A) 691 (f’ A)’ ceey (f?a A) @ (f’ A)) l:
(0, (1 =TT, (1= (¢ + 9 — g ))E, (1 = [T, (1 — wha?y)b), and

(a,b)-FWPG((f1,A) ® (f, 1A), (2, D) @ (f, A), ..., (5, A) ® (f, D)) =
(0 (1= I (1= @i, (1= [Ti(1 = (@ + @ — @b@”)))h).

Hence, (a, b)-FWPG((f1,A) & (f,A), (2, A) & (f,A),...,(fs, A) @ (f,A) > (a,b)-FWPG((f1,A) ®
(f,N), (2, M) Q(f, A, ..., (fs, A) ® (f, A)), as required. O

Theorem 4.13. Let (f;,A) = (0, ¢j,@;) and (h;, A) = (o, a;,B)) (with j = 1,2, ..., s) be two families of
(a,b)-FSSs on U, and w = (v1, 2, ...,v,)| be a weight vector of them with Zj-zl vj = 1. Then

(]) (Cl, b)'FWA((fl’A) @ (hl’A), (fZ’A) ® (h27A)’ ""(fsa A) ® (hS,A)) 2 (a, b)'
FWA((fl’ A) ® (h19 A)’ (f27 A) ® (h2’ A)’ X3 (.fs’ A) ® (hs’ A))

(2) (a,b)-FWG((fi,A) & (h,0),(/,4) & (A, ..(f, ) & (h,A))
FWG((fla A) ® (hl’ A)7 (fz’ A) ® (hZa A)9 ceey (fs’ A) ® (hsa A))

(3) (a,b)-FWPA((f1,4) & (h,0),(f2,A) & (h,A),...(f;,A) & (h, D)) > (a, b)-
FWPA((f1,8) ® (h1,A), (2, ) ® (ha, A), ..., (fs, A) ® (hy, A)).

(4) (Cl, b)'FWPG((fl’ A) @ (hl’ A)’ (f27 A) ® (hZ’ A)’ ceey (fsa A) ® (hs’ A))
FWPG((fl’ A) ® (hl’ A), (fZ’ A) ® (h29 A)’ (X3} (.fS’ A) ® (hs’ A))

\%

(aa b)_

\%

(a, b)'

Proof. We shall give the proof for 1. Following similar technique, one can prove the other affirmations.
(1) For any (f;,A) = (0, ¢j,@;) and (h;,A) = (a;,;) (j = 1,2, ..., 5) , we find for each o

i+ ol - = {2eiel - g = v
That is,

s a4 a __ 4,0 s Ny
ijlvj\/<pj+0zj @it > Y vipa;.
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Similarly,

p vj\”/wi’. +ﬁ’]’. - w’}’.ﬁ}]’. > 2 Vi@ B
By items 1 and 2 of Definition 4.1, we have
(a’ b) - FWA((fla A) @ (hl’ A)7 (f29 A) @ (h2’ A)7 ey (fS7 A) S (hs’ A)) =
(0 it v + ) = e iy v )
and
(a,b) — FWA((f1,A) ® (h1, A), (2, A) ® (hy, A), ..., (f;, A) ® (hy, A)) =
(0, Zjo1 vipis Xim Vi (’/Wf + B - @p).

Hence, (a,b)-FWA((f1,A) & (hy,A), (2, A) & (hy, A), ..., (fs, A) & (hs, A)) > (a,b)-FWA((fi,A) ®
(h1,A), (f2,A) @ (hy, A), ..., (f5, A) ® (hg, A)), as required. O

Theorem 4.14. Let (f;,A) = (o, ¢, @w))(j = 1,2,...,5) be a family of (a,b)-FNs on U, and w =
(V1, V2, ..., vs)! be a weight vector of (fj,A) with Z;zl vi=1land > 1. Then

(1) (a,b)-FWAS(f1, D), 6(f2, A), ... 6(fs, A) = (a, b)-FWA((f1, A, (o, AP, ..., (f5, AYP).
(2) (a,b)-FWG(8(f1,A),6(f2, A), ... 8(f5, M) 2 (a, b)-FWG((fi1, A, (fo, A, ... (fs, A)).
(3) (a,b)-FWPA(S(fi,A), 8(f, A), ..., 5(f5, A) > (a,b)-FWPA((f1, AV, (fo, A, ..., (f5s AY).
(4) (a,b)-FWPG(S(f1,N), 6(f2, M), ..., 6(f5, N) = (a,b)-FWPG((f1, A, (fo, A, ..., (fs, AY).

