
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(2): 2686–2707.
DOI: 10.3934/math.2023141
Received: 30 August 2022
Revised: 12 October 2022
Accepted: 14 October 2022
Published: 09 November 2022

Research article

A new approach of soft rough sets and a medical application for the
diagnosis of Coronavirus disease
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Abstract: Rough set and soft set theories presents the mathematical foundations for studying decision
making problems in different contexts. Some authors have established their own approaches regarding
this theory, such as the “soft pre-rough approximation” and “soft β-rough approaximation”. In this
study, the rationale and results of these two approaches were rigorously analyzed and it was concluded
that they are the same. In addition, it was proven that some of the results established with the
aforementioned approaches are not true, so we present two proposed modifications to the soft rough
approximations, one of which represents an improvement in accuracy with respect to the exposed
methods. The approaches addressed in this document were implemented to diagnose COVID-19 in a
contextualized situation of a group of patients in Colombia, showing that our proposal obtained the
highest accuracy. In addition, an algorithm was designed, which allows analyzing data with a larger
universe and set of parameters than those presented in the theoretical and practical examples.
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1. Introduction

In many situations of daily life, making a good decision is often complicated, because depending
on the choice, one can succeed or fail. For this reason, several attributes or characteristics must be
analyzed in order to make the appropriate decision that will lead us to satisfactorily solve a certain
problem in our in our daily lives. For such situations, mathematics provides some tools and methods
to determine the best option. Among these tools is rough set theory, which has been extensively
studied and applied, as mentioned in [7], and has recently been extended through various approaches
derived from combining this theory with others, as can be found in the papers [3–6, 8, 9]. With these
approaches, researchers have provided improvements and advantages to address various decision
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making problems dealing with uncertainty and/or vagueness in real-life information systems, e.g.,
in [11] the authors proposed an approach for multiple attribute group decision making (MAGDM)
problems with different evaluation attribute set based on variable precision diversified attribute
multigranulation fuzzy rough set and VIKOR method, in [3] presented a granular computing model
by merging soft set and rough set theory with linguistic value information and also a new way of
dealing with multiple attribute decision making problems based on the concept linguistic value rough
soft set and the VIKOR method, in [8] proposed an algorithmic approach using rough set theory
together with two hybridized distance measures applying Hausdorff, Hamming and Euclidean
distances under picture fuzzy environment where the evaluating information regarding students,
subjects and student’s features are given in picture fuzzy numbers, in [9] considered a combination of
autoregressive integrated moving average (ARIMA), double exponential smoothing (DES) and Grey
model (GM) applying the rough set theory to forecast sugarcane production in India and performed
the comparative analysis of the single time series and rough set combination methods by underlying
mean absolute percentage error (MAPE) criterion, in [5] presented a method to generate a soft rough
approximation as a modification and generalization of the approach of Zhaowen et al., which turned
out to be applicable to a decision-making problem related to the symptoms of Coronavirus patients
and designed an algorithm that they programmed in MATLAB to obtain the results. Also using a
fusion of rough set theory and soft set theory, two mathematical models have been presented that have
great utility in making decisions about data sets associated with everyday problems, as can be seen in
the studies done by El Sayed et al. [6] and El-Babbly and El Atik [4], where modifications of the soft
rough approximations, called soft pre-rough approximations and soft β-rough approximations,
respectively, were introduced. The proposals made in [6] and [4] turned out to be applicable to
real-life problems, as is the case of detecting people who are more likely to be infected with
COVID-19; however, in these paper, some mistakes were made and some fundamental hypotheses
were omitted in order to establish certain results.

The main objective of this paper is to provide a new mathematical method based on soft rough
approximations, which can be used to address some real life problems considering the characteristics
or attributes present in the data related to the information available. First, we present the theoretical
details of the soft rough approximations, and second, we review some of the results related to the
soft pre-rough approximations and the soft β-rough approximations, and also show that these two
approximations are theoretically the same. Later, motivated by the review done, we propose a new
approach by using soft rough sets, which we call soft κ-rough approximations, we establish its basic
properties and its relationship with the other approaches mentioned above. Subsequently, by using soft
pre-rough aproximations, soft κ-rough approximations and the theory of closure spaces, we construct
a new modification of soft rough approximations called soft pre-κ-rough approximations, we present
the mathematical properties related to this model and show that this constitutes an approach where the
accuracy of the approximation is higher than in the other approximations mentioned in this paragraph.
The relevance of the present pre-κ-approximations is not only that the boundary regions are reduced
or eliminated, but also that they have been obtained from the combination of the theory of soft rough
sets and the theory of closure spaces, so they could be extended from a topological point of view by
producing new models of soft rough sets in future works, as was done in [1] with rough sets. Finally,
we exhibit a practical application of the proposed method in decision making for information systems
obtained from the COVID-19 medical diagnosis and present an algorithm to perform the pertinent
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computations.

2. Preliminaries on soft rough sets

Throughout this work, let U and Ξ be two nonempty sets, called the universal set and the parameter
set, respectively. Also, let P(X) be the power set of X and Λ be a subset of Ξ. Recall that a pair (F,Λ)
is a soft set over U, if F is a mapping given by F : Λ → P(U). In other words, a soft set over U is a
parameterized family of subsets of U. For λ ∈ Λ, F(λ) may be considered as the set of λ-approximate
elements of the soft set (F,Λ). Observe that for each λ ∈ Λ, F(λ) is a crisp set. If S = (F,Λ) is a soft
set over U, then the pair As = (U, S ) is said to be a soft approximation space. We refer to [4, 6] for
more details on the definitions and results presented in this section.

Definition 2.1. [4, 6] Let S = (F,Λ) be a soft set over U, AS = (U, S ) be a soft approximation space
and X be a subset of U. The soft As-lower aproximation and the soft As-upper approximation of X are
defined, respectively, as follows:

S (X) = {u ∈ U : ∃λ ∈ Λ, [u ∈ F(λ) ⊆ X]}

and

S (X) = {u ∈ U : ∃λ ∈ Λ, [u ∈ F(λ), F(λ) ∩ X , ∅]}.

Throughout this work, we will refer to S (X) and S (X) as the soft rough approximations of X with
respect to AS .

Definition 2.2. [4, 6] Let AS = (U, S ) be a soft approximation space and X be a subset of U. The soft
As-negative, As-positive, As-boundary regions and the As-accuracy of the soft As-approximations of X
are defined, respectively, as follows:

NEGAs(X) = U − S (X), POSAs(X) = S (X), BNDAs(X) = S (X) − S (X)

and

µAs(X) =

∣∣∣S (X)
∣∣∣∣∣∣S (X)
∣∣∣ ,

where S (X) , ∅.

Note, that if S (X) = S (X) , ∅, then BNDAs(X) = ∅ and µAs(X) = 1. In this case, X ⊆ U is called a
soft As-exact or soft As-definable set. Otherwise, X is said to be a soft As-rough set.

