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Abstract: This study focused on the superconvergence of the finite element method for the five-
dimensional Poisson equation in the W1,∞-seminorm. Specifically, we investigated the block finite
element method, which is a tensor-product finite element approach applied to regular rectangular
partitions of the domain. First, we introduced the finite element scheme for the equation and discussed
various functions related to it, along with their properties. Next, we proposed a weight function and
established its important properties, which play a crucial role in the theoretical analysis. By utilizing
the properties of the weight function and employing weighted-norm analysis techniques, we derived
an optimal order estimate in the W2,1-seminorm for the discrete derivative Green’s function (DDGF).
Furthermore, we provided an interpolation fundamental estimate of the second type, also known as
the weak estimate of the second type, for the block finite element. This weak estimate is based on
a five-dimensional interpolation operator of the projection type. Finally, by combining the derived
W2,1-seminorm estimate for the DDGF and the weak estimate for the block finite element, we obtained
a superconvergence estimate for the block finite element approximation in the pointwise sense of the
W1,∞-seminorm. The correctness of the theoretical results was demonstrated through a numerical
example.
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1. Introduction

Superconvergence is a crucial topic in the research field of Galerkin finite element methods. With
advancements in research technologies, numerous superconvergence results have been obtained and a
theoretical framework on superconvergence has been established [1–4]. Notably, superconvergence
research in the finite element method is closely associated with the dimensions of the problems.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231591


31093

For one- and two-dimensional problems, superconvergence research has been nearly perfect, and
significant progress has also been made for the three-dimensional setting [5–17]. However, for
dimensions four and higher, superconvergence results are relatively scarce. One of the primary
reasons is the difficulty in estimating the discrete Green’s function (DGF) and discrete derivative
Green’s function (DDGF), which play critical roles in superconvergence research, particularly in
pointwise superconvergence [10,12–14,18–20]. Unfortunately, the high-dimensional DGF and DDGF
of dimensions four and higher cannot be straightforwardly extrapolated from those of low-dimensional
cases. Consequently, establishing bounds for the high-dimensional DGF and DDGF becomes a vital
aspect of researching high-dimensional pointwise superconvergence. Recently, we have obtained
some results in this regard [12,14,19]. In this paper, we will illustrate a superconvergence analytic
technique by considering a five-dimensional problem as an example, which may be applied to other
high-dimensional superconvergence issues. First, by utilizing a weighted-function analysis technique,
we will derive an optimal estimate for the W2,1-seminorm of the five-dimensional DDGF. Second, in
conjunction with a weak estimate for the finite element approximation, we can obtain a pointwise
superconvergence estimate for the derivatives of the finite element approximation. Finally, we validate
the theoretical results through a numerical example. It is important to note that although we provide
the W1,1-seminorm estimate for the five-dimensional DDGF, we do not discuss its applications to
superconvergence [19]. Furthermore, the W2,1-seminorm estimate for the DDGF in this paper is
distinct from the W1,1-seminorm estimate in [19]. Additionally, as high-dimensional partial differential
equations (PDEs) in dimensions four and higher are encountered in various areas such as financial
mathematics, particle physics, statistical physics and general relativity, research on high-dimensional
finite element superconvergence holds significant importance.

In the following, we adhere to the standard notations for the Sobolev spaces and their norms. The
symbol C represents a constant that is independent of the discretization parameter h.

Consider the following Poisson equation with the Dirichlet boundary condition:

Lu ≡ −∆u = f in Ω, u = 0 on ∂Ω, (1.1)

where Ω ⊂ R5 is a bounded polytopic domain. The weak formulation of problem (1.1) is finding
u ∈ H1

0(Ω) such that
a(u, v) = ( f , v) ∀v ∈ H1

0(Ω), (1.2)

where
a(u, v) ≡

∫
Ω

∇u · ∇v dx1dx2dx3dx4dx5, ( f , v) ≡
∫

Ω

f v dx1dx2dx3dx4dx5.

Let {T h} be a regular family of rectangular partitions of Ω̄. Denote by S h(Ω) the space of continuous
piecewise tensor-product m-order polynomials with respect to this kind of partition and let S h

0 =

S h(Ω) ∩ H1
0(Ω). Discretizing problem (1.2) using S h

0 as approximating space means finding uh ∈ S h
0

such that a(uh , v) = ( f , v) for all v ∈ S h
0. Here, we have the following Galerkin orthogonality relation:

a(u − uh , v) = 0 ∀ v ∈ S h
0. (1.3)

For every Z ∈ Ω, we define the discrete derivative δ function ∂Z,`δ
h
Z ∈ S h

0 and the L2-projection
Phu ∈ S h

0 such that [19]
(v, ∂Z,`δ

h
Z) = ∂`v(Z) ∀ v ∈ S h

0,
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(u − Phu, v) = 0 ∀ v ∈ S h
0,

where ` ∈ R5 and |`| = 1. ∂`v(Z) stands for the one-sided directional derivative

∂`v(Z) = lim
|∆Z|→0

v(Z + ∆Z) − v(Z)
|∆Z|

, ∆Z = |∆Z|`.

