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1. Introduction

As one of the extensions of artificial neural networks (ANNs), the cellular neural network (CNN)
was initially proposed by Chua and Yang in [1, 2]. The connections of neurons in CNNs are localized,
which means that neurons in CNNs only connect to other neurons in a certain range. This local
connection method not only reduces the connection between neurons, but also improves the efficiency
of parallel computing. Based on this, CNNs can be used in many fields, such as image encryption [3],
parallel computing [2], and so on [4, 5].

However, for some problems which have more complexity and vagueness, the models established
by using general neural networks are often not accurate enough. Hence, the Takagi-Sugeno fuzzy
model (TSFM) [6] as an effective tool to solve this problem has received widespread attention in
recent years. The TSFM is a nonlinear system description approach that employs linear weighted
inequalities and differential equations, and TSFMs can simulate any smooth dynamical system in any
precision which are defined on a compact set by connecting several local linear models with fuzzy
membership functions piecewise smoothly. Based on these properties, very recently, TSFMs have
been used to describe CNNs, e.g., T-S fuzzy CNN (TSFCNN) is presented [7–10]. TSFCNNs combine
the advantages of fuzzy theory and features of neural networks which improve the ability of general
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CNNs to handle complex problems by using the IF-THEN rules. Therefore, TSFCNNs are widely used
in more fields than CNNs.

For a designed neural network model, stability is one of the indicators that determines whether
it has good performance. However, throughout the real simulation procedure, due to the inevitable
existence of disturbances, such as times delays and stochastic disturbances, the stability of TSFCNNs
may not be achieved. Time delays are usually caused by the limited signal transmission speed
of electronic devices, and different ways of operation of electrical devices might result in varying
delays., such as time-varying delays [11], state-dependent delays [12] or distributed delays [13]
etc. In addition, stochastic disturbance is a type of complicated and irregular disruption, and it is
distinct from traditional processes. The intensities of both of the above disturbances can to some
extent make the designed TSFCNN model unable to achieve the expected performance. Hence, the
stability analysis of TSFCNNs have received more and more attention in recent decades [14–18].
In [14], Hou et al. analyzes the global exponential stability of delayed TSFCNNs (DTSFCNNs) by
constructing Lyapunov-Krasovskii functionals as well as using the linear matrix inequality (LMI)
method. In [15, 18], Balasubramaniam et al. derived some criteria based on the LMI method to
ensure the stability of stochastic TSFCNNs (STSFCNNs) and DTSFCNNs, respectively. In [16],
Yang and Sheng discuss the robust stability of uncertain STSFCNNs in detail. Long and Xu further
considered the impacts of impulses based on delayed STSFCNNs (DSTSFCNNs) in [17], and explore
its exponential p-stability by using the property of M-matrix.

It is worth mentioning that the above literature is all about the stability analysis of DTSFCNNs
or STSFCNNs rather than robustness of stability. Robustness is the ability of a system to maintain
its dynamic properties under parameter changes. Once the parameters change beyond a certain fixed
range, the original dynamic properties of the system will change. In the actual modeling process, we
always want to design a model with good robustness. However, few researchers have described the
range of parameter variations that the systems can withstand. For the problem of the robustness of
stability (RoS), the classical methods will no longer be applicable. Hence, Shen et al. first proposed
an inequality method based on the Gronwall-Bellman lemma to explore the robustness of stability
in [19]. Based on this method, many results which worked on the problem of RoS of neural networks
are presented, for example, Si et al. investigated the RoS of the dynamical systems with deviating
arguments based on Gronwall-Bellman lemma in [20, 21]. Moreover, Fang et al. further explore the
RoS of a class of CNNs based on bidirectional associative memory in [22].

However, it should be pointed out that the above studies did not take into account the fuzziness
in the modeling process, and did not explore the robustness of neural networks containing T-S fuzzy
rules. Therefore, in order to fill this gap, this paper mainly analyzes the RoS of perturbed TSFCNNs.
Key works and contributions of this paper are listed below.

• Time delay and random disturbance are two kinds of system disturbances mainly considered
in this paper, both of which are unavoidable in practical modeling. Sufficient conditions are
given in [9, 12, 14] for the stability of systems containing perturbations, but few have explored
the upper bound on the strength of these perturbations. When the values of the disturbances
change, the stability of the system will also change, so it is meaningful to discuss the maximum
value of the disturbance that the system can withstand. The innovation of this paper lies in the
following aspects: 1. This paper establishes a recurrent neural network with T-S fuzzy rules, and
gives the robustness analysis of the model based on the classical Gronwall inequality. 2. The
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constraint relationship between time delay and random disturbance is established, which means
that the relationship between time delay and random disturbance is dynamic. Besides, the results
obtained in this paper extend the results in [19], which means that when there is only one fuzzy
rule in DTSFCNNs or DSTSFCNNs, the results in [19] can be obtained.
• In comparison to [19–21], the subsystems considered in this paper are interconnected by fuzzy

rules, and the parameters of each subsystem are not the same. With the increase of fuzzy rules, the
number of subsystems increases, which greatly enhances the fuzziness of the networks considered
in the literature in dealing with practical problems, and the existence of fuzzy rules also increases
the difficulty of system analysis to a certain extent.
• The methods used in this paper mainly include inequality techniques, random analysis and

algebraic knowledge, so the results obtained in this paper are easy to verify. The results derived
in this paper are helpful for designing TSFCNNs with better performance.