Proposition 2.3. [4, 6] Let S = (F,Λ) be a soft set over U and AS = (U, S ) be a soft approximation
space. Then, for any subset X of U, we have:

S (X) =
⋃
λ∈Λ

{F(λ) : F(λ) ⊆ X} and S (X) =
⋃
λ∈Λ

{F(λ) : F(λ) ∩ X , ∅} .
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Figure 1 illustrates the soft rough approximation of a set. Here we have a geometric and intuitive
interpretation of soft rough approximations. Given a parameter λ ∈ Λ, the set F(λ) ⊆ U is represented
by a small regular form. The soft AS -lower approximation is the union of all sets F(λ) contained in the
target set, as shown in Figure 1 in orange color; while the soft AS -upper approximation is the union
of all sets F(λ) that have a nonempty intersection with the target set. The soft AS -boundary region is
the difference between these two approximations, which contains all sets F(λ) that cannot be classified
with certainty as belonging to the target set or not, as shown in Figure 1 in green color. The soft
AS -negative region is the set of all elements of the universe U that belong neither to the soft AS -lower
approximation nor to the soft AS -boundary region, as shown in Figure 1 with the part colored white.
Note that there may exist elements x in the target set such that x < F(λ) for each λ ∈ Λ, some of which
are represented in Figure 1 with red dots. Also, it may be noted that, in general, the sets F(λ) do not
constitute a partition of U, nor a covering of U.

Soft 𝐴𝑆-boundary
region

Target 
set

Soft 𝐴𝑆- lower
approximation

𝐹(𝜆)

…
𝜆 𝜆′

Ʌ

𝑈

Figure 1. Representation of a soft rough set.

Proposition 2.4. [4, 6] Let S = (F,Λ) be a soft set over U and AS = (U, S ) be a soft approximation
space. For any subsets X and Y of U, the following statements hold:

(1) S (∅) = S (∅) = ∅.
(2) S (U) = S (U) =

⋃
λ∈Λ

F(λ).

(3) If X ⊆ Y, then S (X) ⊆ S (Y) and S (X) ⊆ S (Y).
(4) S (X ∩ Y) ⊆ S (X) ∩ S (Y).
(5) S (X) ∪ S (Y) ⊆ S (X ∪ Y).
(6) S (X ∩ Y) ⊆ S (X) ∩ S (Y).
(7) S (X ∪ Y) = S (X) ∪ S (Y).
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Proposition 2.5. [4, 6] Let S = (F,Λ) be a soft set over U and AS = (U, S ) be a soft approximation
space. A subset X of U is soft AS -exact if and only if S (X) ⊆ X.

Proposition 2.6. [4, 6] Let S = (F,Λ) be a soft set over U and AS = (U, S ) a soft approximation
space. Then, for any subset X of U, we have:

(1) S (S (X)) = S (X).
(2) S (X) ⊆ S (S (X)).
(3) S (X) ⊆ S (S (X)).
(4) S (S (X)) = S (X).

Definition 2.7. [4, 6] Let S = (F,Λ) be a soft set over U and AS = (U, S ) be a soft approximation
space. Then, S is said to be a full soft set, if U =

⋃
λ∈Λ

F(λ).

Note that, if S is a full soft set, then for each x ∈ U, there exists λ ∈ Λ such that x ∈ F(λ).

Proposition 2.8. [4, 6] Let S = (F,Λ) be a soft set over U and AS = (U, S ) be a soft approximation
space. Then, the following statements are equivalent:

(1) S is full soft set.
(2) S (U) = U.
(3) S (U) = U.
(4) X ⊆ S (X), for any X ⊆ U.
(5) S ({x}) , ∅, for any x ∈ U.

Corollary 2.9. [4,6] Let S = (F,Λ) be a full soft set over U and AS = (U, S ) be a soft approximation
space. A subset X of U is soft AS -exact if and only if S (X) = X.

Definition 2.10. [4,6] Let S = (F,Λ) be a full soft set over U and AS = (U, S ) be a soft approximation
space. A subset X of U is said to be:

(1) Roughly soft As-definable, if S (X) , ∅ and S (X) , U.
(2) Internally soft As-indefinable, if S (X) = ∅ and S (X) , U.
(3) Externally soft AS -indefinable, if S (X) , ∅ and S (X) = U.
(4) Totally soft As-indefinable, if S (X) = ∅ and S (X) = U.

3. Soft pre-rough approximations and soft β-rough approximations revisited

Employing soft rough approximations, in 2020, El Sayed et al. [6] introduced a new approach to
modify and generalize soft rough sets. In particular, they suggest new tools to approximate a set, called
soft pre-rough approximations. Very recently, El-Bably and El Atik [4] also introduced other tools to
approximate a set, which they called soft β-rough approximations. The main purpose of this section is
to show that the soft pre-rough approximations and the soft β-rough approximations are the same, and
hence, the approaches presented in [4, 6] are equal. In addition, we will show by means of examples
that part (ii) of Theorem 3.1 (resp. Theorem 3.9 in [4]) and part (viii) of Proposition 3.1 in [6] (resp.
Proposition 3.3 in [4]) are not true.

To achieve our purpose, we will first define the soft pre-rough approximations.
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Definition 3.1. [6] Let S = (F,Λ) be a soft set over U, AS = (U, S ) be a soft approximation space
and X be a subset of U. The soft pre-lower aproximation and the soft pre-upper approximation of X
are defined, respectively, as follows:

S p(X) = X ∩ S (S (X)) and S p(X) = X ∪ S (S (X)).

Definition 3.2. [6] Let AS = (U, S ) be a soft approximation space and X be a subset of U. The soft
pre-negative, pre-positive, pre-boundary regions and the pre-accuracy of the soft pre-approximations
of X are defined, respectively, as follows:

NEGp(X) = U − S p(X), POSp(X) = S p(X), BNDκ(X) = S p(X) − S p(X)

and

µp(X) =

∣∣∣∣S p(X)
∣∣∣∣∣∣∣S p(X)
∣∣∣ ,

where S p(X) , ∅.

Clearly, if S p(X) = S p(X), then BNDp(X) = ∅ and µp(X) = 1. In this case, X is said to be a soft
pre-exact or soft pre-definable set. Otherwise, X is called a soft pre-rough set.

Next, we will present the soft β-rough approximations.

Definition 3.3. [4] Let S = (F,Λ) be a soft set over U, AS = (U, S ) be a soft approximation space
and X be a subset of U. The soft β-lower aproximation and the soft β-upper approximation of X are
defined, respectively, as follows:

S β(X) = X ∩ S (S (S (X))) and S β(X) = X ∪ S (S (S (X))).

Definition 3.4. [4] Let AS = (U, S ) be a soft approximation space and X be a subset of U. The soft
β-negative, β-positive, β-boundary regions and the β-accuracy of the soft pre-approximations of X are
defined, respectively, as follows:

NEGβ(X) = U − S β(X), POSβ(X) = S β(X), BNDβ(X) = S β(X) − S β(X)

and

µβ(X) =

∣∣∣∣S β(X)
∣∣∣∣∣∣∣S β(X)
∣∣∣ ,

where S β(X) , ∅.

Observe that, if S β(X) = S β(X), then BNDβ(X) = ∅ and µβ(X) = 1. In this case, X is called a soft
β-exact or soft β-definable set. Otherwise, X is said to be a soft β-rough set.

Lemma 3.5. Let S = (F,Λ) be a soft set over U and AS = (U, S ) be a soft approximation space. For
any X ⊆ U, the following statements hold:

(1) X ∩ S (X) ⊆ S (X ∩ S (X)) ⊆ S (X) ⊆ S (S (X)).

AIMS Mathematics Volume 8, Issue 2, 2686–2707.



