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Abstract: In this paper, we investigate classical and Bayesian estimation of stress-strength reliability
0=P(X >Y) under an adaptive progressive type-II censored sample. Assume that X and Y are
independent random variables that follow inverse Weibull distribution with the same shape but
different scale parameters. In classical estimation, the maximum likelihood estimator and asymptotic
confidence interval are deduced. An approximate maximum likelihood estimator approach is used to
obtain the explicit form. In Bayesian estimation, the Bayesian estimators are derived based on
symmetric entropy loss function and LINEX loss function. Due to the complexity of integrals, we
proposed Lindley’s approximation to get the approximate Bayesian estimates. To compare the different
estimators, we performed Monte Carlo simulations. Under gamma prior, the approximate maximum
likelihood estimator performs better than Bayesian estimators. Under non-informative prior, the
approximate maximum likelihood estimator has the same behavior as Bayesian estimators. In the end,
two data sets are used to prove the effectiveness of the proposed methods.
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1. Introduction

The stress-strength model has an essential role in lifetime study and engineering application. In
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terms of reliability, stress-strength reliability is an interesting topic, which is defined as 6 =P(X >Y),

X denotes the strength of a system or unit with stress Y . The system or unit works normally when
X >Y . Aziz and Chassapis [1] considered the performance ¢ =P(X >Y) of a gearing system, which
denotes the stress on the gear tooth and X denotes the strength of the tooth root. Dong et al. [2]
studied the biomechanical performance 6 =P(X >Y) of the healthy and reconstructed pelvic model,
which denotes the strength of the pelvic model and Y indicates daily activities such as knee bending,
standing up, stair descent and stair ascent. Zhou et al. [3] studied the effect of the stress-strength ratio
and fiber length on the creep properties of polypropylene fiber-reinforced alkali-activated slag concrete.

Since the application of stress-strength reliability is wide, its statistical inference has attracted the
concern of many researchers. Mehdi and Mehrdad [4] assumed that strength X has the Pareto
distribution within outliers but stress Y follows an unsullied Pareto distribution, and considered the
stress-strength reliability estimation. They found that maximum likelihood estimation and the modified
maximum likelihood estimation perform better than the method of moments and least squares.
Mohamed and Reda [5] proposed a stress-strength model with a type-II censored sample and studied
in odd generalized exponential-exponential distribution. They observed that the performance of
Bayesian estimation is better than maximum likelihood estimation in terms of mean square error. Based
on progressive first failure censored samples, Shi and Shi [6] derived the estimators of stress-strength
reliability for beta log Weibull distribution. It can be shown that the Bayesian estimation is better than
the maximum likelihood estimation in terms of average absolute bias and mean squared error. For
more research on stress-strength reliability, please refer to [7—17].

Inverse Weibull distribution (IWD) is a lifetime distribution commonly employed in reliability
analysis, and its application fields include engineering, medicine and so on. Aljeddani and Mohammed [ 18]
proposed that IWD is an effective tool for modeling wind speed characteristics, offering a deep
understanding of the density function and cumulative distribution function of wind speed. IWD can
also be used for statistical process control. Baklizi and Ghannam [19] proposed a control chart based
on the case that the product lifetime obeys the IWD and extended the applicability of the control chart
method to the case involving censored lifetime tests. The probability density function (PDF) and
cumulative density function (CDF) of IWD are given by Eqs (1) and (2), respectively.

f(x¢,0)=dox " exp(=¢x7) ; x>0, (1)
F(x;{,0)=exp(-¢{x?); x>0, @)

where ¢ >0 isthe scale parameter and o >0 is the shape parameter. For convenience, denote IWD
with PDF (1) as IW({,0) . In practical production, some hazard rate functions are often non-
monotonic. As shown in Figure 1, the hazard rate function (hrf) of IWD exhibits an inverted bathtub
shape, making it highly suitable for modeling such data. In the degradation process of diesel engine
mechanical parts, Keller and Kanath [20] pointed out that IWD is more suitable for fitting failure data of
pistons, crankshafts and main bearings compared to the exponential distribution and Weibull distribution.
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Figure 1. The hazard rate functions of IWD.

In recent years, the statistical inference of IWD has attracted many authors. Alam and Nassar [21]
considered the estimation of entropy for IWD based on improved adaptive progressive type-II censored
data. Lin et al. [22] considered the estimation of parameters and percentiles for Marshall Olkin
extended IWD based on progressive type-II censored data. They found that the least-squares estimation,
maximum likelihood estimation and percentiles estimation are not stable. Therefore, Bayesian
estimation is focused. Nassar and Ahmed [23] studied the constant stress partial accelerated life test
using adaptive progressive type-I censored samples. The research assumes that the life of the product
under normal use conditions obeys IWD. The maximum likelihood estimation, the maximum product
of the interval process and Bayesian estimation were used to estimate the point and interval estimation
of model parameters and acceleration factors. Amany [24] proposed different predictive and
reconstructive pivotal quantities for IWD based on dual generalized order statistics. Based on complete
samples, Hassan [25] obtained a modified maximum likelihood estimator and confidence intervals of
stress-strength reliabilities for IWD by ranked set sampling. Jia et al. [26] discussed the maximum
likelihood and Bayesian estimation of the stress-strength model P(X >Y) under the first-failure
progressive unified hybrid censored sample, which X and Y were independent random variables
from IWD. Based on complete samples, Bi and Gui [27] considered the classical and Bayesian
estimation of stress-strength reliability of IWD. Under the adaptive progressive type-II (APT-II)
censored samples, Alslman and Helu [28] obtained the maximum likelihood and maximum product of
spacing estimators of the stress-strength reliability for IWD. Yadav et al. [29] derived the maximum
likelihood estimator and Bayesian estimator of stress-strength reliability for IWD under progressively
type-II censoring data.