Remark 1.1. Since ∆Z = |∆Z|`, that is, ∆Z is of the same direction as `, provided that the direction `
is given for, the above limit exists, no matter what direction is given, ∂`v(Z) is well defined.

Let ∂Z,`G∗Z ∈ H2(Ω) ∩ H1
0(Ω) be the solution of the elliptic problem L∂Z,`G∗Z = ∂Z,`δ

h
Z. We may

call ∂Z,`G∗Z the regularized derivative Green’s function (RDGF), and denote by ∂Z,`Gh
Z (the so-called

DDGF) the finite element approximation to ∂Z,`G∗Z . Thus,

a(∂Z,`G∗Z − ∂Z,`Gh
Z, v) = 0 ∀ v ∈ S h

0.

One of the main tasks of this article is how to obtain the optimal estimate for the ∂Z,`Gh
Z.

As for ∂Z,`δ
h
Z and Ph, we have [19]

‖∂Z,`δ
h
Z‖φ−α ≤ Ch

5α−7
2 , α > 0, (1.4)

‖Phw‖1, q ≤ C‖w‖1, q, 5 < q ≤ ∞. (1.5)

The rest of the paper is arranged as follows. In section two, we will bound the terms |∂Z,`G∗Z |2, 1
and |∂Z,`Gh

Z |2, 1. Section three is devoted to the weak estimate of the second type for the finite
element method, and section four is about W1,∞-seminorm superconvergence of the finite element
approximation. A numerical example is given in section five. Finally, we simply summarize the paper
in section six.

2. The W2,1-seminorm estimate for the DDGF

To derive the estimate for the DDGF, we introduce the weight function defined by

φ ≡ φ(X) = (|X − X̄|2 + θ2)−
5
2 ∀ X ∈ Ω̄,

where X̄ ∈ Ω̄ is a fixed point, θ = γh and γ ∈ [5,+∞) is a suitable real number.
For every α ∈ R, we give the following notations:

|∇nv|2 =
∑
|β|=n

|Dβv|2, |∇nv|φα,Ω = (
∫

Ω

φα|∇nv|2dX)
1
2 , ‖v‖2m, φα,Ω =

m∑
n=0

|∇nv|2φα,Ω,

where β = (β1, β2, β3, β4, β5), |β| = β1 + β2 + β3 + β4 + β5 and βi ≥ 0, i = 1, 2, 3, 4, 5 are integers. In
particular, for the case of m = 0, we write

‖v‖φα,Ω = (
∫

Ω

φα|v|2 dX)
1
2 .

As for the weight function φ, we have the properties [19]

|∇nφα| ≤ C(α, n)φα+ n
5 , α ∈ R, n = 1, 2, (2.1)
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Ω

φα dX ≤ C(α − 1)−1θ−5(α−1) ∀α > 1, (2.2)

∫
Ω

φ dX ≤ C(τ)| ln θ|, θ ≤ τ < 1, (2.3)

∫
Ω

φα dX ≤ C(1 − α)−1 ∀ 0 < α < 1. (2.4)

In addition, we need to assume that there exists a q0 (5 < q0 ≤ ∞) such that

L : W2, q(Ω) ∩W1, q
0 (Ω) −→ Lq(Ω) (1 < q < q0)

is a homeomorphism [4]. It means that for all v ∈ W2, q(Ω) ∩W1, q
0 (Ω), we have the so-called a priori

estimate:

‖v‖2, q,Ω ≤ C(q)‖Lv‖0, q,Ω, (2.5)

where C(q) denotes a positive constant only depending on q. Next, we give some lemmas used in the
proofs of our main results.