2692

(2) X ∩ S (X) = X ∩ S (S (X)) = X ∩ S (X ∩ S (X)).

Proof. (1) Let x ∈ B = X∩S (X). Then, x ∈ X and x ∈ S (X), which implies that there exists λ ∈ Λ such
that x ∈ X, x ∈ F(λ) and F(λ) ∩ X , ∅. Since x ∈ F(λ) ∩ X ∩ S (X), we have F(λ) ∩ [X ∩ S (X)] , ∅.
Thus, there exists λ ∈ Λ such that x ∈ F(λ) and F(λ)∩ B , ∅. Therefore, x ∈ S (B) = S (X ∩ S (X)) and
so, X ∩ S (X) ⊆ S (X ∩ S (X)). On the other hand, by Proposition 2.6(3) and the monotony of S applied
to the inclusion X ∩ S (X) ⊆ X, we get that S (X ∩ S (X)) ⊆ S (X) ⊆ S (S (X)).

(2) By Proposition 2.6(3), we have X ∩ S (X) ⊆ X ∩ S (S (X)) for any X ⊆ U. To prove the opposite
inclusion X ∩ S (S (X)) ⊆ X ∩ S (X), let x ∈ X ∩ S (S (X)). Then, x ∈ X and x ∈ S (S (X)), which implies
that there exists λ ∈ Λ such that x ∈ X, x ∈ F(λ) and F(λ) ∩ S (X) , ∅. Thus, there exists λ ∈ Λ such
that x ∈ F(λ) ∩ X, i.e. F(λ) ∩ X , ∅. Therefore, x ∈ S (X) and so x ∈ X ∩ S (X). This shows that
X∩S (X) = X∩S (S (X)). The equality X∩S (S (X)) = X∩S (X∩S (X)) follows easily from part (1). �

Proposition 3.6. Let AS = (U, S ) be a soft approximation space. For any X ⊆ U, the following
statements hold:

(1) S β(X) = S p(X).

(2) S β(X) = S p(X).

Proof. (1) By Proposition 2.6(4), we have S (S (X)) = S (X) for any X ⊆ U. Thus,

S β(X) = X ∩ S (S (S (X))) = X ∩ S (S (X)).

Then, by Lemma 3.5(2), it follows that

S p(X) = X ∩ S (S (X)) = X ∩ S (X) = X ∩ S (S (X)) = S β(X)

for any X ⊆ U.
(2) By virtue of Proposition 2.6(4), S (S (Y)) = S (Y) for any Y ⊆ U. In particular, for Y = S (X), we

have S (S (S (X))) = S (S (X)). Therefore,

S β(X) = X ∪ S (S (S (X))) = X ∪ S (S (X)) = S p(X).

�

Corollary 3.7. Let AS = (U, S ) be a soft approximation space and X be a subset of U. Then, we have:

(1) NEGβ(X) = NEGp(X).
(2) POSβ(X) = POSp(X).
(3) BNDβ(X) = BNDp(X).
(4) µβ(X) = µp(X).
(5) X is a soft β-exact set if and only if it is a soft pre-exact set.
(6) X is a soft β-rough set if and only if it is a soft pre-rough set.

Definition 3.8. Let S = (F,Λ) be a soft set over U and AS = (U, S ) be a soft approximation space. A
subset X of U is said to be:

(1) Roughly soft pre-definable [6] (resp. roughly soft β-definable [4]), if S p(X) , ∅ and S p(X) , U

(resp. S β(X) , ∅ and S β(X) , U).
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(2) Internally soft pre-indefinable [6] (resp. internally soft β-indefinable [4]), if S p(X) = ∅ and

S p(X) , U (resp. S β(X) = ∅ and S β(X) , U).
(3) Externally soft pre-indefinable [6] (resp. externally soft β-indefinable [4]), if S p(X) , ∅ and

S p(X) = U (resp. S β(X) , ∅ and S β(X) = U).

(4) Totally soft pre-indefinable [6] (resp. totally soft β-indefinable [4]), if S p(X) = ∅ and S p(X) = U

(resp. S p(X) = ∅ and S p(X) = U).

Remark 3.9. The notions presented in Definition 3.8 have been slightly modified with respect to the
original definitions given in [6] and [4]. Here, the condition that S = (F,Λ) be a full soft set over U
has been omitted, since in some situations it is not necessary, due to the fact that X ⊆ S p(X) (resp.
X ⊆ S β(X)) for all X ⊆ U.

Corollary 3.10. Let S = (F,Λ) be a soft set over U and AS = (U, S ) be a soft approximation space. If
X is a subset of U, then we have:

(1) X is a roughly soft β-definable set if and only if it is a roughly soft pre-definable set.
(2) X is an internally soft β-indefinable set if and only if it is an internally soft pre-indefinable set.
(3) X is an externally soft β-indefinable set if and only if it is an externally soft pre-indefinable set.
(4) X is a totally soft β-indefinable set if and only if it is a totally soft pre-indefinable set.

Remark 3.11. From Proposition 3.6 we infer that the results and applications presented in the
articles [4, 6] correspond to the same approach.

To finish this section, we turn our attention to show that the statements in part (ii) of Theorem 3.1
in [6] (resp. Theorem 3.9 in [4]) and part (viii) of Proposition 3.1 in [6] (resp. Proposition 3.3 in [4])
are false; which is, the inclusion S p(X) ⊆ S (X) (resp. S β(X) ⊆ S (X)) and the equality S p(X ∪ Y) =

S p(X) ∪ S p(X) (resp. S β(X ∪ Y) = S β(X) ∪ S β(X)) are not true. To see this, we present the following
two examples.

Example 3.12. Let U = {x1, x2, x3, x4, x5, x6}, Ξ = {λ1, λ2, λ3, λ4, λ5, λ6} and Λ = {λ1, λ2, λ3, λ4}. Let
(F,Λ) be a soft set over U given by

F(λ1) = {x1, x6}, F(λ2) = {x3}, F(λ3) = ∅, F(λ4) = {x1, x2, x5}.

Let us consider the soft approximation space AS = (U, S ) and the subset X = {x3, x4, x5} of U. Then,
S (X) = {x1, x2, x3, x5}, which tells us that X * S (X). Also, since S (X) = {x3}, we have S (S (X)) =

S ({x3}) = {x3}, which implies that S p(X) = X ∪ S (S (X)) = {x3, x4, x5} = X, and hence S β = S p(X) *
S (X).

Example 3.13. Let U = {x1, x2, x3, x4, x5, x6}, Ξ = {λ1, λ2, λ3, λ4, λ5} and Λ = {λ1, λ3, λ5}. Let (F,Λ) be
a soft set over U given by

F(λ1) = {x1, x5}, F(λ3) = {x4}, F(λ5) = {x1, x6}.

Let us consider the soft approximation space AS = (U, S ) and the subsets X = {x1, x3} and Y = {x3, x5}

of U. Then,
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S (X) = S ({x1, x3}) = ∅, S (Y) = S ({x3, x5}) = ∅, S (S (X)) = S (∅) = ∅, S (S (Y)) = S (∅) = ∅,
S (S (X ∪ Y)) = S (S ({x1, x3, x5})) = S ({x1, x5}) = {x1, x5, x6}.

