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Abstract: In this paper, the trial function method is used to address the Lakshmanan-Porsezian-Daniel
(LPD) equation with parabolic law nonlinearity. Implementing the traveling wave hypothesis reduces
the LPD equation to an ordinary differential equation (ODE). From this ODE, many exact solutions,
such as kink solitary wave solutions, bell shaped solitary wave solutions, triangular function solutions,
periodic function solutions, singular solutions and Jacobian elliptic function solutions, are retrieved.
Among them, some solutions are new. By suitable choice of parameters, we also draw 3D surface and
2D graphs of density, contour and level curves of some precise solutions for intuitive investigation.
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1. Introduction

Optical soliton dynamics is mainly described by non-linear Schrödinger equations (NLSEs) [1–5].
The primary purposes of research on optical solitons are to develop the telecommunications industry
and optimize communications network technology. NLSEs consist of many well-known ones, like the
Schrödinger-Hirota equation, Gerdjikov-Ivanov equation, Radhakrishnan-Kundu-Lakshmanan
equation, Kundu-Eckhaus equation, Maxwell-Bloch equation, Biswas-Milovic equation,
Chen-Lee-Liu equation and so on. Among NLSEs, the Lakshmanan-Porsezian-Daniel (LPD)
equation, proposed in the category of Heisenberg spin chains [6–9], governs the transmission of
solitons through a variety of waveguides and has been widely studied by many authors [10–12]. It is
worth mentioning that the LPD equation, which follows from the so-called AKNS hierarchy and has
non-autonomous generalized reductions and integrated models, has gained huge interest
recently [13–15]. The studies on optical solitons with LPD have a great effect on modern electronic
communication systems and reflect the propagation rules for nonlinear optics.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023138


2649

The trial function method was proposed by Liu [16] for finding certain types of solutions for
nonlinear evolution equations (NLEEs). This method has been reliably and effectively used to seek
the solitary traveling wave solutions from various NLEE models [17–21]. Generally speaking,
although many advanced techniques, such as the undetermined coefficients method [22], the modified
simple equation method [23], the improved tan ψ(η)

2 -expansion method [24], the modified auxiliary
equation method [25] and the modified extended direct algebraic method [26], have been adopted to
study the solutions of the governing LPD model exhibited in the following, some of its soliton
solutions have not been explored. Our purpose is to retrieve new optical soliton solutions for the
model hereunder by the trial function method.

In this paper, we consider the dimensionless form of the LPD model in the presence of spatio-
temporal dispersion (STD) with full nonlinearity and higher order dispersion [22]:

iut + auxx + buxt + F (|u|2)u = σuxxxx + α(ux)2u∗ + β|ux|
2u + γ|u|2uxx + λu2u∗xx + δ|u|4u. (1.1)

In (1.1), the independent variables x and t denote the space and time, respectively, while the
independent variable u(x, t) represents the complex-valued wave profile. The coefficients of
group-velocity dispersion and STD are represented by parameters a and b, respectively. The
real-valued functional F , which is decided by the refractive index of the propagation medium, such as
optical fiber, provides the general form of nonlinearity, including Kerr law, parabolic law, power law,
dual-power law and log law nonlinearities. In particular, F (|u|2)u is a k-times continuously
differentiable function [1].

F (|u|2)u ∈
∞⋃

n,m=1

Ck((−n, n) × (−m,m) : R2).

Then, for the terms on the right hand side of (1.1), σ is the coefficient of fourth-order dispersion;
α, β, γ and λ indicate the other perturbation terms with nonlinear effects. The two-photon absorption
is represented by parameter δ. For b = 0 and removing F (|u|2)u, the model (1.1) becomes the original
LPD model [3,4] that is extensively studied. Therefore, we consider the LPD model with functional F
and b , 0.

The current paper consists of the following parts. In Section 2, we will demonstrate the algorithm
of the trial function method. In Section 3, Eq (1.1) with parabolic law nonlinearity will be reduced
to an ODE via the traveling wave hypothesis. In order to retrieve the exact traveling wave solutions
from this ODE, we will employ the trial function methodology united with the complete discrimination
system method [27]. In Section 4, kink, periodic, bell shaped and triangle solitons are extracted for
specific parameter values and depicted through graphical demonstration. Section 5 is the conclusion
of this paper.