In the available references, it is still not comprehensive enough in terms of the censored scheme
and estimation method. Therefore, we consider the estimation of stress-strength reliability
0=P(X >Y) under APT-II censored samples, where X and Y are two independent random
variables from IWD with the same shape parameter but different scale parameters. The rest of this
paper is organized as follows: Section 2 introduces the APT-II censored scheme. Section 3 derives the
maximum likelihood estimator (MLE) and asymptotic distribution of . Approximate maximum
likelihood estimator (AMLE) and asymptotic confidence interval (ACI) are constructed. Section 4
derives the Bayesian estimators (BEs) of ¢ and approximates them using Lindley’s approximation.
Section 5 presents the Monte Carlo simulation. In Section 6, the application of the mentioned methods
is illustrated by two real datasets. Section 7 contains the conclusions.

AIMS Mathematics Volume 8, Issue 12, 28465-28487.
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2. Adaptive progressive type-II censored scheme

In situations where products have long life spans, obtaining failure time data can be time-
consuming and costly. To address this issue, experimenters often employ censored schemes. Two
commonly used censored schemes are the progressive type-I censored scheme and progressive type-I1
censored scheme. The progressive type-I censored scheme involves ending the test at a predetermined
time. However, it may result in a small number of observed failures when the product life is long. This
can limit the accuracy and efficiency of statistical inference. The progressive type-II censored scheme
ends the test after a predetermined number of failures occur. While this scheme ensures a sufficient
number of failures are observed, it can lead to prolonged test times, which can be costly and impractical
in some cases. Ng et al. [30] developed APT-II censored scheme to address these limitations. In this
scheme, the experimenter can not only ensure to observe enough numbers of failures, but also speed up
the test process, which greatly improves the efficiency of statistical inference.

Assume that n units are put into the lifetime test. Only m failure units can be observed. A
censored scheme Q=(Q,,Q,,..,Q,) satisfies Q +Q,+...+Q,+m=n . Denote the lifetime of the
observed failure units by X; (i=12,..,m). When the first failure X, is observed, Q, units are
randomly removed from the residual n—1 units that have not failed. Similarly, Q, units are randomly
removed from the remaining n—Q, —2 units at the time of the second failure X,. When the m time
of failure X, is observed, all the remaining Q, units are removed. Then, (X, X,,..,X,) is a set of

progressive type-II censored samples.

The APT-II censored scheme is essentially a hybrid of the type-I censored scheme and type-II
progressive censored scheme, as detailed in Figures 2 and 3. A desired total test time T is given, but
the actual test time is allowed to exceed T as well. If the number of failure units has reached m
before time T , the test will be stopped before T . On the contrary, if the test time exceeds T and the
failure units observed are less than m, the testers would like to terminate the test as soon as possible.
To fulfill this expectation, the testers will make some changes during the test. Ensure that there is
enough time to observe M failure units without the actual test time exceeding T too much. Therefore,
to terminate the test as soon as possible without changing m, it is necessary to retain more surviving
units in the test. The specific situations of the APT-1I censored scheme are shown below.

(1) If m failure units have been observed before T, the censored scheme is Q=(Q,,Q,,....Q,) .
(2) Suppose that J (J <m) failure units are observed before time T , thatis, X, <T <X, ;. To retain
more surviving units in the test, the testers set Q,,=Q,,=..=Q,,=0 and

Q,=n-m-Q-Q,-..-Q,.

O 0, 0,

/ / /

remove remove remove
A / ,
start X, X, X, (end) T

Figure 2. The APT-II censored scheme with the situation (1).
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Figure 3. The APT-II censored scheme with the situation (2).
3. Maximum likelihood estimation
3.1. Maximum likelihood estimator

Suppose that X and Y are two independent random variables, where X ~ IW({;,0) and
Y ~ IW({;, 0). The stress-strength reliability 6 =P(X >Y) is given by

o0=P(X>Y)
:jo*‘” f(x;¢,,0)P(Y < X)dx
=[" f(xuo)F(x L0k )
__o1
61t&,

Let X =(X,X,,...X,) be an APT-II censored sample from IW({;,0) with X, <X, <..<X,,
under censored scheme Q=(Q,...,Q,,0,..,0,Q, =n1—m—iQi) such that X, <T <X,,, . Let
Y =(Y.,Y,,...Y,) be an APT-II censored sample from IW((Z::;) with Y, <Y, <...<Y, under censored
scheme R:(Rl,...,RK,O,...,O,Rt:nz—t—iRi) such that Y, <T, <Y, ,. Denote X=(X,X,,...,X,) and

i=1

Y=(Y, Y, Y,) astheobservationof X and Y ,respectively. The joint likelihood function can be

written as
161820 0i % Y) = AiAz[f[ R OOI TIL= R OOTP L= R 01 [f[ f,(y)]
H[l— F (I - F (y)I*
=AAL" ;amﬂlm[ Xi_"‘le‘é“lea [ﬁ 1- g% " )Qi (= o’ )Qm
f[ y; 7 ter” [ﬁ (L-e )R ]a—e )R
(4)
where
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A =01 -1-Q)(1, ~2-Q - Q) ~m+1-> Q).

t-1
Az = nz(nz -1- R1)(n2 —-2- R1 - Rz)----(nz —t +1_z Ri) >
i=1
f,(X)=Cox e,
L(y)=goy e,
F(x)=e",

F(y)= e’
The log-likelihood function is

L(¢1. G5 0% y) =Inl(&, 85,07 %, Y)
=In AA, +m|n§l+tln§2+(m+t)|na—(a+1)Zm:In X —{lixi“’