Proof. We shall give the proof for claim 1. Following a similar technique, one can prove the other
statements.
(1) For any (f;,A) = (0, ¢;,@;) (j=1,2,...,5), we have

(a,b)-FWA((f1,A),6(f2, A), ... 6(f5, A)) = (0, X5y v 1 —(1- (,0?)5, pI vjw‘j.), and

(@, )-FWA((fi, AY, (o, A, ooy (s, DY) = (0, By 65 By Vil 1 = (1 = @),

Let g(p)) = 1 = (1 = ¢)° = (¢)°. We demonstrate that g(y;) > 0. It follows from the Newton

generalized binomial theorem that
(1= + (@) < (1 - ¢+ ¢ = 1.
This means that g(¢;) > 0. Now,
- (1- ¢ — (@) >0

= 1= (1-¢9° 2 (¢
= J1-(1- @9’ 2 ¢’
= Y Vgl = (L=¢i)Y = 35, vigh.

Similarly,
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Yiavigl=(a - wi’.)‘S > D iji.

Hence, (a,b)-FWA(S(f1,A),5(f>,A),...,0(f, N) = (a,b)-FWA((f1, A, (f, A, ..., (fs, A)), as
required. O

Theorem 4.15. Let (f;,A) = (o,¢;,w;) (j = 1,2,...,5) be a family of (a,b)-FNs on U, (f,A) =
(0, ¢, @) be an (a,b)-FN on U and w = (v, V2, ..., vs)! be a weight vector of (fj, A) with 25:1 vi=1
and 6 > 1. Then

(1) (a,b)-FWA@(f1.4) & (f,4),6(f,8) & (f,4),...6(f;,4) & (f,A) > (a,b)-
FWA((f1,A° ® (f, A), (f2. A ® (f, A), ..., (fi, A ® (f, A)).

(2) (a,D)-FWG((f1,0) & (f,4),6(f/2.4) & (f,A),..6(f,8) & (f,D)) > (a,b)-
FWG((f1,A) ® (f, A), (o, A ® (f, A), ..., (f5, A ® (f, A)).

(3) (Cl, b)'FWPA((S(fl, A) @ (f’ A), 5(f2a A) @ (f’ A)a ooy 5(.fs’ A) @ (f7 A)) 2 (a, b)'
FWPA((f1,A) ® (f, A), (f2, A ® (f, A), ..., (f5» A ® (f, A)).

(4) (a,b)-FWPG((f1,4) & (f,A),6(/2,8) & (f,A),...6(f,A) & (f,1) > (a,b)-
FWPG((f1,AY ® (f, A), (. A & (f, A), ... (5, A’ & (f, A)).

Proof. We shall give the proof for claim 1. Following a similar technique, one can prove the other
statements.

(1) For any (f;,A) = (0, ¢, @) (j=1,2,...,5) and (f,A) = (0, ¢, w), we have

(a,b)-FWA(S(f1,4) @ (f,A),6(f2,4) & (f, A), ... 6(fs, A) & (f, B)) =
(@ X i3l = (L= @1 = ). Ty vjoo),

and

(a’ b)_FWA((fl’ A)(5 ® (f’ A)7 (fz’ A)(S ® (f’ A)a ooy (fw A)(S ® (f’ A)) =

(@ B v, By vyl = (1= @1 - @)

Let g(p)) = 1 —(1 — go?)‘s(l o (cp;?)‘scpa. We demonstrate that g(¢;) > 0. To do this, let
h(g)) = (1= ¢ + (¢%)°. Then
W (g)) = =260,(1 = @°" +260,;(p1)°" = 260,((¢)"™" = (1 = ¢°™).
Now, if ¢; > %\5, then A(p;) is monotonic increasing and if ¢; < % then A(p;) is monotonic

decreasing. Therefore, h(g;) < h(@;)max = max{h(0), h(1)} = 1. Note that (1—(,0;?)‘5(1 —go“)+((,0;f)‘5(,0“ <1.
This automatically means that