Thus,

S p(X) ∪ S p(Y) = [X ∪ S (S (X))] ∪ [Y ∪ S (S (Y))] = (X ∪ ∅) ∪ (Y ∪ ∅) = X ∪ Y = {x1, x3, x5}

and

S p(X ∪ Y) = (X ∪ Y) ∪ S (S (X ∪ Y)) = {x1, x3, x5} ∪ {x1, x5, x6} = {x1, x3, x5, x6}.

Therefore,
S p(X ∪ Y) = {x1, x3, x5, x6} , {x1, x3, x5} = S p(X) ∪ S p(Y).

4. New generalized soft rough aproximations

In this section, we propose a new approach to perform studies similar to those performed in [4, 6].
This new approach has some properties that will allow us to obtain a topology in Section 5, from which
we will introduce another approach that has higher precision than the other approaches presented in
soft rough set theory.

Definition 4.1. Suppose that S = (F, A) is a soft set over U, AS = (U, S ) is a soft approximation space
and X is a subset of U. The soft κ-lower aproximation and the soft κ-upper approximation of X are
defined, respectively, as follows:

S κ(X) = X ∩ S (S (X)) and S κ(X) = X ∪ S (X).

Throughout this work we will refer to S κ(X) and S κ(X) as the soft κ-rough approximations of X
with respect to AS .

Definition 4.2. Let AS = (U, S ) be a soft approximation space and X be a subset of U. The soft κ-
negative region, the soft κ-positive region, the soft κ-boundary region and the soft κ-accuracy of X are
defined, respectively, as follows: NEGκ(X) = U −S κ(X), POSκ(X) = S κ(X), BNDκ(X) = S κ(X)−S κ(X)

and µκ(X) =

∣∣∣S κ(X)
∣∣∣∣∣∣S κ(X)
∣∣∣ , where S κ(X) , ∅.

If S κ(X) = S κ(X), then we say that X is a soft κ-exact or a soft κ-definable set. Otherwise, we say
that X is a soft κ-rough set. Clearly, X is soft κ-exact if and only if BNDκ(X) = ∅. Moreover, µκ(X) = 1
implies that X is soft κ-exact.

In the following lemma we state the main properties of soft κ-rough approximations.

Lemma 4.3. Let S = (F,Λ) be a soft set over U, AS = (U, S ) be a soft approximation space. For any
subsets X and Y of U, the following statements hold:

(1) S κ(∅) = S κ(∅) = ∅.

(2) S κ(U) =
⋃
λ∈Λ

F(λ) and S κ(U) = U.

(3) If X ⊆ Y, then S κ(X) ⊆ S κ(Y) and S κ(X) ⊆ S κ(Y) (monotony).
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(4) S κ(X ∩ Y) ⊆ S κ(X) ∩ S κ(Y).
(5) S κ(X) ∪ S κ(Y) ⊆ S κ(X ∪ Y).
(6) S κ(X ∩ Y) ⊆ S κ(X) ∩ S κ(Y).
(7) S κ(X ∪ Y) = S κ(X) ∪ S κ(Y).
(8) S (X) ⊆ S κ(X) ⊆ S p(X) ⊆ X ⊆ S p(X) ⊆ S κ(X) and S (X) ⊆ S κ(X).

Proof. (1) Obviously S κ(∅) = ∅ ∩ S (S (∅)) = ∅ and S κ(∅) = ∅ ∪ S (∅) = ∅ ∪ ∅ = ∅.

(2) By Proposition 2.4(2), we have S (U) = S (U) =
⋃
λ∈Λ

F(λ) = F(Λ). Thus, by Proposition 2.6(2),

F(Λ) =
⋃
λ∈Λ

F(λ) = S (U) ⊆ S (S (U)) = S (F(Λ)) = F(Λ),

which implies that S (S (U)) =
⋃
λ∈Λ

F(λ) ⊆ U. Therefore,

S κ(U) = U ∩ S (S (U) =
⋃
λ∈Λ

F(λ).

Also, we have
S κ(U) = U ∪ S (U) = U.

(3) By Proposition 2.4(3), we have S (X) ⊆ S (Y) and S (X) ⊆ S (Y), for any X ⊆ Y . Then,

S κ(X) = X ∩ S (S (X)) ⊆ Y ∩ S (S (Y)) = S κ(Y), for any X ⊆ Y.

Also, we have

S κ(X) = X ∪ S (X) ⊆ Y ∪ S (Y) = S κ(Y), for any X ⊆ Y.

(4) Since X ∩ Y ⊆ X and X ∩ Y ⊆ Y , by monotony, it follows that S κ(X ∩ Y) ⊆ S κ(X) and
S κ(X ∩ Y) ⊆ S κ(Y). Therefore, S κ(X ∩ Y) ⊆ S κ(X) ∩ S κ(Y).

(5) Since X ⊆ X ∪ Y and Y ⊆ X ∪ Y , by monotony the proof follows.
(6) Can be proved in a similar way to (4).
(7) The proof follows from the fact that S (X ∪ Y) = S (X) ∪ S (Y).
(8) By Proposition 2.6(2) and the monotony of S applied to the fact that S (X) ⊆ X, we have

S (X) ⊆ S (S (X)) ⊆ S (X) for any X ⊆ U. Since S (X) ⊆ X, it follows that

S (X) ⊆ X ∩ S (S (X)) ⊆ X ∩ S (X) ⊆ X ⊆ X ∪ S (S (X)) ⊆ X ∪ S (X) for any X ⊆ U.

This is, S (X) ⊆ S κ(X) ⊆ S p(X) ⊆ X ⊆ S p(X) ⊆ S κ(X). The inclusion S (X) ⊆ S κ(X) is obvious. �

Remark 4.4. In Example 3.12, we have

S κ(X) = X ∪ S (X) = {x3, x4, x5} ∪ {x1, x2, x3, x5} = {x1, x2, x3, x4, x5} * {x1, x2, x3, x5} = S (X).

Therefore, the inclusion S κ(X) ⊆ S (X), in general, is not true.

Corollary 4.5. Let AS = (U, S ) be a soft approximation space and X be a subset of U. Then, we have:
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(1) BNDp(X) ⊆ BNDκ(X).
(2) If X is a soft pre-rough set, then it is a soft κ-rough set.
(3) If X is a soft κ-definable set, then it is a soft pre-definable set.
(4) µκ(X) ≤ µp(X).
(5) X is soft κ-definable if and only if S κ(X) = S κ(X) = X.

Proof. (1) By Lemma 4.3(8), we have S κ(X) ⊆ S p(X) ⊆ S p(X) ⊆ S κ(X). Hence,

BNDp(X) = S p(X) − S p(X) ⊆ S κ(X) − S κ(X) = BNDκ(X).

(2) If X is a soft pre-rough set, then BNDp(X) , ∅, and as BNDp(X) ⊆ BNDκ(X), it follows that
BNDκ(X) , ∅. Therefore, X is a soft κ-rough set.

(3) If X is a soft κ-definable set, then BNDκ(X) = ∅. Since BNDp(X) ⊆ BNDκ(X), it follows that
BNDp(X) = ∅. Thus, X is a soft pre-definable set.

(4) Since S κ(X) ⊆ S p(X) ⊆ S p(X) ⊆ S κ(X), we have |S κ(X)| ≤ |S p(X)| ≤ |S p(X)| ≤ |S κ(X)|. Hence,

µκ(X) =
|S κ(X)|

|S κ(X)|
≤
|S p(X)|

|S p(X)|
= µp(X).