+ZJ:Qi InL-e™%7")+Q, ln(l—e‘ﬁxm“)—(ml)zt]n y, _gzzt: yoo (%)

K
+> R In(l—e*¥")+R In(l—e ")

i=1

The partial derivatives of the log-likelihood function L(¢},¢,,0;%,y) with respectto ¢,
are given by

¢, and o
0L(¢1 0% Y) _ M _Z'“: 7+ ZJI QiX_i i exp_(—é”lxi") N Qmim" exri(—éﬁm") ’ ©)
ol ¢ o iz 1-exp(-¢,x ) 1-exp(=¢:%,")
0L oixY) o N RYTEXPESYT) | RYCTexp(=4,Y, ) -
aélz é/z izl:yl +iZ:1: 1_eXp(_§2yi_a) " 1_exp(_§2yt_a) ’ ()

aL(é/l’é/z'U;X’Y)_m+t S - _ : - _
o == +iZ=1)(§1xi Inx, lnxi)+iZ=l)(§2yi Iny ~Iny,)

- QX Texp(=¢ix7)Inx . Ry 7 exp(=g,y; ") Iny;
e i N - -¢, - , 8
S Centixn)  ET ewliy) ®)
LT (LXK, R exp(-Ly ) Iny,
1 exp(-C) 1 exp(C,y,)
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oL(£1,65,07%,Y) -0
9¢,

6L(§1,gz,0; XY) _q ©)
¢

aL(é/lié/z’O-; X y) =0
oo

The MLEs 51,ML , cfZ’ML and &,, are the solutions of likelihood Eq (9). Considering the

nonlinearity, we propose an iteration method to obtain the approximate solutions. Because of the
invariance of maximum likelihood estimation, the MLE &,, of & can be written as

& §1,ML

5’\/”_ -~ A~ -
Cime T Cam

(10)

3.3. Approximate maximum likelihood estimator

Since the explicit form of &, cannot be obtained in Section 3.1, we consider the approximate

maximum likelihood estimation now.
Let W=-InX and V =-InY.The CDFsof W and V can be obtained easily.

Fy(W)=PW <w)=1-P(X <e™)=1-exp(-<e ")

(11)
R (V) =PV <v)=1-P(Y <e™)=1-exp(-£,e ") (12)
Let o=—p", ¢, =¢" and ¢,=e"2.The CDFs (11) and (12) can be rewritten as
FW(W)=1—exp[—exp(W_a1)], w>0
P : (13)
R, (v) =1-exp[-exp("—22)] , v>0
g - (14)

It’s obvious that W and V follow the extreme value distribution. Denote that W ~ EV(a4, ) and
V ~ EV(ay, B). We assume that w; =—Inx; (j=12,..,m)and v, =-Iny, (k=12,..,t).

Given the observations W,,W,,...,w, and Vv,,V,,...,V,, the log-likelihood function of «,, «, and

p is

m m J t t K
Ly =A-M+)InS+> o, ->e" -> Qe” —Q.e™ +> v - e* - Re* -Re", (15)
j=1 ) k=1 k=1 k=1

j =1
where o =ﬁ’1(wj -a), v, =p"(v,—-a,) and A, isa constant.

Next, expending the function e” and €% at @ =In[-In(l—p;)] and of=In[-In(l-q,)],
respectively, and retaining the first derivative.

ewf = ax,j + bx,jwﬁ (16)

AIMS Mathematics Volume 8, Issue 12, 28465-28487.
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Vg ~
e’k ~ ay,k + by,kvk,

where
m Qe y )
ijl— . +Qm—l+1+ +Qm , a“-:ej(l—a)?), ij:eJ
i 1+ Qi o+ Q) ' :
t I+Rt +"'+Rt , .
:l— —i+l ’ a :euk 1—1)0 , b :euk
o i=1:<[+1i+1+ Ri,++R vk ( <) y.K
Thus,

oL 1
a;/lV = _E [m — Z;n=1(axrj + bxrjwj) - Z§=1 Qj(ax,j + bx,jwj) - Qm(ax,m + bx,m(‘)m)]a

oL
66‘:/2‘/ _E[ — k- 1(ay ke + by rvg) — Yh=1 Ri(ay + by Vi) — Re(ay,c + by, v)],

0
LWVD——[m+t+Za) +Zuk Za) (axJerXJ J) Zuk(ayk+bykuk)

op
_ZQia)i(a XJ J) ZR Uk(ayk+bykuk) Q (ax,m xm m)
=1

_RIUI (ay,t +by,tUt)] ’
o
oo,
o
oa,
g
op

The solutions of likelihood Eq (21) are
d,=(B, - ASC,
%, = (B, - AS)C, :
B=[(DC; - AB,C,)* -4mC;(B[C, - EC}) + AB,C, - DC}](2mC})*

where
m J
szm_zax,j ZQ] X, j Qmaxm’
j=1 j=1
t K
Ay z Z Rkay,k - Rtay,t ’
k=1 k=1
m J

B _ZbXJ J+ZQJ XJWJ+Qm x,m Wi »

j= j=

AIMS Mathematics
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(18)
(19)

(20)

e2y)

(22)
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t

K
= zby,ka + z Rb, v, +Rb, v,
k=1

k=1

C szJ+ZQJ ><J

t K
C,=>b, +> Rb,+Rb,,,
k=1 k=1
m m J
D:zw ZaXJW ZQJ XJ mamem’
i=t j=1 =1
m ) J
E :beijj +ZQbe jWJ +Qm X,m m‘
j=1 j=L
Hence, the AMLE of & is given by
SAML A ) (23)
é,l AML +é,2 AML

where

6AML = _ﬂ ) é/l,AML = exp(é-AMLdl) ) é/Z,AML = eXp(&AMLdZ) .

