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Nomenclature
Iν Riemann-Liouville fractional integral of order ν
Γ(.) Gamma function
R+ Positive real numbers
RLDν Riemann-Liouville fractional derivative
N The natural numbers
LCDν Liouville-Caputo fractional derivative of order ν
C Constant number
Chm(t) Changhee polynomials
Chm Changhee numbers
Ch∗m(t) Appell type Changhee polynomials
⌈ν⌉ The smallest integer number bigger than or equal to ν
Vk The water volume of the lake k
ψk(t) The pollutant count in the lake k
rik(t) The pollutant rate in the lake k flows into the lake i at time t
α The average pollutant input concentration
β The size of fluctuations
ω The fluctuations’s frequency.

1. Introduction

Themodel’spurpose is toexplain thecontaminant levels inasystemthatconsistsof three lakes [1,2], as
showninFigure1. With interconnected channels acting as pipelines with specific flow directions
between the compartments, each lake is thought of as a sizable compartment. The first lake receives a
pollutant at a specific rate that may be changed or constant over time. We want to know how polluted
each lake is at any given time. The water volume in any of the three lakes is assumed to be constant
and each lake’s contaminant is evenly distributed across the lake by some sort of mixing procedure, as
we assumed. Additionally, the pollution is constant and does not change into other forms.

Figure 1. System with three lakes and waterways that connect them.

We shall take into account the periodic and linear input models for the pollution source. The input
model with periodic has not, as far as the authors are aware, been mentioned in any published works
as possible behaviors for the pollution source.

A field of mathematics known as fractional analyzers have the ability to represent and analyze a
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wide range of real-world situations [3, 4]. Fractional-order analysis has drawn increasing interest in
the study of biological models, where such complex systems are regularly explained empirically by
the scaling power law of fractional order. The system’s three connected lakes’ pollution model by
waterways uses one of these mathematical equations. There are many research papers that studied this
important model [5–7].

For recent developments based on the collocation approach, this article presents the first use of the
Appell type Changhee polynomials (ACPs) based spectral collocation approach to solve fractional-
order pollution models for a system of three lakes connected by waterways. When the approach
is applied, the set of differential equations is converted into a system of algebraic equations. The
approximate solution for the original equation is found by solving this system, which produces
the unknown coefficients of the series solution. The spectral collocation method (SCM) has some
advantages for handling this class of problems in which the Appell-type Changhee coefficients for
the solution can exist very easily after using the numerical programs. For this reason, this method is
much faster than the other methods [8, 9]. They are widely used because of their good properties in
the approximation of functions. Also, this method is a numerical technique with high accuracy and
fast convergence and it is easy to use in finite and infinite domains for different problems. In addition,
the domain discretization and approximation of the nonlinear terms are not necessary for this method,
which is an important advantage.

The reader may find it helpful to understand the mathematical modeling process by reading through
many significant studies, such as the one on the mathematical model of internal atmospheric waves,
also referred to as gravity waves, which occur inside a fluid rather than on the surface [10]; time-
fractional (2+1)-dimensional Wu-Zhang nonlinear system of partial differential equations describing
a long dispersive wave [11]; how nonlinear time-fractional diffusion equations are thought to describe
oil pollution in the water [12] and nine-dimensional chaos for the fractional (Caputo-sense) Lorenz
system [13].

In this study, we will use the ACPs for the first time to develop an approximation of the fractional
derivative formula and use it to solve the fractional pollution model of three lakes by using the SCM.

The rest of the paper is organized as follows: In section two, we present some definitions and
concepts concerning fractional derivatives, the Appell-type Changhee polynomials and other related
ideas. In section three, we give an approximate formula for the fractional derivatives by using the
ACPs. Section four is devoted to presenting an explanation of the pollution model of three lakes and
its formulation. Through section five, we give the implementation of the proposed method. In section
six, we present a numerical simulation of the proposed model under study. Finally, the conclusions are
in section seven.

2. Preliminaries

2.1. Integral and derivative of fractional order

Fractional-order operators have numerous definitions in the literature [14, 15]. The two most
important fractional derivatives used in the development of fractional calculus theory are defined below.

Definition 2.1. The Riemann-Liouville fractional integral Iν of order ν, for the function ψ(t) is defined
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as follows [14, 15]:

Iνψ(t) =
1
Γ(ν)

∫ t

0
(t − τ)ν−1ψ(τ) dτ, t > 0; ν ∈ R+, (2.1)

where Γ(t) =
∫ ∞

0
zt−1 e−zdz is the Gamma function.