(5) This is an immediate consequence of the inclusions S κ(X) ⊆ X ⊆ S κ(X) and the definition of
soft κ-definable set. �

Proposition 4.6. Let AS = (U, S ) be a soft approximation space. For any X ⊆ U, the following
statements hold:

(1) S κ

(
S κ(X)

)
= S κ(X).

(2) S κ(X) ⊆ S κ

(
S κ(X)

)
.

(3) S κ(X) ⊆ S κ

(
S κ(X)

)
⊆ S κ(X).

(4) S κ(X) ⊆ S κ

(
S κ(X)

)
⊆ S κ(X).

Proof. (1) Since S κ(X) ⊆ X, we get that S κ

(
S κ(X)

)
⊆ S κ(X) by the monotony of S κ. To prove the

opposite inclusion S κ(X) ⊆ S κ(S κ(X)), let us note that from Proposition 2.6, the inclusion S (X) ⊆ X
and the monotony of S and S , it follows that

S (S (X)) = S (S (S (X))) = S (S (X ∩ S (X))) ⊆ S (S (X ∩ S (S (X)))).

Thus,
S κ(X) = X ∩ S (S (X)) ⊆ S (S (X)) ⊆ S (S (X ∩ S (S (X)))) = S (S (S κ(X)))

and hence,
S κ(X) ⊆ S κ(X) ∩ S (S (S κ(X))) = S κ(S κ(X)).

(2) Since X ⊆ S κ(X), by monotony the proof follows.
(3) By Lemma 4.3(8), we have Y ⊆ S κ(Y) for any Y ⊆ U. In particular, for Y = S κ(X), we obtain that

S κ(X) ⊆ S κ(S κ(X)). Also, since S κ(X) ⊆ X, by the monotony of S κ, it follows that S κ(S κ(X)) ⊆ S κ(X).
(4) Since X ⊆ S κ(X), by the monotony of S κ, it follows that S κ(X) ⊆ S κ(S κ(X)). Also, by Lemma

4.3(8), we have S κ(Y) ⊆ Y for any Y ⊆ U. In particular, for Y = S κ(X), we obtain that S κ(S κ(X)) ⊆
S κ(X). �
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Remark 4.7. Observe that the inclusion relations in Proposition 4.6 may be strict, as shown in
Examples 4.8 and 4.9.

Example 4.8. Consider the soft approximation space AS = (U, S ) in Example 3.12 and let
X = {x3, x4, x5}. Then, we have S κ(X) = {x1, x2, x3, x4, x5}, which implies that S κ(S κ(X)) = U, and
hence S κ(S κ(X)) , S κ(X). On the other hand, if Y = {x1, x6} then S κ(Y) = Y,
S κ(S κ(Y)) = {x1, x2, x5, x6} and S κ(S κ(Y)) = {x1, x2, x5, x6}. Therefore, S κ(S κ(Y)) , S κ(Y) and
S κ(S κ(Y)) , S κ(Y).

Example 4.9. Let U = {x1, x2, x3, x4, x5, x6}, Ξ = {λ1, λ2, λ3, λ4, λ5, λ6} and Λ = {λ1, λ2, λ3, λ4}. Let
(F,Λ) be a soft set over U given by

F(λ1) = {x1, x6}, F(λ2) = {x3}, F(λ3) = ∅, F(λ4) = {x1, x2, x5}.

Let us consider the soft approximation space AS = (U, S ) and the subset X = {x1, x4}. Then, we have
S κ(X) = {x1, x2, x4, x5, x6}, S κ(X) = ∅, S κ(S κ(X)) = ∅ and S κ(S κ(X)) = {x1, x2, x5, x6}. Therefore,
S κ(X) , S κ(S κ(X)) and S κ(X) , S κ(S κ(X)). Note that, in this case, S κ(S κ(X)) , S κ(S κ(X)).

Proposition 4.10. Let S = (F,Λ) be a full soft set and AS = (U, S ) be a soft approximation space.
Then, we have:

(1) S κ(U) = U.
(2) S κ(X) = S (X), for any X ⊆ U.
(3) S κ

(
S κ(X)

)
= S κ(X), for any X ⊆ U.

Proof. (1) If S = (F, A) is a full soft set, then by Proposition 2.8, we have

S κ(U) = U ∩ S (S (U)) = U ∩ S (U) = U ∩ U = U.

(2) Since S = (F,Λ) is a full soft set, by Proposition 2.8, we have X ⊆ S (X) for any X ⊆ U.
Therefore, S κ(X) = X ∪ S (X) = S (X).

(3) By part (2) and Proposition 2.6(4), we get that

S κ(X) = S (X) = S (S (X)) for any X ⊆ U.

Since S (Y) ⊆ S κ(Y) ⊆ Y for any Y ⊆ U, it follows that

S κ(X) = S (S (X)) ⊆ S κ(S (X)) = S κ(S (X)) = S κ(S κ(X)) ⊆ S κ(X).

This shows that S κ

(
S κ(X)

)
= S κ(X), for any X ⊆ U. �

Motivated by the results of Lemma 4.3(8) and Proposition 4.10(2), we introduce the following
classes of soft rough sets, which are related to the sets presented in Definition 2.10, as we will see later.

Definition 4.11. Let S = (F,Λ) be a soft set over U and AS = (U, S ) be a soft approximation space. A
subset X of U is said to be:

(1) Roughly soft κ-definable, if S κ(X) , ∅ and S κ(X) , U.
(2) Internally soft κ-indefinable, if S κ(X) = ∅ and S κ(X) , U.
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(3) Externally soft κ-indefinable, if S κ(X) , ∅ and S κ(X) = U.
(4) Totally soft κ-indefinable, if S κ(X) = ∅ and S κ(X) = U.

Theorem 4.12. Let S = (F,Λ) be a full soft set over U, AS = (U, S ) be a soft approximation space and
X be a subset of U. The following statements hold:

(1) If X is roughly soft AS -definable, then it is roughly soft κ-definable.
(2) If X is internally soft κ-indefinable, then it is internally soft AS -indefinable.
(3) If X is externally soft AS -indefinable, then it is externally soft κ-indefinable.
(4) If X is totally soft κ-indefinable, then it is totally soft AS -indefinable.

Proof. The proof follows immediately from Proposition 4.10(2) and Definitions 2.10 and 4.11. �

5. A topology associated with the soft κ-upper approximation and related notions

The study of abstract spaces was initiated in the early years of the 20th century by Frechet, but it was
Hausdorff who managed to abstract the basic properties of open sets by introducing a suitable notion to
talk about these concepts and which is also independent of the idea of metrics. Thus, from the origin of
the notion of topology on a set, it has influenced almost all other branches of mathematics. Following
Singh’s textbook [10], a topology on a set U is a collection τ of subsets of U such that the intersection
of two members of τ is in τ; the union of any collection of members of τ is in τ; and the empty set ∅
and the entire set U are in τ. A set U endowed with a topology τ is called a topological space. The
elements of U are called points, the members of τ are called τ-open sets and its complements are called
τ-closed sets. In general, a topological space should be denoted as a pair (U, τ). Sometimes, if there
is no danger of confusion, instead of saying “the space (U, τ)” one says “the space U”, leaving the
topology τ on U implied. The topological interior of a subset X of U, denoted by Int(X), is defined as
the union of all open sets contained in X and the topological closure of X, denoted by Cl(X), is defined
as the intersection of all closed sets containing X.