3.3. Asymptotic confidence interval

It can be seen from Section 3.1 that the MLE of & cannot be given in an explicit form. Therefore

we cannot construct the exact confidence interval. Based on the asymptotically normal property of
maximum likelihood estimation, we construct the ACI of § in this subsection

Denote 6=((,,¢,,0) and 6, = (QA’LML,QA’ >m 0w ) - The observed Fisher information matrix can
be expressed as

_Hll(éML) _HlZ(éML) _H13(éML)
H= _H21(é|v||_) _HZZ(éML) _H23(éML) .

(24)
H3l(éML) _H32 (éML) _H33(éML)

Here,

2 . *20' %’
Hll(e) — 0 L(;liai%;G’ X, y) - _ m Z Q me

1 i=1 (1 e_gx (l—e_glx )2

720" -5 °

H,,(0) = 82L(§1,§2,o-; X Y) =_L i R y_ZU ¥ " - Rtyt—sze—ﬁzy{”
’ 8522 ¢ T (1l-e cn’ )? (1_ef:2y(")2

H,,(0) = 82L(§1,§2,O' X, Y) Zm:X “Inx +¢ ZQ X—o—e—ﬁxi’a In x . é/lQer;o—e—{lxa” Inx,
’ 000 G ey Qe ):
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5

GZL(C:l,é/z,G X, y) Ry gzyiw |ny é’ Rty 42}’1 ny
= Iny. + - i 2Nt Wt t
23( ) 84'2 Zyl yl 4/221 (l e—(zyi )2 (1 e_§2yt )

O*L(¢1&r 0%, Y)
a 2

=—m—“—4lzx-"(lnx) 422y:“<lny.) +§1ZQ.X“’G & (Inx,)?

H..(0) =

+§ZZRV e (Iny,)’ +£,Q, % e (Inx, )’ + &Ry, 7e = (Iny,)*

_QZQXZU T(nx)* (e PO, X e (Inx, ) (1 +em )

1-e %" 1-e™”
RY:7e™ (Iny)*(L+e™")  FRy“e ™ (Iny,)*(A+e ")
—Qiz:l: 1_p %" 1_p -’

H12(9) = HZl(e) =0, H31(‘9) = H13(9) ' H32(9) = H23(¢9) .

Next, the Delta method is used to derive the ACI of &.Let ¢=(4(6,,). 4,6 ).46,))",and

06 4’2 06 _4’1 00
o) = = , ,(0) = = > ,(0) =—=0
Ae) o<, (é/l"'é/z)z 7:(6) g, (£,+¢5) 7(6) oo

According to the Delta method, the estimate of variance Var(5,,) is approximated by Eq (25), where

H™ is the inverse matrix of Fisher information matrix H .

Var(5,, )= ¢ H?p. (25)

Then, the 100(1-1)% ACI of & is present by Eq (26), where Z, is the upper % th quantile

2

of the standardized normal distribution.

Sy — zi«/Var(SML) S+ 2 Var(5,)). (26)
2 2

4. Bayesian estimation

In this section, we assume that ¢, and ¢, are independent random variables and follow gamma
priors. The BEs of £, and ¢, are derived under symmetric entropy loss function and LINEX loss

function.
In Bayesian estimation, selecting prior distribution for unknown parameter is a significant matter.
First, the gamma prior is versatile for adjusting different shapes of the distribution density function.

AIMS Mathematics Volume 8, Issue 12, 28465-28487.
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Second, the gamma prior is relatively simple, and there will not be too complicated computational
issues. Its advantage is to provide conjugacy and mathematical ease. As a result, we investigate the
gamma prior. Then, the prior distributions of ¢, and ¢, are given as

7(&) e exp(-bgy),  a,b >0, 27)

(&) e & exp(-h,8,),  a,,b, > 0. (28)
Denote that {; ~ G(aq,b;) and {, ~ G(a,, by). The joint prior is
72.(4/17 4/2) o 1a171 2&1271 eXp(_blgl - b2§2) . (29)

Therefore, the joint posterior distribution given observation data is

m t
(G0 o X Y) = AL oM e b [ 7l [ [y e
i=1 i=1 (30)

J . K . . Y
[Ta-e= o Ja-e=) Ja-e =) @-e )"
i=1 i=1

and A= [[[7(6. ¢ o XIS 0% Y)d¢dS do
Let p be the estimator of p. The symmetric entropy loss function (Xu et al. [31]) and LINEX

loss function (Varian [32]) are defined as

LS(p!:b): s (31)

™
+
RSHIAS

Le (o, p) =expld(p - p)]-d(p~p) -1 (32)

where d is the hype-parameter of LINEX loss function. Given observations X and Y, the BEs of p

under symmetric entropy loss function and LINEX loss function are presented by Eqs (33) and (34),
where E(-|X,y) denotes the posterior expectation.