Finally, the organization of this paper is listed below. We introduce the models we considered and
assumptions we needed in Section 2. The problem of the RoS of DTSFCNNs is explored in Section 3.
In Section 4, we discuss the RoS of DSTSFCNNs. And, in Section 5, several examples are provided
to verify the results in this paper.

Notations: Z+ = {a|a = 1, 2, . . . ,w}. R = (−∞,+∞), R+ = (0,+∞), Rw and Rw×v are the sets
of w-dimensional vectors, and w × v dimensional matrices, respectively. || · || denotes the Euclidean
norm of any vectors or matrices. Define (ζ,F, {Ft}t≥0, P) as the complete filtered probability space
containing all P-null sets, where right continuous filtration Ft≥0 meets the usual conditions. Scalar
Brownian movement ς(t) is defined in (ζ,F, {Ft}t≥0, P). L2

F0
([−µ, 0];Rw) is the set which contains all F0

measurable C([−µ, 0];Rw) valued stochastic variables ℏ = {ℏ(ι) : −µ ≤ ι ≤ 0} and sup−µ≤ι≤0 E||ℏ(ι)||2 ≤
∞. E is the expectation operator. µ = max{µ1, µ2, . . . , µn} ∈ R

+, where µ j is a constant delay. AT

represents the transposition of matrix or vector A.

2. Primaries

We consider the delayed CNNs which is in the following form:
żh(t) = − chzh(t) +

n∑
u=1

ahuyu(zu(t)) +
n∑

u=1

bhuyu(zu(t − µu)) + Jh,

zh(t) =ϕh(t), t ∈ [−µ, 0],

(2.1)

where ch represents the rates of hth neuron resetting its potential to the isolated resting state, and ch > 0.
ahu and bhu are the strengths of uth neuron on the hth neuron at time t and t − µu, where µu represents
the transmission delay, which is a positive constant. Jh represents the external bias which impacts the
hth neuron.

Remark 2.1. Time delays are often present in real-world control systems, and there may be delays in
states, control inputs or measurements. Delay will introduce uncertainty and interference, which will
degrade the robustness of the controller. Therefore, the effect of time delay must be considered when
designing the control system.

Let C = diag{c1, c2, . . . , cn}, A = (ahu)n×n, B = (bhu)n×n, y(·) = {y1(·), y2(·), . . . , yn(·)}T , and ν =
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{µ1, µ2, . . . , µn}
T . Then, CNN (2.1) has the following representation:ż(t) = −Cz(t) + Ay(z(t)) + By(z(t − ν)) + J,

z(t) = ϕ(t), t ∈ [−µ, 0].
(2.2)

Assume the equilibrium point is z∗ = {z∗1, z
∗
2, . . . , z

∗
n}, and ρi(t) = zi(t) − z∗i . Then, CNN (2.2) is

equivalent to the following modelρ̇(t) = −Cρ(t) + Ag(ρ(t)) + Bg(ρ(t − ν)),
ρ(t) = ψ(t), t ∈ [−µ, 0],

(2.3)

where g(ρ(t)) = y(ρ(t) + z∗) − y(z∗), g(ρ(t − ν)) = y(ρ(t − ν) + z∗) − y(z∗) and ψ(t) = ϕ(t) − z∗.

Remark 2.2. The circuit implementations of (2.1)–(2.3) can be found in [1, 23].

The following condition is one we assume the function g(·) needs to satisfy:

Assumption 2.1. There is an L > 0 such that

||g(u) − g(v)|| ≤ L||u − v|| (2.4)

holds, where u and v are two states of the CNN (2.3).

Remark 2.3. Since g(ρ(t)) = y(ρ(t) + z∗) − y(z∗), hence, g(0) = 0. Therefore, from Assumption 2.1,
||g(u)|| ≤ L||u|| holds, i.e., the linear growth condition for activation function g(·) is also satisfied.

Remark 2.4. There are many functions that satisfy the Assumption 2.1, such as g(x) = tanh(x), g(x) =
(|x + 1| − |x − 1|)/2 and so on. The selection of activation functions is closely related to the stability of
CNNs. For example, consider the following neural network model

ẋ(t) = −2x(t) + 1.1 f (x(t)) + f (x(t − τ)), (2.5)

where τ = 3. We take the activation functions as f (x) = tanh(x) and f (x) = (|x + 1| − |x − 1|)/2,
respectively. It can be seen from Figure 1 that when the model has different activation functions, its
convergence rate to reach the stable state is affected.
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Figure 1. States of system (2.5) with different activation functions.
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By applying fuzzy IF-THEN rules to the CNN (2.3), the following DTSFCNN model can be
obtained:

Plant Rule k :
IF ϖ1(t) is υk

1 and ϖ2(t) is υk
2 and . . . and ϖm(t) is υk

m

THENρ̇(t) = −Ckρ(t) + Akg(ρ(t)) + Bkg(ρ(t − ν)),
ρ(t) = ψ(t), t ∈ [−µ, 0], k = 1, 2, . . . , l,

(2.6)

where ϖ j(t) and υk
j are the premise variable and the fuzzy set respectively. l represents the amount of

fuzzy IF-THEN rules. Ck, Ak, Bk are constant matrices.

Remark 2.5. By combining T-S fuzzy logic with nonlinear differential equations, the described system
simulates a smooth system with arbitrary precision by using fuzzy rules to connect several nonlinear
models with fuzzy membership functions piecewise and smoothly on compact sets.