2. The trial function method

The basic steps of the trial function method [16] are itemized as follows.
Step 1: Assume equation

N(u, ut, ux, uxt, uxx, uxxx, · · · ) = 0 (2.1)
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denotes the nonlinear evolution equation (NLEE) for unknown function u = u(t, x). Implementing
complex traveling wave transformation u(x, t) = U(ξ)eiφ(x,t), ξ = x − ct, converts (2.1) to an ODE,

M(U,U′,U
′′

, · · · ) = 0, (2.2)

where U′ = du
dξ and M denotes the polynomial of U and its derivatives with respect to ξ.

Step 2: In this paper, the simple trial function is considered as

(U′)2 = F(U) =

K∑
i=0

aiU i, (2.3)

where integer K is determined by the balance principle, and the coefficients ai(i = 1, · · ·K) will be
retrieved later. A polynomial equation G(U) = 0 is obtained by substituting (2.3) into (2.2). By making
all the coefficients of G(U) equal to zero, one can get the algebraic equation system for ai(i = 1, · · ·K)
and solve it. Then, F(U) becomes fixed.

Step 3: By separating variables and integrating, (2.2) can be reduced to

± (ξ − ξ0) =

∫
dU
√

F(U)
, (2.4)

where ξ0 is an integral constant. The classification of the roots for polynomial F(U), which are
extracted via the polynomial complete discriminant system method [27], eventually addresses exact
traveling wave solutions for Eq (2.1).

It is worth mentioning that the trial equation can be chosen in several forms besides (2.3) to deal
with different NLEEs.

3. Applications

The assumption is that the exact solutions for Eq (1.1) satisfy the traveling wave hypothesis [1]

u(x, t) = U(ξ)eiζ(x,t), ξ = x − ct, (3.1)

where U is the shape of the wave profile with c representing the wave velocity, and ζ(x, t) = −kx+ωt +

ϕ0 is the phase component. The parameter k is frequency, ω is the wave number, and ϕ0 represents the
phase constant. By plugging the hypothesis (3.1) into (1.1) and decomposing the real and imaginary
parts, we obtain the real part as

σU
′′′′

− (a − bc + 6σk2)U
′′

+ (ω − ωbk + ak2 + σk4)U − F (U2)U

− (α − β + γ + λ)k2U3 + δU5 + (α + β)U(U
′

)2 + (γ + λ)U2U
′′

= 0,
(3.2)

while the imaginary portion reads as

(bck − c + bω − 2ak − 4σk3)U
′

+ 2(α + γ − λ)kU2U
′

+ 4σkU
′′′

= 0. (3.3)

Equating the linearly independent coefficients in (3.3) to zero imposes the constraint conditions

σ = 0, (3.4)
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α + γ − λ = 0, (3.5)

and the velocity of the soliton is attained as

c =
2ak − bω

bk − 1
, for bk , 1. (3.6)

The parabolic law nonlinearity is presented by

F (u) = c1u + c2u2, (3.7)

where c1 and c2 are real parameters. Inserting (3.4) and (3.7) into (3.2) yields

(bc − a)U
′′

+ (ω − ωbk + ak2)U − (c1U2 + c2U4)U − (2α − β + 2γ)k2U3

+ δU5 + (α + β)U(U
′

)2 + (α + 2γ)U2U
′′

= 0.
(3.8)

In order to apply the extended trial function algorithm to tackle (3.8), we shall assume that the
structure of solutions is in accord with the form

(U
′

)2 =

n∑
i=0

aiU i. (3.9)

Balancing the orders between U(U
′

)2 and U5 yields n = 4. Then, it is easy to compute

U
′′

= 2a4U3 +
3
2

a3U2 + a2U +
a1

2
. (3.10)

By substituting (3.9) and (3.10) in (3.8) and solving the obtained algebraic equation system about
the coefficients of each power of U, the following results are received:

a4 =
c2 − δ

3α + β + 4γ
, a3 = 0,

a2 =
(3α + β + 4γ)[c1 + (2α − β + 2γ)k2] − 2(bc − a)(c2 − δ)