5 = E(plxy) ]é
E(p 1%, Y) (33)

s =

pe == I[EE | % V)]
(34)

Thus, based on APT-II censored samples, the BE 5, of & under symmetric entropy loss

function is given by

AIMS Mathematics Volume 8, Issue 12, 28465-28487.
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[E(5|X Y) 12 I
E(6[xY)

j;wjo+wjo+w5ﬂ(§l’§2fal X,y)dg,dl,do ]%
L:oo J-O+oo IO“O 5—172(5:1’4/2,O'| X, y)d é’ld é’zda

t
_{(J~+ooJ-+ooJ- m+al t+a2 (é/l " é/z) 1 m+te b 0,4, ﬁ Xifcrfle—QXfJ H yi*C’*le—é'zllf(r

[

(35)
H(l %’ )Q.[H(l Vi’ ) (= g’ )Qm(l g%’ )thé*ldéfzdo_)
[I ocJ~ OOJ‘ C;eral t+a2 (é/l +é/2)0m+tefb1§1 bzé’ZHXfo' -1 —4'1 Hyfo‘ l =& °
J “7\O — “O\R: X0 — - — E
H(l_e—§1><i )Q. [H(l_e So¥i )R'](l—e $1%m )Qm (1-e St )R‘dé’ldé/zdﬁ] 1}2
i=1 i=1
The BE 5. of & under LINEX loss function is given by
5. =—Lin[EE®
e =~ MEE % y)]
1 FOLAP LI mta - +a,-1 __m+t o—(b+ + —o- —1x
:_Eln[A“.[o IO J‘O Mttt g0 DG -0 (e ! HX 196 _ (36)
i=1

J K
H y—o—l =&Y 7 H (1_ e7§1X;“ )Qi [H (1_ efﬁzyi’” )Ri ](1_ e741X;J )Qm (1_ eflzy(” )Rt d é/ld Csz]
i=1 i=1

It can be seen that both Eqs (35) and (36) involve the ratio of two integrals, and the form of
integral is complex. Hence, we use Lindley’s approximation (Lindley [33]) to compute the
approximate Bayesian estimates. Lindley’s approximation provides a method to obtain an
approximation of the posterior expectation like the following form.

J‘U(Q,Q,U)eu{l G2 XY (6182, ")d(Cl,Cz,G)
J'eL(Q G2 X YT (61,62.0) (e

E[n(¢:, &5, 0) I %, Y] = (37)

In Eq (37), n(¢,,¢,,0) isafunctionof ¢, ¢, and o,and 7 (¢,,&,,0)=Inz(,,<,,0). According to
Lindley’s approximation, the form of posterior expectation (37) can be rewritten as
l * * A *
Eln(¢1. ¢, 0) [ X yl=n+ E[(’hl + 270, )Puy + (11 + 207,70, )Py + (11, + 2470,)

+(175 + 27727[; )02, + (P + 10,0, (L@ + Lo, + Loy + Lpor) (38)
+(10,P01 + 1,05, (L1 + L@, + Loy + Lo ,)]

where

63|_(§l,§2,ax y) 2_m i Qixifsae—gxi mef?m' e
aéll §1 i-1 (1_e—§1x;6) 1- @ rn )3

Llll
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aaL(é/l’ §Z1O- X, y) 2mt +Z R y73o- —eavi” N Rtyt’3ae—§2Yfa

I-222 84/2 42 — (1_e—§zy. )3 (1_e—§2y{")3 ’
~_a-1 *=a2_1—b
AT R R
Lo =Lu=Ly=L,=Ly=L,,=0
_@ZL(é/l,élz,o';X, y) 0 N
Gl
?= 2
0 _PLGLG oY)
0¢;

and ¢; (i,j=12)is the element of ¢.

Under symmetric entropy loss function, we need to approximate E(5|X,y) and E(5|X,Y)

referring Eq (38). Let 7 =n(4,,¢,) be a function of ¢, and ¢,, and we denote

on _0n o'n o'n o'n __ o
= aé/l = ac, T = aé/g 1M = 54’2 1Thy = oCaC, M = 84'26{1.
When the function mentioned in Eq (37) is n=¢,(¢, +¢,)™", the partial derivatives are
é’z _4,1
=73 ="
b6 TG+ G)
—2¢, 66 26,

=773 1 v Ny =" 1 Ny =1

" (é/l + 4/2 )3 2= (gl 4,2)3 # (gl + 412)3 - 2
Therefore,

¢ —C, 4/272'1* 9 4/17[;
E(51xy)= +[ + lou +I - lp
G+ (GHG) G+ (GG (G
& &
T (S - Pilin — 7 Pl
2 G T G
When the function mentioned in Eq (37) is n=¢'(¢, +¢,), the partial derivatives are
- 1 2 -1
771:§ /P! :Zl , 7711:41132 v Th :7 My =0, 7y =1,
Therefore,
_ 1
E(57 % y)=1+ Z +(Z‘§:—: )Py + Z, T+ 5 (4/1 Lo 5 — Cz (”11L111)

The BE &, is given by Eq (43).

(39)

(40)

(41)

(42)
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E@SI%Y) 1

2
E(5_l | X’ Y)] |(§1 ¢p.0)= (51 ML » 42 ML+ C’ML) (43)

S =

Under the LINEX loss function, we only need to approximate E(e*’|x,y) . When

n=exp(—=2 §1) the partial derivatives are

G168,
— _dgz 41 — d{ dgl
ey i) TGy e
L 2dg, A d,
T G e ) -
— _Zdé/l dzé/lz gl
VAT v D rvr
— dgz_dgl d’ 4/14/2 51 —
v R T T v A
Thus,
dc, g, . 204, | diE 2dg,
D) =) S S G ey G ey s
2dg, A 2dg, .. -dg, T
ey "Gy TGty ™ ey Pt G gy 2
The BE &, is given by Eq (46)
5o ==ZIMEE ™ XL oy (46)

5. Monte Carlo simulation

In this section, Monte Carlo simulation is used to evaluate the behavior of different estimators
under different APT-II censored schemes. We take the true values are (<) reu+<5 e+ Orear) = (2,3,5) .
Hence, the true value o, is 0.4000. Consider two priors, namely, Priors 1 and 2. The hyper-
parameters of Prior 1 are (a,,b)=(52) and (a,,b,)=(3,6). Prior 2 is non-informative prior, that is,
a =a, =b =b, =0. Without loss of generality, let T,=x,, and T, =Y,;. On this basis, the trails are