Remark 2.6. Compared with the existing literature [19–21], the system with T-S fuzzy logic considered
in this paper is composed of multiple sets of nonlinear systems connected by T-S fuzzy logic, and the
parameters of each nonlinear system are not fixed, which can more accurately describe the changes of
system parameters brought by fuzziness during the operation of the actual dynamic system.

The DTSFCNN (2.6) after being defuzzied is shown as follows:

ρ̇(t) =
l∑

k=1

Ωk(ϖ(t)){−Ckρ(t) + Akg(ρ(t)) + Bkg(ρ(t − ν))}, (2.7)

where ϖ(t) = {ϖ j(t)}1×m and

Ωk(ϖ(t)) =
γk(ϖ(t))∑l

k=1 γk(ϖ(t))
, γk(ϖ(t)) =

m∏
j=1

υk
j(ϖ j(t)). (2.8)

Moreover, Ωk(ϖ(t)) represents the averaged weight of the rules. υk
j(ϖ j(t)) is the grade of the

membership function of ϖ j(t) in υk
j. From fuzzy set theory, we can get

γk(ϖ(t)) ≥ 0,
l∑

k=1

γk(ϖ(t)) > 0, (2.9)

and

Ωk(ϖ(t)) ≥ 0,
l∑

k=1

Ωk(ϖ(t)) = 1, (2.10)

where k = 1, 2, . . . , l.
When µ = 0, DTSFCNN (2.6) degenerates into the following TSFCNN.

AIMS Mathematics Volume 8, Issue 12, 31118–31140.



31123

Plant Rule k :
IF ϖ1(t) is υk

1 and ϖ2(t) is υk
2 and . . . and ϖm(t) is υk

m

THENκ̇(t) = −Ckκ(t) + Akg(κ(t)) + Bkg(κ(t)),
κ(t0) = ψ(t0), k = 1, 2, . . . , l.

(2.11)

Then, we can get the following defuzzied output of the above TSFCNN.

κ̇(t) =
l∑

k=1

Ωk(ϖ(t)){−Ckκ(t) + Akg(κ(t)) + Bkg(κ(t))}. (2.12)

Next, we give the definition of global exponential stability of system (2.7).

Definition 2.1. A DTSFCNN (2.7) is globally exponentially stable (GES) if

||ρ(t)|| ≤ α exp(−β(t − t0)) sup
s∈[t0−µ,t0]

||ρ(s)|| (2.13)

holds, where α, β are positive constants.

Remark 2.7. When µ = 0, system (2.7) will degenerate into the ideal delay-free system (2.12), and
Definition 2.1 can be rewritten as ||ρ(t)|| ≤ α exp(−β(t − t0))||ρ(t0)||. In this paper, unless otherwise
stated, TSFCNNs (2.12) are GES, i.e., ||κ(t)|| ≤ α exp(−β(t − t0))||κ(t0)|| holds ∀t > t0.

Another assumption is needed to obtain our major results.

Assumption 2.2. There are positive constants α, β and ð such that

2m2 exp(2(m1 + m2)ð) + α exp(−βð) < 1 (2.14)

holds, where m1 =
∑l

k=1 ||Ck|| + L
∑l

k=1 and m2 =
∑l

k=1 ||Bk||.

3. Robustness analysis of the exponential stability of DTSFCNNs

Next, let us analyze definition of global exponential stability of DTSFCNNs (2.6) first.

Theorem 3.1. Let Assumptions 2.1 and 2.2 hold, then a DTSFCNN (2.6) is GES when µ ≤ min{ð/2, µ̂},
where µ̂ satisfies the following equation.

m2

{
µ̂[α/β(m1 + m2) + m2] + 2

}
exp
{
2ð
[
m1 + m2

+ m2µ̂(m1 + m2)
]}
+ α exp(−β(ð − µ̂)) = 1, (3.1)

where ð > lnα/β, m1 =
∑l

k=1 ||Ck|| +
∑l

k=1 L||Ak||, and m2 =
∑l

k=1 L||Bk||.

AIMS Mathematics Volume 8, Issue 12, 31118–31140.



31124

Proof. From (2.6) and (2.11),

κ(t) − ρ(t) =
∫ t

t0

l∑
k=1

Ωk(ϖ(ς))
{
−Ck

(
κ(ς) − ρ(ς)

)
+ Ak

(
g(κ(ς)) − g(ρ(ς))

)
+ Bk

(
g(κ(ς)) − g(ρ(ς − ν))

)}
dς. (3.2)

According to (2.10), we can get Ωk(ϖ(t)) ≤ 1. Therefore,

||κ(t) − ρ(t)|| ≤
∫ t

t0

{
(

l∑
k=1

||Ωk(ϖ(ς))Ck|| + L
l∑

k=1

||Ωk(ϖ(ς))Ak||)