8lp) = 1= (1= ¢D°(1 —¢") = (¢9)’¢" 20

= 3 yjq/l — (L= @)°(1 =" 2 Xy vigle.
Similarly,

p vj\b/l ~ (1 -@(l - @) > X, violw.
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Hence, (Cl, b)_FWA(é(f‘l s A) @ (f, A)a 6(f27 A) @ (f’ A)’ EEEE) 6(f57 A) @ (f’ A)) 2 (Cl, b)_FWA((ﬁ s A)(S ®
(fs8), (2, 8° @ (f, A), ... (fs, AY @ (, A)). O
According to Remark 4.11, we need to impose a further condition to prove the following three

results; this condition is that the values obtained from the operators presented in Definition 4.10 is an
(a, b)-FSS.

Theorem 4.16. Let (f,A) = (o, ¢, @;)(j = 1,2, ..., 5) be a family of (a,b)-FNs on U, (f,A) = (0, ¢, @)
be an (a,b)-FN on U and w = (v, V2, ...,v5)| be a weight vector of (fj, A) with ijl vi = 1. Then

(1) (a,b)-FWA((fi,4) & (f,8).(L.4) & (f,A),...(f,d) & (f.4) > (a,b)-
FWA((fl’A)a (f2’ A), eeey (.fS’ A)) ® (f’ A)

(2) (a,b)-FWA((f1, D), (f2, D), ..., (f5, A)) ® (f, A) 2 (a,b)-FWA((f1, A), (f2, A), ... (f5, D) ® (f, A).

(3) (@, b)-FWG((f1,4) & (f,4),(24) & (£4),...(fd) & (f,4) > (a,b)-
FWG((f1,0), (2, A), ..., (f5, A)) @ (f, A).

(4) (a,b)-FWG((f1,4),(f2,A), ... (fs» D) & (f, A) 2 (a, b)-FWG((f1, A), (f2, A), ... (f5» A)) ® (f, A).

(5) (a,b)-FWPA((f1,A) @& (f,4),(f4) & (f,4),..(f,4) @ (f.4)) > (a,b)-
FWPA((f1,A), (f2, D), ... (fs; D) © (f, D).

(6) (a,b)-FWPA((f1,4),(f2,A), ... (fs 1) & (f, A) 2 (a, b)-FWPA((f1, A), (f2, B), ... (f5» A)) ® (f, A).

(7) (a,b)-FWPG((f1,4) & (f,0),(f2,4) & (f,4),...(f,4) & (f,4) 2 (a, b)-

FWPG((fl» A)9 (fZ’ A)» (XE) (fx’ A)) ® (f’ A)
(8) (a,b)-FWPG((f1,A),(f2, 1), ..., (fs, D) & (f, A) = (a, b)-FWPG((f1,A), (2, D), ..., (f5, A) & (f, A).

Proof. Similar to the proof of Theorem 4.12. O

Theorem 4.17. Let (fj,A) = (0,¢j,@;) and (h;,A) = (o,a;,)(j = 1,2,...,5) be two families of

(a,b)-FSSs on U, and w = (vi, v», ..., vs)| be a weight vector of them with Zj.zl v = 1. Then

(]) ((l, b)'FWA((fI’A), (fZ’A)’ ,(fS’A)) 2] (a’ b)'FWA((th), (hZ’A)s ’(thA)) > (a9 b)'
FWA((f1, A, (2, D), ..., (f5» ) ® (a, b)-FWA((hy, A), (hy, A), ..., (hy, A)).

(2) (a,b)-FWG((f1,4), (f2, 1), ... (fs,A)) & (a,b)-FWG((h1,A),(hy, D), ...,(hs,A)) = (a,b)-
FWG((f1, M), (2, D), ..., (f5, D) ® (a, b)-FWG((hy, A), (hy, A), ..., (hy, A)).