N at 10,000 times. We consider two cases with different censored schemes, which are detailed in
Table 1. The point estimates are compared by average bias (AB) and mean squared error (MSE). The
performance of confidence interval is represented by the average width (AW) and coverage probability
(CP). All the results are displayed in Tables 2-8. It is necessary to select initial values using iteration
method, so we take AMLE §5,,, to substitute for MLE §,, . The algorithm of generating APT-1I censored

AML

data is shown in Algorithm 1. Finally, the AB, MSE and AW are calculated by the following formulas:
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N N N . N
AB:%Z(é} _5real) ° MSE:%Z(& _5real)2 and AW:%z(é‘ivUp_é‘ivlow)'
i-1 i=1 =L

Algorithm 1.

(1) Generate two sets of random numbers (W, ;, W, ,,...,W, ) and (W, ,,W, ,,...,W,,) from U(0,1).

(2) Let v, =w,, " Q@)™ (7=12..m)and v, =W, j“'*R**RF“'"*RFM)’l (j=12,...,t). Set
ux,i =1_Vx,mVx,m—l'"Vx,m—i+1 and uy,j =1_Vy,tvy,t—1"'vy,t—j+1'

(3) Let X =F " (U;;¢irea Orewr) ANA Y, =F (U, ;15 001+ Oren) » Where Fis the CDF of IWD. Then,
(X, Xy,..., X;,) 18 the progressive type-II censored data from IW(¢, .., 0) With censored scheme

(Q.Q,,...Q,) and (Y,,Y,,....Y,) is the progressive type-II censored data from IW(S, .0+ 0 en)
with censored scheme (R,R,,...,R,).

(4) Determine J and K suchthat x; <T,<x,, and y, <T, <Y, .Remove X
Yki2r Yiazreen Ve -

5121 X543 X, and

f (X’ é/l, real ! Greal )
1-F (XJ +1; éll,real ' O-real)
. Then, the censored scheme changes to

(5) Generate the first m—J —lorder statistics from the truncated distribution

and denote them as X, ,, X5, X

J
(Q..Q,,0...,0,Q, =n,-m->"Q) . Similarly, generate the first t—K+1 order statistics from
i=1

f (yv gz,real 'Greal)
1- F(yK+1; gz,real ’O-real)

K
(R, R¢,0,..,0R =n, -t = >"R).
i=1

as  Ye.osYeizr- Yy - Then, the censored scheme changes to

Table 1. The censored schemes.

(n,m  Q (n,,t) R

Case 1 (30,10) QL=(0*8,10*2) (40,20)  Rl=(2*10,0*10)
Q2=(20*1,0*9) R2 = (0*19,20*1)
Q3=((0,5)*5) R3=((0,0,0,0,5)*4)

Case2 (50,20) Ql=(10*10%18,20*1) (50,30)  Rl=(5*2,0%13,5%2,0*13)
Q2= (0*19,30*1) R2 = (0*20,2*10)
Q3=(0*10,2*15) R3=(10*1,0%28,10*1)

Case3 (100,50) Ql=(10*5,0%*45) (150,70) R1=(2*40,0*30)
Q2= (20*1,0*24,30*1,0*24) R2 = (30*1,0*30,50*1,0*38)
Q3= (0*20,50*1,0*29) R3 = (0*45,80*1,0* 24)
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Table 2. The MSEs and ABs of & under Prior 1 based on Case 1.

MSE AB

Censored scheme SAML O:S O¢ SAML 55 Oc

d=3 d=-3 d=3 =-3
Ql,R1 0.0165 0.0495 0.0406 0.0397 0.1129 0.2181 0.2003 0.1957
Q1,R2 0.0064 0.0044 0.0868 0.0291 -0.0152 0.3182 0.3529 0.1627
Q1,R3 0.0060 0.0031 0.0663 0.0331 0.0400 0.2613 0.2569 0.1765
Q2,R1 0.0008 0.0034 0.0031 0.0030 -0.0140 0.0543 0.0514 0.0492
Q2,R2 0.0032 0.0025 0.0034 0.0019 -0.0481 0.0571 0.0532 0.0373
Q2,R3 0.0021 0.0029 0.0025 0.0018 -0.0374 0.0473 0.0447 0.0368
Q3,R1 0.0032 0.0151 0.0137 0.0135 0.0422 0.1189 0.1139 0.1114
Q3,R2 0.0027 0.0078 0.0167 0.0107 -0.0011 0.1285 0.1247 0.0968
Q3,R3 0.0021 0.0185 0.0130 0.0106 0.0130 0.1155 0.1099 0.0973

Table 3. The MSEs and ABs of & under Prior 1 based on Case 2.

MSE AB
Censored scheme 2 3 Oc 5 2 Oc

5AML 55 d -3 d -3 5AML 55 d -3 d -3
Ql,R1 0.0021 0.0096 0.0090 0.0090 0.0385 0.0955 0.0923 0.0922
Q1,R2 0.0008 0.0076 0.0072 0.0061 0.0047 0.0850 0.0824 0.0751
Q1,R3 0.0017 0.0094 0.0088 0.0086 0.0331 0.0944 0.0913 0.0899
Q2,R1 0.0136 0.0320 0.0288 0.0298 0.1113 0.1775 0.1683 0.1709
Q2,R2 0.0029 0.0349 0.0273 0.0222 0.0530 0.1707 0.1640 0.1464
Q2,R3 0.0113 0.0311 0.0281 0.0284 0.1008 0.1749 0.1662 0.1665
Q3,R1 0.0129 0.0318 0.0286 0.0292 0.1068 0.1767 0.1676 0.1685
Q3,R2 0.0035 0.0297 0.0281 0.0203 0.0377 0.1712 0.1661 0.1390
Q3,R3 0.0102 0.0306 0.0276 0.0272 0.0941 0.1731 0.1646 0.1625

Table 4. The MSEs and ABs of 6 under Prior 1 based on Case 3.