× ||κ(ς) − ρ(ς)|| + L
l∑

k=1

||Ωk(ϖ(ς))Bk||||κ(ς) − ρ(ς − ν)||
}
dς

≤

∫ t

t0
m1||κ(ς) − ρ(ς)|| + m2||κ(ς) − ρ(ς − ν)||dς

≤

∫ t

t0
(m1 + m2)||κ(ς) − ρ(ς)|| + m2||ρ(ς) − ρ(ς − ν)||dς, (3.3)

where m1 =
∑l

k=1 ||Ck|| +
∑l

k=1 L||Ak||, and m2 =
∑l

k=1 L||Bk||.
Since

ρ(ς) − ρ(ς − ν) ≤
∫ ς

ς−µ

ρ̇(s)ds, (3.4)

therefore,

||ρ(ς) − ρ(ς − ν)|| ≤
∫ ς

ς−µ

||ρ̇(s)||ds

≤

∫ ς

ς−µ

m1||ρ(s)|| + m2||ρ(s − ν)||ds. (3.5)

Thus, when t > t0 + µ,∫ t

t0+µ
||ρ(ς) − ρ(ς − ν)||dς

≤

∫ t

t0+µ

∫ ς

ς−µ

m1||ρ(s)|| + m2||ρ(s − ν)||dsdς

≤

∫ t

t0

∫ min{s+µ,t}

max{t0+µ,s}
m1||ρ(s)|| + m2||ρ(s − ν)||dςds

≤µ

∫ t

t0
m1||ρ(s)|| + m2||ρ(s − ν)||ds

≤µ

∫ t

t0
m1||ρ(s) − κ(s)||ds + µ

∫ t

t0
m1||κ(s)||ds + µ

∫ t

t0
m2||ρ(s − ν)||ds
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≤m1µ

∫ t

t0
||ρ(s) − κ(s)||ds + m1µ

α

β
sup

1
||κ(s)|| + m2µ sup

1
||ρ(s)|| + m2µ

∫ t

t0
||ρ(s)||ds

≤µ(m1 + m2)
∫ t

t0
||ρ(s) − κ(s)||ds + µ[α/β(m1 + m2) + m2] sup

1
||ρ(s)||, (3.6)

where sup1 = sups∈[t0−µ,t0].
On the other hand, ∫ t0+µ

t0
||ρ(ς) − ρ(ς − ν)||dς ≤ sup

2
||ρ(s)|| + sup

1
||ρ(s)||, (3.7)

where sup2 = sups∈[t0,t0+µ].
Thus, we have∫ t

t0
||ρ(ς) − ρ(ς − ν)||dς

≤µ(m1 + m2)
∫ t

t0
||ρ(s) − κ(s)||ds + µ[α/β(m1 + m2) + m2] sup

1
||ρ(s)||

+ sup
2
||ρ(s)|| + sup

1
||ρ(s)||

≤µ(m1 + m2)
∫ t

t0
||ρ(s) − κ(s)||ds +

{
µ[α/β(m1 + m2) + m2] + 2

}
sup

3
||ρ(s)||, (3.8)

where sup3 = sups∈[t0−µ≤t≤t0+µ].
Then, from (3.3),

||κ(t) − ρ(t)||

≤

{
m1 + m2 + m2µ(m1 + m2)

} ∫ t

t0
||ρ(s) − κ(s)||ds

+ m2

{
µ[α/β(m1 + m2) + m2] + 2

}
sup

3
||ρ(s)||

=:m3

∫ t

t0
||ρ(s) − κ(s)||ds + m4 sup

3
||ρ(s)||. (3.9)

By applying the Gronwall-Bellman lemma, when t ≤ t0 + 2ð,

||κ(t) − ρ(t)|| ≤ m4 exp(2ðm3) sup
3
||ρ(s)||. (3.10)

Therefore, for t0 + µ ≤ t ≤ t0 + 2ð,

||ρ(t)|| ≤||κ(t) − ρ(t)|| + ||κ(t)||
≤m4 exp(2ðm3) sup

3
||ρ(s)|| + α exp(−β(t − t0)) sup

1
||ρ(s)||. (3.11)

Notice that µ ≤ ð/2, and thus, for t0 − µ + ð ≤ t0 − µ + 2ð, we have

||ρ(t)|| ≤
{
m4 exp(2ðm3) + α exp(−β(ð − µ))

}
sup

4
||ρ(s)||. (3.12)
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where sup4 = sups∈[t0−µ≤t≤t0−µ+ð].
Let F(µ) = m4 exp(2ðm3) + α exp(−β(ð − µ)). Then, we can easily get that F is strictly increasing

with respect to µ, and F(0) < 1. Hence, there must be a µ̂ such that F(µ̂) = 1 holds, i.e., when
µ ≤ min{ð/2, µ̂}, F(µ) < 1 holds.

Take Γ = − ln F/ð. Then, from (3.12), we can obtain

sup
5
||ρ(s)|| ≤ exp(−Γð) sup

4
||ρ(s)||, (3.13)

where sup5 = sups∈[t0−µ+ð,t0−µ+2ð].
Then, there is a ξ ∈ Z+ such that

λ = sup
s∈[t0+ξð−µ,t0+(ξ+1)ð−µ]

||ρ(s)||

≤ exp(−Γð) sup
s∈[t0+(ξ−1)ð−µ,t0+ξð−µ]

||ρ(s)||

. . .

≤ exp(−Γξð) sup
5
||ρ(s)||. (3.14)

Clearly, for ∀t > t0 + ð − µ,

||ρ(s)|| ≤ exp(Γð) exp(−Γ(t − t0))λ. (3.15)

We can verify this is also true for t0 ≤ t ≤ t0 + ð − µ. Thus, the DTSFCNN (2.6) is GES when
µ < min{ð/2, µ̂}. □

Remark 3.1. Compared with the existing results [16, 19–21], this paper combines T-S fuzzy rules
with nonlinear differential equations, which makes the system similar to a switching system, where
each fuzzy rule corresponds to a definite subsystem. On this basis, the addition of fuzzy rules allows
nonlinear systems to be fitted using combinations of linear systems.