(3) (a,b)-FWPA((f1,AN), (f>,A), ..., (fs,A)) @ (a,b)-FWPA((hi,A), (hy, A), ..., (hs, A)) > (a,b)-
FWPA((f1,AN), (f2, A), ..., (fs, A) @ (a, b)-FWPA((hy, A), (hy, A), ..., (hy, A)).

(4) (Cl, b)'FWPG((fl’ A)a (fZ’ A)’ ooy (fs’ A)) @ (a’ b)'FWPG((hl’ A)7 (hZ’ A)’ (XX} (hs’ A)) = (a, b)'
FWPG((f1,A), (f>, A), ..., (fs, A) @ (a, b)-FWPG((hy, A), (hy, A), ..., (hg, A)).

Proof. Similar to the proof of Theorem 4.13. O

Theorem 4.18. Let (f;,A) = (o, ¢, @wj))(j = 1,2,...,5) be a family of (a,b)-FNs on U, and w =

(V1, V2, ..., vs)! be a weight vector of (fj, A) with Zj‘:] vi=1land > 1. Then

(]) 5(‘1’ b)'FWA((fl’ A)a (.f2’ A), cees (fs’ A)) > ((a’ b)'FWA((fla A)9 (fZ’ A)’ (X3 (fs’ A)))6
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(2) 8(a,b)-FWG((f1,A), (2, A), s (f5s A) 2 ((a, D)-FWG((f1, A), (f2, A, s (5, AN’

(3) 8(a,b)-FWPA((fi, A), (f2, A), ..., (5, A) 2 (@, B)-FWPA((f1, A), (f2, D), oors (fss AN,

(4) 8(a, b)-FWPG((f1,A), (f2, A), -ors (f5s B)) 2 (@, B)-FWPG((f1, A), (f2, A), -oes (fs A))).

Proof. Similar to the proof of Theorem 4.14. O

5. Application of (a, b)-FSSs to MCDM problems

In this section, we integrate the tools that have been defined before in order to produce a multi-
criteria decision making (or MCDM) methodology for data in the form of (a, b)-FSSs. Then we provide
an illustrative example that clarifies the application of this strategy of solution.

5.1. MCDM problems with respect to the environment of (a, b)-FSSs

MCDM concerns the techniques or strategies followed by a decision maker in order to get the best
or optimal alternative(s) among a set of feasible options, in such way that its (their) performance(s)
with respect to multiple criteria is (are) jointly superior. To illustrate that situation, assume that a set
U={x;:i=1,2,..,n} of n different alternatives have been evaluated by a decision maker under a set
of m different criteria A = {o-; : j = 1,2, ...,m}. Let us consider a situation where the decision maker
estimates his/her preferences in terms of (a, b)-FNs: 6;; = <go,~ > T f>i><j’ where 0 < go?j + wf.’j < 1 and
gij,@;j € [0,1] foralli = 1,2,...,nand j = 1,2,...,m such that ¢;; and @;; respectively represent the
degree that the alternative b; fulfills and does not fulfill the attribute o-; provided by the decision maker.

We are ready to present the steps used in the proposed methodology for MCDM with the aforesaid

information:

Step 1: Describe a MCDM problem under study using (a, b)-FSSs environment.

Step 2: Convert the (a, b)-FSSs environment into the normalized (a, b)-FSSs environment.
Step 3: Produce an (a, b)-FSS for each alternative X € U.

Step 4: Assessment of the alternatives using score and accuracy functions for each (a,b)-FSS.

Step 5: Determine the optimal ranking order of the alternatives with respect to the values of score and
accuracy functions.

Additionally, we provide Algorithm 1 and Figure 2 in order to show how the optimal alternative(s)
is (or are) selected with this methodology.

5.2. Illustrative examples

In this part, a synthetic example will be used to illustrate the application of the methodology
described in the previous section.

Example 5.1. Assume that we intend to establish an import company of laptops. So we ask the
administration to evaluate four brands of laptops, namely, U = {Acer, Lenovo, HP, Dell}, in terms of
the criteria A = {o; 1 i =1,2,3,4,5}, where:
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o1 is the processor and dedicated graphics,
0, is RAM and storage capacity,

03 is battery capacity & daily usage

o4 is build quality, warranty & support, and
05 is the price.