MSE AB
Censored scheme A O¢ 3 A O¢

5AML 55 d _3 d __3 5AML 55 d _3 d __3
Ql,R1 3.61E-4 0.0012 0.0011 0.0012 0.0137 0.0318 0.0304 0.0326
Q1,R2 7.16E-4 0.0018 0.0017  0.0019 0.0229 0.0403 0.0389 0.0412
Q1,R3 6.24E-4 1.60E-4 1.56E-4 1.65E-4 -0.0208 0.0013 2.01E-4 0.0019
Q2,R1 0.0052  0.0082 0.0078  0.0083 0.0708 0.0893 0.0872 0.0899
Q2,R2 0.0065 0.0096 0.0092  0.0097 0.0793 0.0972 0.0950 0.0977
Q2,R3 0.0016  0.0038 0.0035  0.0038 0.0373 0.0597 0.0579 0.0601
Q3,R1 0.0024  0.0046 0.0040  0.0046 0.0421 0.0638 0.0620 0.0641
Q3,R2 0.0039  0.0066 0.0063  0.0067 0.0574 0.0775 0.0757 0.0780
Q3,R3 9.39E-4 9.27E-4 8.63 E-4 9.09E-4 -0.0144 0.0205 0.0192 0.0193
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Table 5. The MSEs and ABs of & under Prior 2 based on Case 1.

MSE AB
Censored scheme S 5, jE: s S 3, jE: s 4
Q1,R1 0.0165 0.0179 0.0129 0.0175 0.0385 0.1173 0.0967 0.1177
Q1,R2 0.0064 0.0061 0.0059 0.0059 0.0047 -0.0063 -0.0235 -0.0015
Q1,R3 0.0060 0.0066 0.0044 0.0066 0.0331 0.0447 0.0240 0.0483
Q2,R1 0.0008 0.0009 0.0010 0.0007 0.1113 -0.0162 -0.0204 -0.0100
Q2,R2 0.0032 0.0035 0.0038 0.0027 0.0530 -0.0504 -0.0538 -0.0427
Q2,R3 0.0021 0.0023 0.0025 0.0017 0.1008 -0.0397 -0.0434 -0.0327
Q3,R1 0.0032 0.0032 0.0026 0.0037 0.1068 0.0424 0.0353 0.0480
Q3,R2 0.0027 0.0028 0.0027 0.0027 0.0377 -0.0019 -0.0082 0.0059
Q3,R3 0.0021 0.0022 0.0019 0.0023 0.0941 0.0134 0.0063 0.0201
Table 6. The MSEs and ABs of & under Prior 2 based on Case 2.
MSE AB
Censored scheme SAML 5As O SAML 5As O
d=3 d=-3 d=3 d=-3
Q1,R1 0.0021 0.0021 0.0018 0.0025 0.0385 0.0386 0.0342 0.0433
Q1,R2 0.0008 0.0008 0.0007 0.0009 0.0047 0.0048 0.0009 0.0101
Q1,R3 0.0017 0.0018 0.0015 0.0021 0.0331 0.0340 0.0295 0.0380
Q2,R1 0.0136 0.0141 0.0118 0.0145 0.1113 0.1139 0.1036 0.1161
Q2,R2 0.0029 0.0049 0.0037 0.0053 0.0530 0.0565 0.0465 0.0605
Q2,R3 0.0113 0.0118 0.0097 0.0123 0.1008 0.1026 0.0923 0.1052
Q3,R1 0.0129 0.0134 0.0110 0.0136 0.1068 0.1097 0.0987 0.1111
Q3,R2 0.0035 0.0037 0.0029 0.0040 0.0377 0.0408 0.0313 0.0451
Q3,R3 0.0102 0.0108 0.0087 0.0111 0.0941 0.0964 0.0855 0.0988
Table 7. The MSEs and ABs of 6 under Prior 2 based on Case 3.
MSE AB
Censored scheme S 3, jE: g — S 3, jE: g —
Q1,R1 3.61E-4 3.50E-4 3.11E-4 3.95E-4 0.0137 0.0132 0.0117 0.0149
Q1,R2 7.16E-4 6.92E-4 6.24E-4 7.66E-4 0.0229 0.0223 0.0208 0.0239
Q1,R3 6.24E-4 6.54E-4 7.08E-4 5.76E-4 -0.0208 -0.0215 -0.0228 -0.0196
Q2,R1 0.0052 0.0053 0.0049 0.0055 0.0708 0.0710 0.0688 0.0724
Q2,R2 0.0065 0.0066 0.0062 0.0068 0.0793 0.0798 0.0775 0.0811
Q2,R3 0.0016 0.0016 0.0015 0.0017 0.0373 0.0371 0.0350 0.0387
Q3,R1 0.0024 0.0024 0.0022 0.0025 0.0421 0.0426 0.0407 0.0442
Q3,R2 0.0039 0.0039 0.0037 0.0041 0.0574 0.0574 0.0554 0.0589
Q3,R3 9.39E-4 9.52E-4 9.92E-4 8.85E-4 -0.0144 -0.0151 -0.0168 -0.0131
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Table 8. The CP and AW of 6 (4=0.05).