4. Robustness analysis of the stability of stochastic DTSFCNNs

This section will mainly consider the RoS of TSFCNN under the combined effects of time delays
and stochastic disturbances.

We consider the following DSTSFCNNs under the same fuzzy rules of DTSFCNNs (2.6).

Plant Rule k :
IF ϖ1(t) is υk

1 and ϖ2(t) is υk
2 and . . . and ϖm(t) is υk

m

THENd℘(t) =
[
−Ck℘(t) + Akg(℘(t)) + Bkg(℘(t − ν))

]
dt + ℓHk℘(t)dς(t),

℘(t) = ψ(t), t ∈ [−µ, 0], k = 1, 2, . . . , l,
(4.1)

where ℓ represents the intensity of stochastic disturbances. Hk is a constant matrix.
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Remark 4.1. Since the errors are generated by rounding when doing numerical calculations, although
these errors are determined, they are actually impossible to calculate. The way to overcome this
phenomenon is to model these errors as small random perturbations of the system, for example, large-
scale deterministic systems used to model climate evolution may exhibit “noise-like” characteristics
in some subsystems on short time scales. By using noise to model these subsystems, calculations can
be greatly accelerated. Hence, under normal circumstances, random factors must be considered in the
system to be more realistic.

Similarly, the defuzzied model is as follows.

d℘(t) =
l∑

k=1

Ωk(ϖ(t))
{[
−Ck℘(t) + Akg(℘(t)) + Bkg(℘(t − ν))

]
dt + ℓHk℘(t)dς(t)

}
. (4.2)

Next, we introduce the definition exponential stability of DSTSFCNN (4.1) in mean square.

Definition 4.1. DSTSFCNN (4.1) is mean square exponentially stable (MSES) if there exist ω > 0,
ϱ > 0, such that

E||℘(t)||2 ≤ ω2 sup
s∈[t0−µ,t0]

E||℘(s)||2 exp(−2ϱ(t − t0)) (4.3)

holds.

Theorem 4.1. Let Assumption 2.1 hold, DSTSFCNN (4.1) is MSES if |ℓ| < ℓ̂/
√

2 and µ < min{ð/2, µ̂},
where ℓ̂ and µ̂ satisfies two equations listed below, respectively.

12ℓ̂2m2
5 exp
{
2ð
[
6ð(m2

1 + 2m2
2) + 6ℓ̂2m2

5

]}
+ 2α2 exp(−2βð) = 1, (4.4)

2
{
12ðm2

2

[
µ̂[3µ̂m2

1 + 3m2
5ℓ̂

2/2]α2/β + 3µ̂2m2
2 + 4µ̂

]
+ 3ℓ̂2m2

5

}
× exp

{
2ð
[
6ð(m2

1 + 2m2
2) + 3ℓ̂2m2

5 + 12ðm2
2(6µ̂(µ̂m2

1 + m2
5ℓ̂

2/2))
]}

+2α2 exp(−2β(ð − µ̂)) = 1, (4.5)

where m1 and m2 are defined in Theorem 3.1, and m5 =
∑l

k=1 ||Hk||.

Proof. From (4.2) and (2.7), we can obtain

℘(t) − κ(t) =
∫ t

t0

l∑
k=1

Ωk(ϖ(s))
{
−Ck(℘(s) − κ(s)) + Ak(g(℘(s)) − g(κ(s)))

+ Bk(g(℘(s − ν)) − g(κ(s)))
}
ds +

∫ t

t0

l∑
k=1

Ωk(ϖ(t))
[
ℓHk℘(s)

]
dς(s). (4.6)

Thus,

||℘(t) − κ(t)|| ≤
∫ t

t0
m1||℘(s) − κ(s)|| + m2||℘(s − ν) − κ(s)||dt +

∫ t

t0
m5ℓ||℘(s)||dς(s), (4.7)
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where m5 =
∑l

k=1 ||Hk||.
By utilizing the Itô formula, when t ≤ t0 + 2ð,

E||℘(t) − κ(t)||2

≤6ðm2
1

∫ t

t0
E||℘(s) − κ(s)||2ds + 6ðm2

2

∫ t

t0
E||℘(s − ν) − κ(s)||2ds

+ 3ℓ2m2
5

∫ t

t0
E||℘(s)||2ds

≤6ð(m2
1 + 2m2

2)
∫ t

t0
E||℘(s) − κ(s)||2ds + 12ðm2

2

∫ t

t0
E||℘(s − ν) − ℘(s)||2ds

+ 6ℓ2m2
5

∫ t

t0
E||℘(s) − κ(s)||2 + E||κ(s)||2ds

≤

[
6ð(m2

1 + 2m2
2) + 6ℓ2m2

5

] ∫ t

t0
E||℘(s) − κ(s)||2ds

+ 12ðm2
2

∫ t

t0
E||℘(s − ν) − ℘(s)||2ds + 6ℓ2m2

5

∫ t

t0
E||κ(s)||2ds. (4.8)