Definition 2.2. The Riemann-Liouville fractional derivative RLDν of order ν, of the function ψ(t) is
defined as follows [14, 15]:

RLDνψ(t) =
dm

dtm

(
Im−νψ(t)

)
, m − 1 < ν ≦ m; m ∈ N. (2.2)

These formulations have several limitations when simulating some real-world problems [14, 15].
The Liouville-Caputo formulation, however, was designed to address these problems. As stated in the
definition that follows, we use it.
Definition 2.3. The fractional derivative in the Liouville-Caputo sense Dν of ψ(t) is given as

Dνψ(t) =
1

Γ(n − ν)

∫ t

0

ψ(n)(τ)
(t − τ)ν−n+1 dτ, n − 1 < ν < n; n ∈ N. (2.3)

The Liouville-Caputo fractional derivative Dν possesses that

DνC = 0, C is a constant,

and
Dνtθ =

Γ(θ + 1)
Γ(θ + 1 − ν)

tθ−ν, θ ∈ N ∪ {0}; θ ≧ ⌈ν⌉, (2.4)

where ⌈ν⌉ is the ceil function. Also,

Dν(c1 f1(t) + c2 f2(t)) = c1Dν f1(t) + c2Dν f2(t), c1, c2 ∈ R. (2.5)

2.2. The Changhee polynomials and other related ideas

Changhee polynomials Chm(t) and Changhee numbers Chm are defined by [16, 17]:

2
z + 2

(1 − z)t =

∞∑
m=0

Chm(t)
zm

m!
, (2.6)

where Chm = Chm(0) are the Changhee numbers [16]. The ACPs of degree m are defined by

Ch∗m(t) =
m∑

j=0

(
m
j

)
Ch∗m− j t j. (2.7)

From (2.7), we get
d
dt

Ch∗m(t) = m Ch∗m−1(t). (2.8)

From (2.8), we have

Ch∗m(t) =
∫ t

0
m Ch∗m−1(y)dy +Ch∗m, (2.9)

and Ch∗0 = 1 and 2Ch∗m + m Ch∗m−1 = 0, ∀m ≥ 1.
Any function u(t) ∈ L2[0, 1] can be approximated (and denoted by u∗(t)) as a finite series sum of

the form

u(t) ≈ u∗(t) =
m∑

i=0

ci Ch∗i (t). (2.10)
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3. Approximation formula of Dν using ACPs

Now, we give the following theorem to derive an approximate formula of the fractional derivative Dν

for the function u∗(t) given in (2.10).
Theorem 3.1. For u∗(t) given in (2.10), the Caputo derivative of order ν > 0 can be approximated by

Dν u∗(t) =
m∑

i=⌈ν⌉

i∑
j=⌈ν⌉

ci κi, j,ν t j−ν, (3.1)

where Ch∗i− j is the Changhee number and κi, j,ν is given by

κi, j,ν =
(i)! Ch∗i− j

(i − j)!Γ( j + 1 − ν)
.

Proof. By taking Ch∗i (t) of degree i, where i = 0, 1, . . . ,m, from (2.4) and (2.10) we have

Dνu∗(t) =
m∑

i=0

ci Dν Ch∗i (t) =
m∑

i=⌈ν⌉

i∑
j=⌈ν⌉

ci

(i!)Ch∗i− j

( j!)(i − j)!
Dνt j

=

m∑
i=⌈ν⌉

i∑
j=⌈ν⌉

ci

(i!) Ch∗i− j

(i − j)!Γ( j + 1 − ν)
t j−ν

=

m∑
i=⌈ν⌉

i∑
j=⌈ν⌉

ci κi, j,ν t j−ν,

(3.2)

where κi, j,ν is given in (3.1), and the proof is finished. □

4. Some concepts about the pollution problem

4.1. An explanation of the pollution model

A group of lakes connected by channels is referred to as a system of lakes. Models of these lakes
consist of sizable segments connected by pipelines [18]. Three lakes are shown in a system in Figure 1.
A pollutant is delivered into only one of the lakes (in this case, lake one) with rate b at time t = 0;
for instance, from a factory b(t), then as shown by the arrows, the contaminated water enters the
other lakes via the pipes or channels [19]. We also assume that the pollution is distributed equally
throughout all of the lakes and that in each lake the volume of water stays constant. Predicting the
amount of contamination in each lake is our goal for t ≥ 0 using these assumptions.