(3α + β + 4γ)(2α + β + 2γ)
, a1 = 0,

a0 =
2(bc − a)2(c2 − δ) − (bc − a)(3α + β + 4γ)[c1 + (2α − β + 2γ)k2]

(α + β)(3α + β + 4γ)(2α + β + 2γ)
−
ω − ωbk + ak2

α + β
, (3.11)

and (3.9) consequently becomes (U′)2 = a4U4 + a2U2 + a0. Implementing the transformation

U = ±

√
(4a4)−

1
3φ, ξ1 = (4a4)

1
3 ξ, q = 4a2(4a4)−

2
3 , r = 4a0(4a4)−

1
3 , (3.12)

reduces the Eq (3.9) to
(φξ1)

2 = φ(φ2 + qφ + r). (3.13)

Then, after separating variables and integrating, (3.13) becomes

± (ξ1 − ξ0) =

∫
dφ√
φF(φ)

=

∫
dφ√

φ(φ2 + qφ + r)
, (3.14)
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where ξ0, an arbitrary constant, is the integration constant.
Now, the second-order complete discrimination system

F(φ) = φ2 + qφ + r, ∆ = q2 − 4r, (3.15)

is used to classify the roots of F(U). Four cases of the solutions for Eq (3.14) are studied, as follows:
Case 1: ∆ = 0, so that a2

2 = 4a0a4. In this case, φ > 0 is valid, and (3.14) is reduced to

± (ξ1 − ξ0) =

∫
dφ

√
φ
(
φ +

q
2

) . (3.16)

When q < 0, the solutions of Eq (1.1) are obtained as

u1(x, t) = ±

√
2(bc − a)(c2 − δ) − (3α + β + 4γ)[c1 + (2α − β + 2γ)k2]

2(2α + β + 2γ)(c2 − δ)
ei(−kx+ωt+ϕ0) (3.17)

× tanh
[√2(bc − a)(c2 − δ) − (3α + β + 4γ)[c1 + (2α − β + 2γ)k2]

2(3α + β + 4γ)(2α + β + 2γ)

(
x −

2ak − bω
bk − 1

t − ξ0

)]
,

u2(x, t) = ±

√
2(bc − a)(c2 − δ) − (3α + β + 4γ)[c1 + (2α − β + 2γ)k2]

2(2α + β + 2γ)(c2 − δ)
ei(−kx+ωt+ϕ0) (3.18)

× coth
[√2(bc − a)(c2 − δ) − (3α + β + 4γ)[c1 + (2α − β + 2γ)k2]

2(3α + β + 4γ)(2α + β + 2γ)

(
x −

2ak − bω
bk − 1

t − ξ0

)]
.

When q > 0, the solutions of Eq (1.1) are obtained as

u3(x, t) = ±

√
(3α + β + 4γ)[c1 + (2α − β + 2γ)k2] − 2(bc − a)(c2 − δ)

2(2α + β + 2γ)(c2 − δ)
ei(−kx+ωt+ϕ0) (3.19)

× tan
[√ (3α + β + 4γ)[c1 + (2α − β + 2γ)k2] − 2(bc − a)(c2 − δ)

2(3α + β + 4γ)(2α + β + 2γ)

(
x −

2ak − bω
bk − 1

t − ξ0

)]
.

When p = 0, so that solutions will appear for a2 = a0 = 0, the solutions of Eq (1.1) are

u4(x, t) = ±

√
3α + β + 4γ

4(c2 − δ)

(
x −

2ak − bω
bk − 1

t − ξ0

)−1
× ei(−kx+ωt+ϕ0). (3.20)

Case 2: For ∆ > 0 and r = 0 (a0 = 0), Eq (3.14) is reduced to

± (ξ1 − ξ0) =

∫
dφ

φ
√
φ + q

. (3.21)

If q > 0, provided −q < φ < 0 is valid, the solutions of Eq (1.1) are procured as
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u5(x, t) = ±