When t > t0 + µ,∫ t

t0+µ
E||℘(s − ν) − ℘(s)||2ds

≤

∫ t

t0+µ

∫ s

s−µ

{[
3µm2

1 + 3ℓ2m2
5

]
E||℘(s)||2 + 3µm2

2E||℘(s − ν)||2
}
dϑds

≤

∫ min{ϑ+µ,t}

max{ϑ,t0+µ}

∫ t

t0

{[
3µm2

1 + 3ℓ2m2
5

]
E||℘(s)||2 + 3µm2

2E||℘(s − ν)||2
}
dsdϑ

≤µ
[
3µm2

1 + 3ℓ2m2
5

] ∫ t

t0
E||℘(s)||2ds + 3µ2m2

2

∫ t

t0
E||℘(s − ν)||2ds. (4.9)

Let m6 = 6µ
[
µm2

1 + ℓ
2m2

5

]
, and m7 = 3µ2m2

2. Thus, we can obtain

∫ t

t0+µ
E||℘(s − ν) − ℘(s)||2ds

≤m6

∫ t

t0
E||℘(s) − κ(s)||2ds + m6

∫ t

t0
E||κ(s)||2ds + m7

∫ t0

t0−µ
E||℘(s)||2ds

≤m6

∫ t

t0
E||℘(s) − κ(s)||2ds +

(
m6
α2

2β
+ m7

)
sup

1
E||℘(s)||2, (4.10)

where sup1 = sups∈[t0−µ,t0].
In addition, ∫ t0+µ

t0
E||℘(s − ν) − ℘(s)||2ds ≤ 2µ sup

1
E||℘(s)||2 + 2µ sup

2
E||℘(s)||2, (4.11)
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where sup2 = sups∈[t0,t0+µ].
Hence,

E||℘(t) − κ(t)||2

≤

[
6ð(m2

1 + 2m2
2) + 6ℓ2m2

5

] ∫ t

t0
E||℘(s) − κ(s)||2ds

+ 12ðm2
2

∫ t

t0
E||℘(s − ν) − ℘(s)||2ds + 6ℓ2m2

5

∫ t

t0
E||κ(s)||2ds

≤

[
6ð(m2

1 + 2m2
2) + 6ℓ2m2

5

] ∫ t

t0
E||℘(s) − κ(s)||2ds

+ 12ðm2
2

[
m6

∫ t

t0
E||℘(s) − κ(s)||2ds +

(
m6
α2

2β
+ m7

)
sup

1
E||℘(s)||2

+ 4µ sup
3

E||℘(s)||2
]
+ 6ℓ2m2

5

∫ t

t0
E||κ(s)||2ds

=:m8

∫ t

t0
E||℘(s) − κ(s)||2ds + m9 sup

3
E||℘(s)||2, (4.12)

where

m8 = 6ð(m2
1 + 2m2

2) + 6ℓ2m2
5 + 12ðm2

2m6,

m9 = 12ðm2
2(m6α

2/2β + m7 + 4µ) + 3ℓ2m2
5α

2/β,

sup
3
= sup

s∈[t0−µ,t0+µ]
.

Therefore, when t0 + µ ≤ t ≤ t0 + 2ð, using the Gronwall-Bellman lemma, we can get

E||℘(t) − κ(t)||2 ≤ m9 exp(2m8ð) sup
3

E||℘(s)||2. (4.13)

Then, for t0 − µ + ð ≤ t ≤ t0 − µ + 2ð

E||℘(t)||2 ≤2E||℘(t) − κ(t)||2 + 2E||κ(t)||2

≤2
[
m9 exp(2m8ð) + α2 exp(−2β(ð − µ))

]
sup

4
E||℘(s)||2, (4.14)

where sup4 = sups∈[t0−µ,t0−µ+ð].
Select ℵ(µ, ℓ) = m9 exp(2m8ð)+α2 exp(−2β(ð−µ)). Then, ℵ(0, ℓ) is strictly increasing with respect

to ℓ. Hence, there exists an ℓ̂ > 0 such that ℵ(0, ℓ̂) = 1. Besides, when ℓ =
√

2, ℵ(µ, ℓ/
√

2) is also
strictly increasing for µ, and thus there exists a µ̂ such that ℵ(µ̂, ℓ̂/

√
2) = 1. That is, ℵ(µ, ℓ) < 1 when

µ ≤ min{ð/2, µ̂} and ℓ ≤ ℓ̂/
√

2.
Furthermore, the remaining part of the proof is exactly the same with Theorem 3.1, and hence it is

omitted here. Hence, a DSTSFCNN (4.1) is MSES when µ ≤ min{ð/2, µ̂}, and ℓ ≤ ℓ̂/
√

2. □

Remark 4.2. Figure 2 shows the detailed analysis steps of Theorems 3.1 and 4.1. In addition, in the
derivation of Theorem 4.1, due to the existence of random perturbations, the number of terms of the
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system increases, which also makes the inequality used in Theorem 4.1 and Theorem 3.1 have some
differences, so Theorem 4.1 is not a simple superposition of Theorem 3.1. Besides, if there is only one
fuzzy rule in (2.3) and (4.2), then (2.3) and (4.2) can be seen as certain neural networks, and we can
obtain the Theorems 2 and 3 of [19] respectively.

DTSFCNN(2.6) TSFCNN(2.6) 
Stochastic 

DTSFCNN(2.6) 
Time delay 

Stochastic disturbance 

Defuzzy 

    

+ - + - 

Separating the stochastic 

disturbance intensity  by 

using Ito formula. 