Censored scheme P AW

Casel Case2 Case3 Casel Case2 Case3
Ql,R1 0.8838 0.9564 0.9993 0.3178 0.2518 0.1287
Q1l,R2 0.8384 0.9075 0.9951 0.3723 0.2999 0.1288
Q1,R3 0.8855 0.9289 0.9976 0.3001 0.2714 0.1315
Q2,R1 0.9681 0.9456 0.9869 0.2493 0.2657 0.1341
Q2,R2 0.8468 0.9702 0.9840 0.3669 0.2500 0.1339
Q2,R3 0.9238 0.9396 09707 0.2783 0.2672 0.1374
Q3,R1 0.9059 0.9422 0.9766 0.2456 0.2599 0.1238
Q3,R2 0.8831 0.9747 09873 0.2831 0.2588 0.1287
Q3,R3 0.8298 0.9657 0.9634 0.2730 0.2588 0.1283

From Tables 2—8, the following conclusions may be drawn:

(1) When the effective sample sizes (M and t) increase, the MSEs of AMLE and BE decrease.
Therefore, enlarging the effective sample size can appropriately enhance the accuracy of the
estimation.

(2) The BEs under Prior 2 perform similarly to the AMLE in terms of MSEs. However, the BEs under
Prior 1 perform worse than AMLE.

(3) Under the same prior, as the sample size increases, the available information increases. Therefore,
the MSEs show a decreasing trend.

(4) Under Prior 1, the BE based on LINEX loss function with d =-3 has better behavior than the
other BEs. Under Prior 2, the performance of all the BEs is comparable.

(5) With the increase of the effective sample sizes, the CPs gradually reach the confidence level of 95%.

6. Real data analysis

In this section, two real data sets are used to validate the feasibility of the proposed method. These
data sets are reported by Nelson [34], indicating the time when the electrodes are broken down by the
insulating fluids at different voltages. X represents the insulating fluid at a voltage of 34kV, and Y
represents the insulating fluid at a voltage of 36kV. The data sets are:

X:0.19,0.78,0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52,
33.91, 36.71, 72.89;

Y :0.35,0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 5.35, 13.77, 25.50.

First, we need to check whether the IWD can fit these data sets. We know that if a random variable
T follows Weibull distribution, X =T follows IWD. Set X =T and Y =Z". The transformed
data sets, Anderson-Darling (A-D) statistics and p-values are presented in Table 9.
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Table 9. The transformed data sets and p-values.

Data sets A-D  p-values
T 0.0137 0.0272 0.0295 0.0308 0.0315 0.0829 0.1209 0.1248 0.6006 0.1132
0.1361 0.1538 0.2062 0.2141 0.2410 0.3165 0.3597 0.7634
1.0417 1.2821 5.2632
Z 0.0392 0.0726 0.1869 0.2506 0.2725 0.3448 0.3690 0.3876 0.3121 0.5858
0.4831 0.5076 0.5917 1.0101 1.0417 1.6949 2.8571

As we can see, the p-values are all greater than a 5% significance level, which means that the
Weibull distribution can fit these datasets T and Z effectively. In other words, the IWD is suitable
for fitting data sets X and Y . Figures 4 and 5 give the probability-probability (P-P) plot and
quantile-quantile (Q-Q) plot to visually show the fitting.

P-P plot (Data T) 6 Q-Q plot (Data T)
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Figure 4. P-P and Q-Q plots for Data T .
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Figure 5. P-P and Q-Q plots for Data Z.
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Next, Table 10 presents the different APT-II censored schemes. Since we cannot obtain any prior
information, we take the hyperparameters of the prior distribution as a =b =a,=b,=0. The
approximate maximum likelithood estimates, the Bayesian estimates under symmetric entropy loss
function and LINEX loss function with d =3 and d =-3, and 95% AClIs are given in Table 11. We
illustrate the existence and uniqueness of MLE through visual representations. Without the loss of
generality, we choose censored scheme 3 in Table 10 to plot, as shown in Figure 6.

71 2.00007
72 1.67647
0 0.617647

Figure 6. The graphs of partial derivatives of the log-likelihood function.

Table 10. Different censored schemes.

Censored scheme Q R

1 (2*5, 0%2, 1*1) (1*5, 0*5)

2 (0*%7, 11*1) (0*9, 5*1)

3 (0*3, 5*1, 0*3, 6*1) (0*4, 5*1, 0*3)

Table 11. The estimates and ACIs of .

A

Censored scheme 8, O O ACI

d=3 d=-3
1 0.5179 0.5228 0.5080 0.5335 (0.3815, 0.6579)
2 0.5055 0.5131 0.4912 0.5244 (0.2808, 0.7303)
3 0.4425 0.4507 0.4315 0.4634 (0.2852, 0.5998)

7. Conclusions
The APT-II censored scheme allows more flexibility during the lifetime test, thereby providing

more control on the test, leading to shorter test time and more failed observations. In this paper, we
investigate the classical and Bayesian estimation of stress-strength reliability based on APT-II censored
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sample for IWD with the same shape but different scale parameters. The MLE can be obtained by the
iteration algorithm. Note that the form of MLE is not explicit, and we propose AMLE and construct
ACI. The BEs are also derived based on gamma prior under symmetric entropy loss function and
LINEX loss function. Lindley’s approximation is used to obtain the approximate Bayesian estimates.
The simulation results show that MLE has the smaller MSE than BE under gamma prior. In addition,
the censored scheme has a significant impact on the estimates. Yan et al. [35] proposed an improved
adaptive progressive type-II censored scheme. Based on this censored scheme, we will consider the
statistical inference of multi-component stress-strength reliability for other distributions, such as
Weighted Exponential distribution and improved Lomax distribution.
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