Čech closure spaces are extensions of topological spaces that form a field of interest for many
authors, who have studied it extensively in algebra, topology, and computer theory. Recall that if
c : P(U) → P(U) is a map satisfying (1) c(∅) = ∅, (2) X ∈ P(U) =⇒ X ⊆ c(X) and (3) X ∈ P(U),Y ∈
P(U) =⇒ c(X ∪ Y) = c(X) ∪ c(Y); then c is called a Čech closure operator and the pair (U, c) is called
a Čech closure space, or simply a closure space. If (U, c) is a closure space and X ⊆ U, then c(X) is
called the closure of X in (U, c). A subset X of U is said to be closed in (U, c), if c(X) = X and is said to
be open if its complement is closed, i.e. c(U − X) = U − X. With each closure space (U, c) there is an
associated topology on U, which is denoted by τ(c) and is defined as τ(c) = {O ⊆ U : c(U−O) = U−O}.
Since the closure operator is not idempotent, in general, it is not the topological closure on the space
(U, τ(c)). For recent information on Čech closure space, see [7].

Now, as S κ : P(U) → P(U) satisfies all the required conditions for the map c (see Lemma 4.3),
we have cκ(X) = S κ(X) is a Čech closure operator. We will denote by (U, cκ) the Čech closure space
generated by cκ and, by τκ the topology on U associated with (U, cκ), which we will call the soft Čech
κ-upper topology on U. Note that

τκ = {O ⊆ U : S κ(U − O) = U − O}

= {O ⊆ U : U − S κ(U − O) = O}
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= {O ⊆ U : NEGκ(U − O) = O}.

This tells us that the open sets in the topological space (U, τκ) are precisely those subsets of the
universe U equal to the soft κ-negative region of their complements. We will denote by Intκ and Clκ
the topological interior operator and the topological closure operator on the space (U, τκ), respectively.

Remark 5.1. It is important to note that, in general, the soft As-upper approximation S (resp. soft pre-
upper approximation S p) does not induce a topology in the way that the soft κ-upper approximation S κ

does, because there is no guarantee that S (resp. S p) satisfies condition (2) (resp. condition (3)) of the
definition of Čech closure operator.

Proposition 5.2. Let S = (F,Λ) be a soft set and AS = (U, S ) be a soft approximation space. Then,
S κ(X) ⊆ Clκ(X) for each X ⊆ U.

Proof. Let X be any subset of U. If S κ(X) = ∅, then there is nothing to prove. Assume that there exists
x ∈ S κ(X) such that x < Clκ(X). Then, x < H for some subset H such that X ⊆ H and S κ(H) = H,
which implies that x < S κ(H) and X ⊆ H. Due to monotony, we have S κ(X) ⊆ S κ(H) and hence,
x < S κ(X), which is a contradiction. �

The following example shows that the inclusion of Proposition 5.2 can be strict.

Example 5.3. Let U = {x1, x2, x3, x4, x5, x6, x7}, E = {λ1, λ2, λ3, λ4} and Λ = {λ1, λ2, λ4}. Let S = (F,Λ)
a soft set over U given by

F (λ1) = {x1, x4, x7} , F (λ2) = {x5} , F (λ4) = {x2, x4} .

Consider the soft approximation space AS = (U, S ) and the subset X = {x1, x5} of U. Then,

S κ(X) = X ∪ S (X) = {x1, x4, x5, x7} .

Let (U, cκ) be the Čech closure space induced by the operator cκ = S κ and let τκ be the soft Čech κ-upper
topology on U. Since Y = {x1, x2, x4, x5, x7} is the smallest set (in the sense of inclusion) that contains
X and satisfies that S κ(Y) = Y, we conclude that Clκ(X) = Y = {x1, x2, x4, x5, x7} , {x1, x4, x5, x7} =

S κ(X).

By virtue of the previous results, we now introduce a new modification of the soft rough
approximations using the topological interior operator of the space (U, τk) and the soft pre-rough
approximations.

Definition 5.4. Suppose that S = (F, A) is a soft set over U, AS = (U, S ) is a soft approximation space
and X is a subset of U. Considering the space (U, τk) we define:

(1) The soft pre-κ-lower aproximation as S pκ(X) = S p(X) ∪ Intκ(X).

(2) The soft pre-κ-upper approximation as S pκ(X) = X ∪ Intκ(S p(Intκ(X))).
(3) The soft pre-κ-negative region as NEGpκ(X) = U − S pκ(X).
(4) The soft pre-κ-positive region as POSpκ(X) = S pκ(X).

(5) The soft pre-κ-boundary region as BNDpκ(X) = S pκ(X) − S pκ(X).
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(6) The soft pre-κ-accuracy as µpκ(X) =

∣∣∣∣S pκ(X)
∣∣∣∣∣∣∣S pκ(X)
∣∣∣ , where S pκ(X) , ∅.

We will refer to S pκ(X) and S pκ(X) as the soft pre-κ-rough approximations of X with respect to AS .

If S pκ(X) = S pκ(X), then X is said to be a soft pre-κ-exact or soft pre-κ-definable set. Otherwise, X is
called a soft pre-κ-rough set. Obviously, X is soft pre-κ-exact if and only if BNDpκ(X) = ∅. In addition,
X is soft pre-κ-exact if µpκ(X) = 1.

In the following proposition, the main properties of soft pre-κ-rough approximations are stated.

Proposition 5.5. Let S = (F,Λ) be a soft set over U, AS = (U, S ) be a soft approximation space. For
any subsets X and Y of U, the following statements hold:

(1) S pκ(∅) = S pκ(∅) = ∅.

(2) S pκ(U) = S pκ(U) = U.

(3) If X ⊆ Y, then S pκ(X) ⊆ S pκ(Y) and S pκ(X) ⊆ S pκ(Y) (monotony).
(4) S pκ(X ∩ Y) ⊆ S pκ(X) ∩ S pκ(Y).
(5) S pκ(X) ∪ S pκ(Y) ⊆ S pκ(X ∪ Y).

(6) S pκ(X ∩ Y) ⊆ S pκ(X) ∩ S pκ(Y).
(7) S pκ(X) ∪ S pκ(Y) ⊆ S pκ(X ∪ Y).
(8) S (X) ⊆ S κ(X) ⊆ S p(X) ⊆ S pκ(X) ⊆ X ⊆ S pκ(X) ⊆ S p(X) ⊆ S κ(X).

Proof. (1) and (2) are clear from Definition 5.4.
(3) It is an immediate consequence of the monotony of S p, Intκ and S p.
(4)–(7) Follow from part (3).
(8) By virtue of Lemma 4.3(8) and Definition 5.4, we only have to show that S pκ(X) ⊆ X and

S pκ(X) ⊆ S p(X). Since S p(X) ⊆ X and Intκ(X) ⊆ X, it follows that

S pκ(X) = S p(X) ∪ Intκ(X) ⊆ X.

On the other hand, by the monotony of Intκ and S p, we have

Intκ(S p(Intκ(X))) ⊆ Intκ(S p(X)) ⊆ S p(X).