Separating the time delay  by using inequality technique and integral properties. 

Appling Gronwall-Bellman Lemma, mathematical induction and the definition of exponential stability, 

transcendental equations about the disturbance factors are obtained. 

The upper bound  can be 

obtained by solving the 

transcendental equation. 

(Theorem 1) 

 and  can be obtained 

by solving the binary 

transcendental equation. 

(Theorem 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The steps of the analysis of Theorems 1 and 2.
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Remark 4.3. Table 1 provides a comparison of the existing literature with this paper. Elements to be
compared are time delays (T-D), stochastic disturbances (S-D), RoS, T-S type fuzzy model (T-S fuzzy),
global asymptotic stability (GAS), GES and MSES.

Table 1. The differences between this paper and several existing literature.

T-S fuzzy T-D S-D RoS GAS GES MSES
Singh et al. [9] (2021) - ✔ - - - - -
Li et al. [12] (2022) - ✔ - - ✔ - -
Almarri et al. [13] (2022) - ✔ - - - - -
Si et al. [20] (2021) - - ✔ ✔ - ✔ ✔

Wenxiang et al. [22] (2023) - - ✔ ✔ - ✔ ✔

Zhang et al. [24] (2023) - - ✔ ✔ - ✔ ✔

This paper ✔ ✔ ✔ ✔ - ✔ ✔

5. Examples

Example 1. We take the following DTSFCNN model into account:

Plant Rule 1 :
IF ϖ1(t) is υ1

1 and ϖ2(t) is υ1
2

THENρ̇(t) = −C1ρ(t) + A1g(ρ(t)) + B1g(ρ(t − ν)),
ρ(t) = ψ(t), t ∈ [−µ, 0],

Plant Rule 2 :
IF ϖ1(t) is υ2

1 and ϖ2(t) is υ2
2

THENρ̇(t) = −C2ρ(t) + A2g(ρ(t)) + B2g(ρ(t − ν)),
ρ(t) = ψ(t), t ∈ [−µ, 0],

(5.1)

where

C1 =

[
1 0
0 1.2

]
,C2 =

[
1.1 0
0 1

]
, A1 =

[
0.01 −0.01
0.01 −0.01

]
,

A2 =

[
−0.01 0.01
0.01 0.01

]
, B1 =

[
0.01 0.01
0.01 −0.01

]
, B2 =

[
−0.01 −0.01
−0.01 0.01

]
.

Taking the follow functions as the fuzzy membership functions:

Ω1(ϖ(t)) =
γ1(ϖ(t))∑2

k=1 γk(ϖ(t))
, Ω2(ϖ(t)) =

γ2(ϖ(t))∑2
k=1 γk(ϖ(t))

,

where ℏ1 = ρ1(t) + 3, ℏ2 = ρ2(t) + 3, and

γ1(ϖ(t)) = exp
[
−
ℏ2

1

1.4426

]
exp
[
−
ℏ2

2

1.4426

]
,
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γ2(ϖ(t)) = exp
[
−
ℏ2

1

1.4426

]
exp
[
−

(ℏ2 − 6)2

1.4426

]
.

Let g(·) = tanh(·), α = 1, β = 0.9, ð = 0.2 and L = 1. Then, we can obtain that

0.0566 exp(0.9450) + exp(−0.18) = 0.9808 < 1, (5.2)

and from Theorem 3.1, we have

(0.075µ̂ + 0.0566) exp(0.4(2.3624 + 0.0668µ̂)) + exp(−0.9(0.2 − µ̂)) = 1. (5.3)

Therefore, we can get that µ̂ = 0.0201 by solving Eq (5.3). Thus, the DTSFCNN (5.1) is GES when
µ < min{ð/2, µ̂}.

Figure 3 shows the relationship between the states of the DTSFCNN (5.1) and the membership
functions Ωk(ϖ(t)). We can find that, as the state values decrease, the values of both membership
functions tend to approach 0.5. In Figure 4, we choose µ = 0.015 < 0.0201, and then the DTSFCNN
is GES.

Figure 3. Values of membership functions Ωk(ϖ(t)).

Figure 4. The states of the DTSFCNN (5.1) with µ = 0.015 for different initial values.
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Example 2. The DSTSFCNN model we consider is of the following form:

Plant Rule 1 :
IF ϖ1(t) is υ1

1 and ϖ2(t) is υ1
2

THENd℘(t) =
[
−C1℘(t) + A1g(℘(t)) + B1g(℘(t − ν))

]
dt + ℓH1℘(t)dς(t),

℘(t) = ψ(t), t ∈ [−µ, 0],

Plant Rule 2 :
IF ϖ1(t) is υ2

1 and ϖ2(t) is υ2
2

THENd℘(t) =
[
−C2℘(t) + A2g(℘(t)) + B2g(℘(t − ν))

]
dt + ℓH2℘(t)dς(t),

℘(t) = ψ(t), t ∈ [−µ, 0],
(5.4)

where membership function Ωk(ϖ(t)) is the same as that in Example 1.
Accordingly, the following is the defuzzied DSTSFCNN (5.4).

d℘(t) =
l∑

k=1

Ωk(ϖ(t))
{[
−Ck℘(t) + Akg(℘(t)) + Bkg(℘(t − ν))

]
dt + ℓHk℘(t)dς(t)

}
, (5.5)

where

C1 =

[
1 0
0 1

]
,C2 =

[
1 0
0 1

]
, A1 =

[
−0.01 0.01
−0.01 −0.01

]
, A2 =

[
−0.01 0.01
0.01 0.01

]
,

B1 =

[
0.01 −0.01
0.01 −0.01

]
, B2 =

[
−0.01 0.01
0.01 0.01

]
,H1 =

[
0.1 −0.1
0.1 0.1

]
,H2 =

[
0.1 0.1
0.1 0.1

]
.