Let Vk and ψk(t), k = 1, 2, 3 symbolize the water volume and pollutant count in lake k, respectively,
to describe the dynamic behavior of the system. The concentration of the pollutant in the lake k at
time t is then given by

ck(t) =
ψk(t)
Vk

. (4.1)

The following equation describes the pollution flux rik(t) flowing from the lake k into i during time t.
When we further assume that the flow rate Fik between lakes k and i is constant, the following results
follow:

rik(t) = Fik ck(t) =
Fikψk(t)

Vk
. (4.2)

AIMS Mathematics Volume 8, Issue 12, 31104–31117.



31109

As a result, the pollutant rate in lake k flows into lake i at time t and is represented by the
expression rik(t).

By applying the subsequent idea to every lake (i = 1, 2, 3):

dψi

dt
= Input rates- Output rates, (4.3)

we obtain that

dψ1

dt
=

F13

V3
ψ3(t) −

F31

V1
ψ1(t) −

F21

V1
ψ1(t) + b(t),

dψ2

dt
=

F21

V1
ψ1(t) −

F32

V2
ψ2(t),

dψ3

dt
=

F31

V1
ψ1(t) +

F32

V2
ψ2(t) −

F13

V3
ψ3(t).

(4.4)

The initial conditions for (4.4) are

ψ1(0) = ψ2(0) = ψ3(0) = 0. (4.5)

The rate of entering flow is equal to the rate of outgoing flow for each lake because the amount of water
in each lake remains constant for time t ≥ 0. As a result, the following flow rate circumstances arise:

Lake 1 : F13 = F21 + F31,

Lake 2 : F21 = F32,

Lake 3 : F31 + F32 = F13.

(4.6)

4.2. Fractional case of the pollution model

In this part, we provide a revised version of the pollution model in the sense that the Liouville-
Caputo fractional derivative is taken into consideration in the current study to better understand both
the qualitative analysis and the numerical iterative analysis of the proposed model. It is described as
follows [20]:

Dνψ1(t) =
F13

V3
ψ3(t) −

F31

V1
ψ1(t) −

F21

V1
ψ1(t) + b(t), (4.7)

Dνψ2(t) =
F21

V1
ψ1(t) −

F32

V2
ψ2(t), (4.8)

Dνψ3(t) =
F31

V1
ψ1(t) +

F32

V2
ψ2(t) −

F13

V3
ψ3(t), (4.9)

with
ψk(0) = 0, k = 1, 2, 3. (4.10)

Using this model (4.7)–(4.10) in its fractional version [21], we may more clearly assess the water
volume and pollutant count in each lake of the system in the future and the past, thanks to the memory
effect of fractional derivatives. While mathematical models with integer derivatives are crucial for
understanding the dynamics of such systems, they have certain limits because these systems lack
memory or nonlocal effects and, hence, these models in their current state are not always appropriate.
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As a result, to effectively examine various natural phenomena, it is important to convert several
pollution models into fractional differential equations (FDEs). FDEs are extensively used in the study
of unusual events in nature and the theory of complex systems in general, and they take into account
the curves characteristics to a large extent. Finally, it can explain temporal delays, fractal features, and
other phenomena. In addition, we can control the rate of pollutant transmission between the three lakes.

5. Numerical implementation

In this part, we lay out how the suggested strategy that would be applied to simulate the fractional-
order form of the model (4.7)–(4.10). This aim will be achieved through the following steps.

(1) Let us express and approximate the solution ψγ(t), γ = 1, 2, 3 as a finite series form in terms of
the ACPs and denoted by Ψγ,m(t), γ = 1, 2, 3 as follows:

Ψγ,m(t) =
m∑

i=0

cγ,i Ch∗i (t). (5.1)

(2) Upon substituting from (5.1) into the system (4.7)–(4.9), we get

m∑
i=⌈ν⌉

i∑
j=⌈ν⌉

c1,i κi, j,ν t j−ν =
F13

V3

 m∑
i=0

c3,i Ch∗i (t)

 − F31 − F21

V1

 m∑
i=0

c1,i Ch∗i (t)

 + b(t), (5.2)

m∑
i=⌈ν⌉

i∑
j=⌈ν⌉

c2,i κi, j,ν t j−ν =
F21

V1

 m∑
i=0

c1,i Ch∗i (t)

 − F32

V2

 m∑
i=0

c2,i Ch∗i (t)

 , (5.3)

m∑
i=⌈ν⌉

i∑
j=⌈ν⌉

c3,i κi, j,ν t j−ν =

m∑
i=0

(
F31

V1
c1,i +

F32

V2
c2,i −

F13

V3
c3,i

)
Ch∗i (t). (5.4)

(3) By collocation the above system (5.2)–(5.4) at m − 1 of points tr =
r

m−1 + 1, r = 1, 2, · · · ,m − 1,
this reduces them to a linear system of algebraic equations in the coefficients cγ,i, γ = 1, 2, 3, i =
0, 1, ...,m.