Since X ⊆ S p(X), we get that S pκ(X) = X ∪ Intκ(S p(Intκ(X))) ⊆ S p(X). �

Corollary 5.6. Let S = (F,Λ) be a soft set over U, AS = (U, S ) be a soft approximation space. For
any X ⊆ U, the following statements hold:

(1) BNDpκ(X) ⊆ BNDp(X).
(2) If X is a soft pre-κ-rough set, then it is a soft pre-rough set.
(3) If X is a soft pre-exact set, then it is a soft pre-κ-exact set.
(4) µp(X) ≤ µpκ(X).
(5) X is soft pre-κ-definable if and only if S pκ(X) = S pκ(X) = X , ∅.

Proposition 5.7. Let S = (F,Λ) be a soft set over U, AS = (U, S ) be a soft approximation space. For
any X ⊆ U, the following statements hold:
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(1) S pκ

(
S pκ(X)

)
⊆ S pκ(X).

(2) S pκ(X) ⊆ S pκ

(
S pκ(X)

)
.

(3) S pκ(X) ⊆ S pκ

(
S pκ(X)

)
⊆ S pκ(X).

(4) S pκ(X) ⊆ S pκ

(
S pκ(X)

)
⊆ S pκ(X).

(5) S pκ(Intκ(X)) = Intκ(X).

(6) S pκ(Intκ(X)) = Intκ(S p(Intκ(X))).
(7) If X ∈ τκ, then S pκ(X) = X and S pκ(X) = Intκ(S p(X)).

(8) If S = (F,Λ) is a full soft set, then S pκ

(
S p(X)

)
= S p(X).

The following theoretical example shows that the soft pre-κ-rough approximations approach is more
efficient than all other approaches presented in this paper.

Example 5.8. Suppose that

U = {x1, x2, x3, x4, x5, x6, x7, x8} , E = {λ1, λ2, λ3, λ4, λ5} , Λ = {λ1, λ2, λ3, λ4} .

Let S = (F,Λ) be a soft set over U given by

F (λ1) = {x4} , F (λ2) = {x1, x4} , F (λ3) = {x2, x4} , F (λ4) = {x3, x4} .

Consider the soft approximation space AS = (U, S ) and the subset X = {x4, x5} of U. Then,

S (X) = {x4} , S (X) = {x1, x2, x3, x4} , S p(X) = {x4} ,

S p(X) = {x1, x2, x3, x4, x5} , S κ(X) = {x1, x2, x3, x4, x5} .

Let (U, cκ) be the Čech closure space induced by the operator cκ = S κ and let τκ be the topology
consisting of the open sets in (U, cκ), i.e. τκ = {O ⊆ U : cκ(U − O) = U − O}. Then, Intκ(X) = {x5},
which implies that S pκ(X) = X and S pκ(X) = X. Note that µp(X) = 1

5 < µpκ(X) = 1. Also, µAS (X) =
1
4 < µpκ(X) and µκ(X) = 1

5 < µpκ(X). On the other hand, for the set Y = {x6, x8}, we have S (Y) =

∅, S (Y) = ∅, S p(Y) = ∅, S p(Y) = Y, S κ(Y) = ∅, S κ(Y) = Y, Intκ(Y) = {x8}. According to this,

S pκ(Y) = {x8} and S pκ(Y) = Y. Therefore, µp(Y) = 0 < µpκ(Y) = 1
2 . Moreover, µAS (Y) is undefined and

µκ(Y) = 0 < µpκ(Y).

Next, we introduce the following classes of soft rough sets, which are related to the sets presented
in the previous sections.

Definition 5.9. Let S = (F,Λ) be a soft set over U, AS = (U, S ) be a soft approximation space. A
subset X of U is said to be:

(1) Roughly soft pre-κ-definable, if S pκ(X) , ∅ and S pκ(X) , U.

(2) Internally soft pre-κ-indefinable, if S pκ(X) = ∅ and S pκ(X) , U.

(3) Externally soft pre-κ-indefinable, if S pκ(X) , ∅ and S pκ(X) = U.

(4) Totally soft pre-κ-indefinable, if S pκ(X) = ∅ and S pκ(X) = U.
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The intuitive interpretation of these classes is as follows:

• X is roughly soft pre-κ-definable means that we can decide for some elements of U that they
belong to X, and meanwhile for some elements of U we can decide that they belong to Xc, by
employing the available knowledge from the soft approximation space AS .
• X is internally soft pre-κ-indefinable means that we can decide about some elements of U that

they belong to Xc, but we cannot decide for any element of U that it belongs to X, by using AS .
• X is externally soft pre-κ-indefinable means that we can decide for some elements of U that they

belong to X, but we cannot decide, for any element of U that it belongs to Xc, by using AS .
• X is totally soft pre-κ-indefinable means that we cannot decide for any element of U that it belongs

to X or Xc, by employing AS .

Theorem 5.10. Let S = (F,Λ) be a soft set over U, AS = (U, S ) be a soft approximation space. For
any subset X of U, the following statements hold:

(1) If X is roughly soft pre-definable, then it is roughly soft pre-κ-definable.
(2) If X is totally soft pre-κ-indefinable, then it is totally soft pre-indefinable.

6. Diagnosis of COVID-19 in Colombia

At the end of 2019, a group of patients with pneumonia of unknown cause was detected in the city
of Wuhan (China). Then, in January 2020, a new coronavirus responsible for severe acute respiratory
syndrome was isolated, named by the International Committee on Taxonomy of Viruses,
SARS-CoV-2. Later, in February 2020, the World Health Organization (WHO) named this contagious
infectious disease “coronavirus disease 2019” (COVID-19) and a month later, it was declared a
pandemic. Since the outbreak of the COVID-19 disease, it has caused great damage and brought great
challenges to more than 200 countries and regions around the world [13,14]. COVID-19 has a clinical
spectrum that ranges from asymptomatic forms to severe forms [2]. Most symptomatic patients report
fever, general symptoms, respiratory symptoms such as cough, dyspnea and, to a lesser extent,
extrapulmonary manifestations . However, there is more and more evidence that many COVID-19
patients are asymptomatic or have only mild symptoms, but are capable of transmitting the virus to
others [12]. The prevention and control of this disease has been difficult due to the complexity of
investigating asymptomatic infections. The ability of these asymptomatic infections to spread the
virus is high, and these patients are likely to cause a new round of outbreaks. Therefore, finding
asymptomatic infections is the key point for early prevention and control of COVID-19 all over the
world. It is at this point, where the implementation of classic mathematical tools and models, as well
as their generalizations, can play a fundamental role in the detection of asymptomatic infections,
since the potential of mathematics to face problems related to data from real-world situations has been
proven.

With respect to Colombia, the Coronavirus pandemic required the National Government and the
different territorial entities to work on the development and implementation of strategies to reduce
the speed of infection of the virus and prevent its effects on the population. These strategies can be
classified into three main sources, namely: 1) sanitary measures and sanitary emergency measures, 2)
social, economic and ecological emergency measures, and 3) public order measures and other measures
of an ordinary nature.
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Among the sanitary and emergency health measures adopted, the Ministry of Health and Social
Protection of the Republic of Colombia implemented the Sustainable Selective Testing, Screening and
Isolation Program (abbreviated PRASS for its acronym in Spanish), which is largely based on contact
tracing and isolation of probable or suspected cases of COVID-19, in an agile and timely manner;
therefore, the objective is to increase the performance of COVID-19 diagnostic tests for
epidemiological surveillance and early detection of cases among the population; to this end, free
COVID-19 diagnostic test points were installed throughout the country.