After examination and investigation, administration suggested a weight vector corresponding to every
criteria as follows w = (0.1,0.3,0.2,0.1,0.3)". The performance of these brands is evaluated under a
type of an (a,b)-FSSs environment; say, (1,2)-FSSs. Consider the evaluation as displayed in Table 1,
where every ordered pair (¢, @) represents the degrees of membership (which means to what extent
this brand fulfills the corresponding criteria) and non-membership (which means to what extent this
brand dissatisfies the corresponding criteria), where 0 < ¢ + w? < 1 and ¢, @ lie in [0, 1].

Suppose that the way for accessing the optimal brand with appreciation to every criterion is
furnished according to the different types of (1,2)-FSS operators introduced in Definition 4.10. Now,
we summarize the data given in Table 1 by four (1,2)-FSSs:

(facers A) = {(01,0.3,0.7), (0,0.6,0.45), (073,0.7,0.3), (04, 0.8,0.3), (075, 0.5, 0.7)};
(frenovos ) = {(071,0.5,0.7),(02,0.7,0.5), (03,0.4,0.5), (04, 0.8,0.4), (05, 0.9, 0.2)};
(fup,A) = {(01,0.8,0.3), (02,0.7,0.6), (03, 0.5,0.6), (04, 0.6,0.6), (075, 0.75,0.4)};
(fpeus A) = {(01,0.7,0.1), (0,,0.9,0.1), (073,0.85,0.3), (04,0.9,0.2), (05, 0.5, 0.3)}.

To rank these brands we compute their score functions (as given in Table 2), but we deal herein with

weighted parameters, so we update the formula given in Definition 3.13 to be as follows.

score(f,A) = 3 wy(p — @?).
oeA

Input : The set of alternatives U and the set of criteria A.
Output: The most desirable alternative(s).

1 Describe a MCDM problem under study using (a, b)-FSSs environment for the alternative set
Xi (i =1,2,...,n) with a set of parameters A;
Convert (a,b)-FSSs environment into the normalized (a, b)-FSSs environment;
foreachi < ndo
Compose an (a,b)-FSS (f;,, A) for each alternative %; € U;
Compute score function for each alternative x; € U.
end
Let D = {%; : score(f;,, A) = max{score(f;,,A) :i=1,2,...,n}};
if D is a singleton set, say, x; then
‘ return % is the desirable (optimal) alternative.
else
Compute accuracy function for each alternative X; € D;

o 0 N N A WD

—_ =
4

12 Let E = {X; : acc(f;,, A) = max{iacc(f;,, A) : X € D}};
13 return each X; € E represents a desirable (an optimal) alternative;
14 end

Algorithm 1: The algorithm of selection of optimal alternative(s).
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Input the sets of
alternatives U and
multi criteria A

¥

Describe the MCDM
problem under study using
(a, b)-FSSs environment

[}

Convert (a, b)-FSSs
environment into the
normalized (a, b)-
FSSs environment

[}

Evaluate the score function
for each alternative X; € U

¥

Let D = {%; : score(f;,,A) =
max{score(fz,A) :
i = 1,2,...,n}}

|

Evaluate the accuracy
function for each
alternative X; € U

Is D a singleton?

Let E = {&; : acc(f;,A) =
max{acc(f;., A) : X; € D}}

D represents the
desirable (optimal)

alternative

E represents a set of
desirable (optimal)
alternative(s)

1
—®

Figure 2. Flow chart explaining the selection of the optimal alternative(s).
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Table 1. (1,2)-Fuzzy numbers associated with our case study.

Brands o op) o3 o o
Acer (0.3,0.7) (0.6,0.45) (0.7,0.3) (0.8,0.3) (0.5,0.7)
Lenovo (0.5,0.7) (0.7,0.5) (04,0.5) (0.8,0.4) (0.9,0.2)
HP (0.8,0.3) (0.7,0.6) (0.5,0.6) (0.6,0.6) (0.75,0.4)
Dell 0.7,0.1) (0.9,0.1) (0.85,0.3) (0.9,0.2) (0.5,0.3)

Table 2. Evaluations by the score function under the conditions @ = 1 and b = 2.