(4) Also, by substituting from Eq (5.1) into the initial conditions (4.10), then (4.10) will be reduced
also to algebraic equations in the coefficients cγ,i:

m∑
i=0

cγ,i Ch∗i (0) = 0, γ = 1, 2, 3. (5.5)

(5) We now use the successive over-relaxation algorithm to solve numerically the linear system
(5.2)–(5.5) for the unknowns cγ,i, γ = 1, 2, 3, i = 0, 1, · · · ,m. This, in turn, will lead us
to compute the approximate solution by substitution in the form (5.1).

6. Numerical experimentations

Now, we proceed to check the quality of the scheme by checking some numerical simulations on
two examples in the interval [0, 25] for the system (4.7)–(4.10) for different two pollution models.
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Howevwer, in all figures, we take the same values of the following parameters [22]:

F21 = 18 mi.3/year, F32 = 18 mi.3/year, F31 = 20 mi.3/year, F13 = 38 mi.3/year,
V1 = 2900 mi.3, V2 = 850 mi.3, V3 = 1180 mi.3.

(6.1)

Now, we are going to study the following two input models [20]. In each case, we will compare the
obtained solutions with the fourth-order Runge-Kutta method (RK4). We also evaluate the residual
error function (REF) [23] to check the accuracy and quality of the proposed scheme.
Case 1: Periodic input model

When the pollutant is intermittently delivered into lake one, this input model is employed. Here’s
an illustration:

b(t) = α + β sin(ω t),

where α represents the average pollutant input concentration, β is the size of fluctuations and ω is the
fluctuations’s frequency. Let α = β = 2, ω = 1, with the same values of the parameters given in (6.1)
and the initial conditions. Figures 2–4 represent the results for this studied case.

(1) In Figure 2: The solution for ν = 1.0, 0.9, 0.8, 0.7, for m = 4.
(2) In Figure 3: Analysis of the solution in comparison to the RK4 solutions at (ν = 1) for m = 5.
(3) In Figure 4: We compute and plot the REF at ν = 0.96.

Figure 2. The solution for case 1, ψi(t), i = 1, 2, 3 with some values of ν.

AIMS Mathematics Volume 8, Issue 12, 31104–31117.
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Figure 3. The solution for case 1, ψi(t), i = 1, 2, 3 by ACPs and RK4 solutions ν = 1.

Figure 4. The REF of ψi(t), i = 1, 2, 3 for case 1.

AIMS Mathematics Volume 8, Issue 12, 31104–31117.



31113

Case 2: Linear input model
When a linear concentration of the pollutant is injected into the first lake, this input model is utilized.

As an example, we take b(t) = λ t, where the positive constant λ = 200, take the zero initial conditions
and the values of the parameters given in (6.1). Figures 5–7 represent the results for this studied case.

(1) In Figure 5: The solution for ν = 1.0, 0.9, 0.8, 0.7, for m = 4.
(2) In Figure 6: Analysis of the solution in comparison to the RK4 solutions at (ν = 1) for m = 5.
(3) In Figure 7: We compute and plot the REF at ν = 0.96.

These results show that the suggested method is suitable for the fractional-order Liouville-Caputo
fractional derivative solution for the given model. The values of ν,m determine how the numerical
solution produced using the suggested approach behaves. The suggested approach also considerably
improves the method’s efficacy and outcomes.

Through the results that we obtained, especially in Figures 2 and 5 as well as in light of the
geometric diagram for the placement of these three lakes, and based on the direction of the arrows
that show the path of movement and transfer of pollution among the three lakes, we find that these
results are consistent with the natural behavior of pollution in the lakes. This indicates that these
solutions are closer to the actual and real solutions and, therefore, we confirm the efficiency of the
method proposed here.

Figure 5. The solution for case 2, ψi(t), i = 1, 2, 3 with some values of ν.
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Figure 6. The solution for case 2, ψi(t), i = 1, 2, 3 by ACPs and RK4 solutions ν = 1.