Prior to the process of applying the diagnostic tests for Coronavirus, a poll was made to people
to find out if they have had some of the most common symptoms of this disease, and it is worth
noting that a significant percentage of respondents did not report any symptoms associated with COVID
19; however, in the corresponding diagnostic tests, they were positive for this disease (this type of
people are called “asymptomatic”). Table 2 shows the data set of several persons who underwent the
PCR diagnostic test for COVID-19, among whom it was determined that there was one asymptomatic
person.

The columns of the Table 1 represent the attributes (the symptoms for Coronavirus) and the rows
represent the objects (the patients). The entries in the table are the attribute values for each patients.
Encoding the attribute values of Table 1, we obtain the Boolean-valued information system given in
Table 2, where 0 and 1 represent “No” and “Yes”, respectively.

Table 1. A symptom information system.

Patients Muscle pain Headache Nausea Fever Coronavirus
p1 No Yes No No No
p2 No No Yes No No
p3 No No No Yes No
p4 Yes Yes No Yes Yes
p5 No No No No Yes
p6 No No No No No
p7 No Yes No Yes Yes
p8 No No Yes Yes Yes

Table 2. A tabular representation of the soft set.

Patients Muscle pain Headache Nausea Fever Coronavirus
p1 0 1 0 0 0
p2 0 0 1 0 0
p3 0 0 0 1 0
p4 1 1 0 1 1
p5 0 0 0 0 1
p6 0 0 0 0 0
p7 0 1 0 1 1
p8 0 0 1 1 1
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The tabular representation in Table 2 describes the soft set (F,Λ) = {(λ1, {p4}), (λ2, {p1, p4, p7}),
(λ3, {p2, p8}), (λ4, {p3, p4, p7, p8})} over U, where U = {p1, p2, p3, p4, p5, p6, p7, p8} is the universe of
eight patients and Λ = {λ1, λ2, λ3, λ4} is the set of decision parameters. The λi (i = 1, 2, 3, 4) stands
“joint pain”, “headache”, “nausea” and “fever”. Let us note that the set of patients infected with
Coronavirus is X = {p4, p5, p7, p8}. Thus, the approximations, the boundary, and the accuracy measure
of X, by using soft rough approach, soft pre-rough approach and the current approach given in this
paper are given respectively as follows:

Soft rough approach: By calculating, we have

S (X) = {p4}, S (X) = {p1, p2, p3, p4, p7, p8},

BNDAs(X) = {p1, p2, p3, p7, p8}, µAS (X) =
1
6
.

Note that X is not a subset of S (X). According to this approach, X is a soft AS -rough set. Moreover,
p1, p2 and p3 which are not infected patients belongs to the boundary of X which consists of all those
patients that cannot be classified uniquely as infected or uninfected, by using the available knowledge
from the soft approximation space.

Soft pre-rough approach: By calculating, we get that

S p(X) = {p4, p7, p8}, S p(X) = {p1, p3, p4, p5, p7, p8}

BNDp(X) = {p1, p3, p5}, µp(X) =
1
2
.

According to this approach, X is a soft pre-rough set. Moreover, p1 and p3 which are not infected
patients belongs to the boundary of X which consists of all those patients that cannot be classified
uniquely as infected or uninfected, by using the available knowledge from the soft approximation
space.

Current approach: By calculating, we have

S pκ(X) = X, S pκ(X) = X, BNDpκ(X) = ∅, µpκ(X) = 1.

According to this approach, X is a soft pre-κ-definable set, which means that by using the available
knowledge, we can decide that the patients in X are the only ones infected with Coronavirus. Therefore,
the proposed approach is more efficient than soft rough method and soft pre-rough method in decision
making to extract information and help eliminate data vagueness in real-life problems.

To finalize this work, an algorithm is presented that can be used to compute the accuracy in an
information system using soft pre-κ-rough approximations (see Algorithm 1).
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Algorithm 1 Computation of accuracy using the soft pre-κ-rough approximations.
1: Input the soft set (F,Λ) and the target set X.
2: Obtain the indiscernibility relation for X.
3: Compute S p(X) according to Definition 3.1.

4: Calculate Intκ(X) from the soft Čech κ-upper topology τκ.
5: Compute S pκ(X) according to Definition 5.4, as S pκ(X) = X ∪ Intκ(S p(Intκ(X)).
6: Determine S pκ(X) according to Definition 5.4, as S pκ(X) = S p(X) ∩ Intk(X).
7: Compute the accuracy of the approximation, µpκ(X), by using Definition 5.4.

Remark 6.1. In order to be able to perform data analysis with a larger universe and set of parameters,
an algorithm has been programmed and its implementation was executed in Octave (see Algorithm 2).
The structure of this program is based on the approaches presented throughout this work, where Requel,
obtains the indiscernibility relation for X; spin f calculates the soft pre-lower aproximation; Intk finds
the topological interior, Intκ, of a subset X of U; Union calculates the union of sets; spsup compute
the soft pre-upper aproximation, which are all predefined functions.

Algorithm 2 Computation of accuracy using the soft pre-κ-rough with GNU Octave programming
1: function acc pk(U, so f t set, X)
2: REQ = Requel(so f t set, X);
3: S p in f = spin f (X,REQ);
4: interior = Intk(U, X,REQ);
5: S pk in f = Union(S p in f , interior);
6: S p sup int = spsup(interior,REQ);
7: int aux = Intk(U, S p sup int,REQ);
8: S pk sup = Union(X, int aux)
9: acc pk = size(S pk in f , 2)/size(S pk sup, 2)

10: end function

7. Conclusions

In this paper, the theory of soft rough sets is used to make a review of the methods of soft
pre-rough approximations and soft β-rough approximations and with the help of our Lemma 3.5 it is
shown that these methods are the same. Moreover, examples are presented to show that the statements
of part (ii) of Theorem 3.1 in [6] (resp. Theorem 3.9 in [6]) and part (viii) of Proposition 3.1 in [6]
(resp. Proposition 3.3 in [6]) are false; i.e. the inclusion S p(X) ⊆ S (X) (resp. S β(X) ⊆ S (X)) and the
equality S p(X ∪ Y) = S p(X) ∪ S p(X) (resp. S β(X ∪ Y) = S β(X) ∪ S β(X)) are not true. Considering the
above, we first propose a new method, called soft κ-rough approximations, which satisfies many of the
properties similar to the soft rough approximations, but it does not have higher accuracy than the soft
pre-rough approximations (see Corollary 4.5). However, through some of the established properties
and the theory of closure spaces, a topology is obtained that provides tools to formulate the method of
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pre-κ-rough soft approximations. With this last method the boundary region is considerably reduced
and therefore the accuracy is improved with respect to the approaches mentioned in this section, as
can be seen in Corollary 5.6, Example 5.8 and Section 6 of the Diagnosis of COVID-19 in Colombia.
Therefore, in future research, new models of upper and lower approximations can be created by
considering the topological results established here, to extend the field of application of soft rough
sets to decision making problems in different contexts.
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