(fAcer’ A) (fLenovo’ A) (fHP’ A) (fDella A) Rank
Score 0.29625 0.488 0.402 0.697 Dell > Lenovo > HP > Acera

Remark 5.2. Should some brands have had the same evaluation by the score function, then we would
compute their respective accuracies to decide which one(s) is (or are) the most desirable brand(s).

It can be noted from the above discussion that the selection of the optimal alternative heavily relies
on the type of generalization of IFS sets, and on the values of the weight vector.

Remark 5.3. By the given illustrative example, we remark the following points:

(i) The input data of this example cannot be handled by IFS-sets because the sum of membership
and non-membership degrees for some parameters is greater than one. Notice that fac.,(04) =
(0.8,0.3) ¢ IFS (V).

(ii) The evaluation followed by the administration of this company gives different importances for the
membership and non-membership degrees, which can be considered neither by IFS-sets not by its
generalizations in the existing literature.

6. Conclusions

Fuzzy sets and their generalizations have been a fertile ground for research, both as standalone
models and as components of more sophisticated frameworks. Almost without exception, every new
blend of properties has fostered additional investigations in order to establish comparisons, yield further
generalizations, prove additional properties, or produce applications (possibly with the help of newly
designed strategies of solution).

In this paper we have succeeded in producing a novel combination that at the same time, allows for
very general expressions of memberships and non-membersips, and parameterized descriptions of the
universe of the alternatives. Its fundamental theory has been laid out. It is the basis of a methodology
that solves multi-criteria decision making problems whose formulation respects this structure. In
addition to the general advantage that the proposed approach provides a more comprehensive
instrument for the mathematical analysis of uncertainty, a particular advantage is that it permits to
handle situations requiring evaluations with different importances for the membership and
non-membership degrees. This feature is peculiar to our model.

In future works we aim at exploring the group decision-making problem associated with the new
model. We have prepared the ground with a study of aggregation operators in this framework. In
addition to this line of research, we intend to develop the model that arises when we use N-grading for
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the parameterization of the set of alternatives [20]. This combination should produce (a, b)-fuzzy N-
soft sets as a generalization of fuzzy N-soft sets [2], or even more general models (by inspiration of e.g.,
[21]). Also, we will combine (a, b)-FSSs with rough sets to produce covering approximation spaces
like those studied in [45,46]. Moreover, the fuzzy multigranularity uncertainty measures adopted
in [42] can be investigated by making use of (a, b)-FSSs as a generalized expression of fuzziness.

List of abbreviations and symbols

In Tables 3 and 4, we respectively present the main abbreviations and symbols used in this article.

Table 3. Abbreviations of the main concepts mentioned in this work.

Concepts Abbreviation
intuitionistic fuzzy set IF-set
Pythagorean fuzzy set PF-set

Fermatean fuzzy set FF-set
g-rung orthopair fuzzy set q-ROF set
(2,1)-Fuzzy set (2,1)-FS
(a, b)-Fuzzy set (a, b)-FS
fuzzy soft set FS-set
intuitionistic fuzzy soft set IFS-set
Pythagorean fuzzy soft set PFS-set
Fermatean fuzzy soft set FFS-set
g-rung orthopair fuzzy soft set  g-ROFS set
(2,1)-Fuzzy soft set (2,1)-FSS
(a, b)-Fuzzy soft set (a, b)-FSS
multi-criteria decision-making MCDM

Table 4. Symbols for the main concepts mentioned in this work.

Concepts symbols
membership function @
non-membership function w
indeterminacy function e
universal set U
set of parameters A

soft set (f,A)

family of fuzzy sets over U FS(U)

family of IF-sets over U IFS(U)

family of PF-sets over U PFS(U)

family of FF-sets over U FFSU)

family of g-ROF sets over U~ gROF'S (U)
family of (a, b)-FSsover U  (a,b) — FS(U)
family of (a, b)-FSSs over U J@D-FSS
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