√
2(bc − a)(c2 − δ) − (3α + β + 4γ)[c1 + (2α − β + 2γ)k2]

(2α + β + 2γ)(c2 − δ)
ei(−kx+ωt+ϕ0) (3.22)

×sech
[√ (3α + β + 4γ)[c1 + (2α − β + 2γ)k2] − 2(bc − a)(c2 − δ)

(3α + β + 4γ)(2α + β + 2γ)

(
x −

2ak − bω
bk − 1

t − ξ0

)]
;

and when φ > 0, the solutions of Eq (1.1) are

u6(x, t) = ±

√
(3α + β + 4γ)[c1 + (2α − β + 2γ)k2] − 2(bc − a)(c2 − δ)

(2α + β + 2γ)(c2 − δ)
ei(−kx+ωt+ϕ0) (3.23)

×csch
[√ (3α + β + 4γ)[c1 + (2α − β + 2γ)k2] − 2(bc − a)(c2 − δ)

(3α + β + 4γ)(2α + β + 2γ)

(
x −

2ak − bω
bk − 1

t − ξ0

)]
.

If q < 0, the solutions of Eq (1.1) are obtained as

u7(x, t) = ±

√
2(bc − a)(c2 − δ) − (3α + β + 4γ)[c1 + (2α − β + 2γ)k2]

(2α + β + 2γ)(c2 − δ)
ei(−kx+ωt+ϕ0) (3.24)

× sec
[√2(bc − a)(c2 − δ) − (3α + β + 4γ)[c1 + (2α − β + 2γ)k2]

(3α + β + 4γ)(2α + β + 2γ)

(
x −

2ak − bω
bk − 1

t − ξ0

)]
.

Case 3: ∆ > 0 and r , 0, which leads to F(U) having two distinct roots. For convenience, by
assuming λ1 < λ2 < λ3, satisfying that one of these equals 0, Eq (3.14) can be denoted by

± (ξ1 − ξ0) =

∫
dφ√

(φ − λ1)(φ − λ2)(φ − λ3)
. (3.25)

When φ > λ3, by using the transformation φ =
−λ2 sin2 ψ+λ3

cos2 ψ
, we can attain the solutions of Eq (1.1),

as

u8(x, t) = ±

√√√√√( 4c2 − 4δ
3α + β + 4γ

)− 1
3
λ3 − λ2sn2

( √
λ3−λ1

2

( 4c2−4δ
3α+β+4γ

) 1
3
(
x − 2ak−bω

bk−1 t − ξ0
)
,m

)
λ3cn2

( √
λ3−λ1

2

( 4c2−4δ
3α+β+4γ

) 1
3
(
x − 2ak−bω

bk−1 t − ξ0
)
,m

) × ei(−kx+ωt+ϕ0). (3.26)

When λ1 < φ < λ2, implementing the transformation φ = λ1 + (λ2 − λ1) sin2 ψ, the Jacobian elliptic
function solutions of Eq (1.1) are given by

u9(x, t) = ±ei(−kx+ωt+ϕ0) (3.27)

×

√( 4c2 − 4δ
3α + β + 4γ

)− 1
3
[
λ1 + (λ2 − λ1)sn2

( √λ3 − λ1

2
( 4c2 − 4δ
3α + β + 4γ

) 1
3
(
x −

2ak − bω
bk − 1

t − ξ0
)
,m

)]
,

where m2 = λ2−λ1
λ3−λ1

.
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Case 4: ∆ < 0. Implementing the transformation φ =
√

r tan2 ψ

2 converts Eq (3.14) to

± (ξ1 − ξ0) = r−
1
4

∫
dψ√

1 − m2 sin2 ψ

, (3.28)

where m2 = 1
2

(
1 − q

2
√

r

)
. In this case, the Jacobian elliptic function solutions of Eq (1.1) are given by

u10(x, y) = ±
{2(bc − a)2(c2 − δ)2 − (bc − a)(3α + β + 4γ)[c1 + (2α − β + 2γ)k2](c2 − δ)

(α + β)(2α + β + 2γ)

−
(ω − ωbk + ak2)(c2 − δ)