Figure 7. The REF of ψi(t), i = 1, 2, 3 for case 2.

In addition through Table 1, we provide a comparison between the obtained approximate solution by
the current method (ψi−ACPs(t), i = 1, 2, 3) with the variational iteration method (VIM) [1] (ψi−VIM(t))
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where we computed the REF at ν = 0.97 with different values of the approximation-order m to estimate
the effectiveness and precision of the provided approach. We take the same initial conditions and the
same values of the parameters mentioned above. The given results of the errors in this table provide
more confirmation of the efficiency and effectiveness of the proposed method than other methods.

Table 1. A comparison of the REF between the current method and VIM via different values
of m.

t m ψ1−ACPs ψ1−VIM ψ2−ACPs ψ2−VIM ψ3−ACPs ψ3−VIM

3 2.65E − 08 1.09E − 05 1.85E − 09 2.25E − 05 5.58E − 08 7.35E − 05
0.0 6 1.02E − 08 8.25E − 06 7.58E − 10 8.10E − 07 8.25E − 09 3.57E − 06

9 5.24 E − 10 5.22E − 07 1.09E − 10 5.91E − 07 1.47E − 10 9.51E − 07
3 0.10E − 08 0.52E − 05 4.25E − 08 9.88E − 06 6.54E − 08 1.75E − 05

0.2 6 9.08E − 09 7.29E − 06 6.92E − 09 1.24E − 07 7.35E − 09 9.36E − 06
9 5.24E − 10 0.05E − 07 7.53E − 10 6.54E − 07 9.51E − 10 2.58E − 07
3 8.11E − 08 9.11E − 06 3.55E − 08 1.23E − 05 1.54E − 09 7.14E − 06

0.4 6 5.34E − 09 5.20E − 06 4.22E − 09 6.75E − 07 2.55E − 10 6.45E − 07
9 2.85E − 10 7.28E − 07 5.81E − 10 7.53E − 07 7.50E − 10 1.23E − 07
3 9.00E − 09 0.55E − 06 3.07E − 09 1.59E − 05 7.06E − 08 8.46E − 05

0.6 6 7.04E − 10 7.54E − 07 9.21E − 10 0.25E − 06 3.88E − 09 1.05E − 06
9 3.25E − 10 6.96E − 07 7.01E − 10 8.52E − 07 1.00E − 10 9.58E − 07
3 5.09E − 08 7.55E − 05 9.52E − 08 7.98E − 06 9.85E − 08 1.25E − 05

0.8 6 7.15E − 09 3.57E − 06 3.28E − 09 5.46E − 06 6.75E − 09 3.50E − 06
9 9.01E − 10 1.45E − 07 7.55E − 10 8.64E − 07 4.19E − 10 7.85E − 07
3 8.22E − 09 9.21E − 06 9.10E − 09 0.20E − 05 7.59E − 09 9.87E − 05

1.0 6 9.99E − 10 4.57E − 06 1.00E − 09 8.25E − 06 6.41E − 10 9.65E − 07
9 7.58E − 10 4.05E − 07 9.05E − 10 3.34E − 07 8.83E − 10 6.38E − 07

7. Conclusions

The target of this work was to analyze the dynamical behavior of the system of lakes pollution
model utilizing the Liouville-Caputo fractional derivative operator and fractional calculus tools and
methods. The mathematical model under inquiry was solved with various values of ν and m, as well
as by computing the REF. We have established that the suggested method is surprisingly successful
in studying this mathematical model. Additionally, by adding more terms from the approximation
solution series, or by raising m, we can regulate the precision of the error and lower it. Also,
we concluded that the mathematical model under consideration in this research is better suited
for numerical simulations using the Liouville-Caputo fractional derivative operator. The findings
obtained graphically and those acquired by utilizing the RK4 approach are comparable. Our findings
also demonstrate the proposed method’s accuracy and computational effectiveness. In addition, we
compared the solution obtained by the proposed method with the variational iteration method where
we computed the REF with different values of the approximation-order m to estimate the effectiveness
and precision of the provided approach. These results show that the present method is very effective
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and thorough. As a generalization of the current work, we intend to use the same model in future
research but with different types of polynomials or fractional derivatives. In addition, we will study
this model as an optimization problem to help us in controlling it. Finally, we must point out that the
Mathematica software program was used to carry out the numerical simulation work.
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