Take α = 1, β = 0.9, ð = 0.4 and L = 1. Then, we can get the following two equations from
Theorem 4.1:

1.92ℓ̂2 exp(7.9032 + 0.7680ℓ̂2) + 0.9735 = 1, (5.6)

and {
0.0112

[
1.1111µ̂[12.3418µ̂ + 0.24ℓ̂2] + 0.0035µ̂2 + 4µ̂

]
+ 1.0667ℓ̂2

}
× exp

{
7.9032 + 0.3840ℓ̂2 + 0.0045(6µ̂(4.1189µ̂ + 0.08ℓ̂2))

}
+ 2 exp(−1.8(0.4 − µ̂)) = 1. (5.7)

Take ζ(µ, ℓ) = ℵ(µ, ℓ) − 1, ζ̂(ℓ) = ℵ(0, ℓ) − 1 and ζ̄(µ) = ℵ(µ, ℓ̂/
√

2) − 1. Then, the problem of
solving Eqs (5.6) and (5.7) can be transformed into finding the zero point of functions ζ̂(ℓ) and ζ̄(µ).
In addition, Figure 5 shows the values of functions ζ(µ, ℓ), ζ̂(ℓ) and ζ̄(µ), respectively.
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Figure 5. Values of functions ζ(µ, ℓ), ζ̂(ℓ) and ζ̄(µ).

From Figure 5b,c and Eqs (5.6) and (5.7), we can easily obtain that ℓ̂ = 0.0030 and µ̂ = 1.0777 ×
10−4. This means that the system can remain globally exponentially stable when the perturbation
intensity is less than the upper bounds derived in this paper.

In Figure 6, we take ℓ = 0.0001 < 0.003 and µ = 0.0001 < 1.0777 × 10−4, and hence, the states
of (5.5) with different initial values are MSES. Figure 7 depicts the states of (5.5) in the sense of mean
square. When time delay and stochastic noise intensity are all bigger than the results we derive, that is,
when ℓ = 0.01 and µ = 0.001, (5.5) exhibits unstable behavior and cannot maintain global exponential
stability. This can easily be seen in Figure 8.
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Figure 6. The states of (5.5) with ℓ = 0.0001, µ = 0.0001 for different initial values.
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Figure 7. The values of (5.5) with ℓ = 0.0001, µ = 0.0001 in the sense of mean square.
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Figure 8. The states of (5.5) with µ̂ = 0.001, ℓ̂ = 0.01 for different initial values.

Figures 9 and 10 show that when the strength of one of the disturbance factors is greater than the
upper bound derived by Theorem 4.1, the system still cannot maintain global exponential stability.
Therefore, it can be seen that the system can maintain exponential stability only when the strength
of both disturbances is smaller than the upper bound derived in this paper. This also fully proves the
validity of the results obtained in this paper.
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Figure 9. The states of (5.5) with µ̂ = 0.0001, ℓ̂ = 0.01 for different initial values.
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Figure 10. The states of (5.5) with µ̂ = 0.1, ℓ̂ = 0.0001 for different initial values.

Remark 5.1. These examples show that if the requirements in Theorems 3.1 and 4.1 are met, the
perturbed systems are globally exponentially stable. The transcendental equations satisfied by the
maximum delay and maximum noise intensity are derived by inequality technology, and they can be
easily solved by MATLAB, so the conditions in the theorem are easy to verify. In addition, Figure 11
shows the brief calculation process of Examples 1 and 2.
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Figure 5(b) 

Figure 5(a) 

Figure 5(c) 
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solving (5.6) and (5.7). 
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ˆ   

Exponential stable Not exponential stable 

Figure 11. The calculation process of Examples 1 and 2.

Remark 5.2. Since the inequality technique is mainly used in this paper, error is inevitable. Therefore,
the upper bound of the perturbation obtained in this paper is only a sufficient condition for the system
to maintain exponential stability. Furthermore, due to the monotonically increasing nature of the
exponential function, this leads to the fact that Assumption 2.2 is not easily satisfied. Future research
will focus on using the new inequalities to weaken the conservativeness of Assumption 2.2 and further
derive more accurate upper bounds of perturbations.
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6. Conclusions

In short, we analyze the robustness of the stability of recurrent neural networks with T-S fuzzy
rules. First, we decouple the proposed neural network models. Second, we discuss the maximum
delay length and maximum noise intensity of DTSFCNNs and DSTSFCNNs by using the inequality
technique, stochastic analysis and algebraic methods. Moreover, numerical examples show that the
disturbed system can still maintain exponential stability when the intensity of the perturbations is lower
than the results derived in this paper.

Future research may concentrate on merging well-known methodologies such as the LMI method,
Lyapunov theory, and so on to lessen the conservativeness of this work. Besides, on the basis of this
paper, we can continue to consider the uncertainties in the modeling, such as deviating parameters and
Markov switching. We can also continue to consider more complex neural network models, such as
higher-order neural networks, neutral neural networks, etc.
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