(α + β)(3α + β + 4γ)

} 1
4 ei(−kx+ωt+θ) ×

[ 2

1 + cn
(
2
{ 2(bc−a)2(c2−δ)2

(α+β)(3α+β+4γ)2(2α+β+2γ)

−
(bc−a)[c1+(2α−β+2γ)k2](c2−δ)

(α+β)(3α+β+4γ)(2α+β+2γ) −
(ω−ωbk+ak2)(c2−δ)

(α+β)(3α+β+4γ)

} 1
4
(
x − 2ak−bω

bk−1 t − ξ0
)
,m

) − 1
] 1

2
. (3.29)

4. Graphical illustrations

This section includes the graphical presentations for some obtained solutions. We select suitable
values of parameters to simulate exact solutions of Eq (1.1) and choose + instead of ± to plot all
the graphs using Maple software. The envelope of kink solitary wave solution u1, periodic function
solution u3, bell shaped solitary wave solution u5 and triangle analytical solution u7 are represented
in Figures 1(a)–4(a), respectively. Contour plots and density plots of these solutions are depicted in
Figures 1(b), 1(c)–4(b), 4(c). 2D plots in Figures 1(d)–4(d) capture the level curves at different times
t = 10, 20, 30. In recently published works, researchers mainly describe the structures for the absolute
values of the obtained solutions and illustrated some interesting results. In this paper, we present
the envelope of the obtained solutions to help in understanding properties of the LPD model, which
describes many phenomena in nonlinear science.

(a) 3D surface plot of (3.17) (b) Contour plot of (3.17) (c) Density plot of (3.17) (d) 2D plot at t = 10, 20, 30

Figure 1. The profile of kink soliton solution U1 with k = 4, ω = 3 and c = 1
3 . The

parameters are: a = 1
2 , b = 1, c1 = −51 5

12 , c2 = 3, α = β = γ = δ = 1 and ξ0 = 0.
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(a) 3D surface plot of (3.19) (b) Density plot of (3.19) (c) Contour plot of (3.19) (d) 2D plot at t = 10, 20, 30

Figure 2. The profile of periodic soliton solution U3 with k = 4, ω = 3 and c = 1
3 . The

parameters are: a = 1
2 , b = 1, c1 = −44 1

3 , c2 = 3, α = β = γ = δ = 1 and ξ0 = 0.

(a) 3D surface plot of (3.22) (b) Density plot of (3.22) (c) Contour plot of (3.22) (d) 2D plot at t = 10, 20, 30

Figure 3. The profile of bell shaped soliton solution U5 with k = 2, ω = 7
4 and c = 1

4 . The
parameters are: a = 1

2 , b = 1, c1 = −631
32 , c2 = −1, α = β = γ = δ = 1 and ξ0 = 0.

(a) 3D surface plot of (3.24) (b) Density plot of (3.24) (c) Contour plot of (3.24) (d) 2D plot at t=10, 20, 30

Figure 4. The profile of triangle function solution U7 with k = 2, ω = 1 and c = 1. The
parameters are: a = 1

2 , b = 1, c1 = −21 3
4 , c2 = 3, α = β = γ = δ = 1 and ξ0 = 0.

5. Conclusions

In this work, the Lakshmanan-Porsezian-Daniel equation with parabolic law nonlinearity is studied
by applying the trial function methodology and complete discrimination system for polynomials
method. Many new complex exact solutions of the LPD model are obtained, such as kink soliton
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solutions, bell shaped soliton solutions, triangular function solutions, periodic function solutions,
singular solutions and Jacobian function solutions, which are not obtained by other techniques.
In [23–25], the solutions are obtained by setting the constrain conditions α + β = 0 and γ + λ = 0 for
the coefficients in Eq (1.1). Comparing our results with the previous works, we address the model
without the constrain conditions above and attain some new results. Also, Figures 1–4 depict the
solutions in (3.17), (3.19), (3.22) and (3.24) with suitable values of parameters, which can be
expected to reveal more dynamic behaviors and physical properties of the LPD model. We think the
methodology used in this work is able to solve more complicated and various nonlinear partial
differential equations.
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