Lemma 2.1. For ∂Z,`G∗Z the RDGF, we have the weighted-norm estimate

‖∇2∂Z,`G∗Z‖φ−1 ≤ Ch−1| ln h|
17
20 . (2.6)

Proof. By the triangular inequality, the a priori estimate (2.5) and the definition of ∂Z,`G∗Z, we have

‖∇2∂Z,`G∗Z‖
2
φ−1

=

∫
Ω

(φ−
1
2 |∇2∂Z,`G∗Z |)

2dX ≤ C(
∫

Ω

|∇2(φ−
1
2∂Z,`G∗Z)|2dX

+

∫
Ω

|∇2φ−
1
2∂Z,`G∗Z |

2dX +

∫
Ω

|∇φ−
1
2 |2|∇∂Z,`G∗Z |

2dX)

≤ C(‖∇2(φ−
1
2∂Z,`G∗Z)‖20 + ‖∂Z,`G∗Z‖

2

φ
− 1

5
+ |∂Z,`G∗Z |

2

1, φ−
3
5
)

≤ C(‖L(φ−
1
2∂Z,`G∗Z)‖20 + ‖∂Z,`G∗Z‖

2

φ
− 1

5
+ |∂Z,`G∗Z |

2

1, φ−
3
5
)

≤ C(‖L∂Z,`G∗Z‖
2
φ−1 + |∂Z,`G∗Z |

2

1, φ−
3
5

+ ‖∂Z,`G∗Z‖
2

φ
− 1

5
)

≤ C‖∂Z,`δ
h
Z‖

2
φ−1 + C|a(∂Z,`G∗Z, φ

− 3
5∂Z,`G∗Z)| + C‖∂Z,`G∗Z‖

2

φ
− 1

5

≤ C‖∂Z,`δ
h
Z‖

2
φ−1 + C|(∂Z,`δ

h
Z, φ

− 3
5∂Z,`G∗Z)| + C‖∂Z,`G∗Z‖

2

φ
− 1

5

≤ C‖∂Z,`δ
h
Z‖

2
φ−1 + C‖∂Z,`G∗Z‖

2

φ
− 1

5
,

namely,

‖∇2∂Z,`G∗Z‖
2
φ−1 ≤ C‖∂Z,`δ

h
Z‖

2
φ−1 + C‖∂Z,`G∗Z‖

2

φ
− 1

5
. (2.7)
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Further, from the inverse estimate, the stability estimate (1.5), the a priori estimate (2.5) and the
Sobolev embedding theorem [21],∥∥∥∂Z,`G∗Z

∥∥∥2

φ
− 1

5
= (φ−

1
5∂Z,`G∗Z , ∂Z,`G∗Z) = a(w , ∂Z,`G∗Z) = (∂Z,`δ

h
Z , w)

= ∂`Phw(Z) ≤ |Phw|1,∞ ≤ Ch−
5
q |Phw|1, q ≤ Ch−

5
q ‖w‖1, q ≤ Ch−

5
q q

4
5 ‖w‖2, 5

≤ Ch−
5
q q

4
5 ‖φ−

1
5∂Z,`G∗Z‖0, 5 ≤ Ch−

5
q q

4
5 ‖φ−

1
5∂Z,`G∗Z‖2, 5

3

≤ Ch−
5
q q

4
5 ‖L(φ−

1
5∂Z,`G∗Z)‖0, 5

3
,

(2.8)

where Lw = φ−
1
5∂Z,`G∗Z in Ω and w|∂Ω = 0. Taking q = | ln h| in (2.8) yields

‖∂Z,`G∗Z‖
2

φ
− 1

5
≤ C| ln h|

4
5 ‖L(φ−

1
5∂Z,`G∗Z)‖0, 5

3
. (2.9)

However, from (2.1), the definition of ∂Z,`G∗Z and the triangular inequality,

‖L(φ−
1
5∂Z,`G∗Z)‖0, 5

3
≤ C(‖φ−

1
5L∂Z,`G∗Z‖0, 5

3
+ ‖∇∂Z,`G∗Z‖0, 5

3
+ ‖φ

1
5∂Z,`G∗Z‖0, 5

3
)

= C(‖φ−
1
5∂Z,`δ

h
Z‖0, 5

3
+ ‖∇∂Z,`G∗Z‖0, 5

3
+ ‖φ

1
5∂Z,`G∗Z‖0, 5

3
).

(2.10)

In addition, from the Hölder inequality,

‖∇∂Z,`G∗Z‖0, 5
3
≤ ‖φ‖

1
2
0,5‖∇∂Z,`G∗Z‖φ−1 . (2.11)

Since [19]
‖∇∂Z,`G∗Z‖φ−1 ≤ C| ln h|

9
10 , (2.12)

from (2.2), (2.11) and (2.12),
‖∇∂Z,`G∗Z‖0, 5

3
≤ Ch−2| ln h|

9
10 . (2.13)

Using the Hölder inequality again, we have

‖φ−
1
5∂Z,`δ

h
Z‖0, 5

3
≤ ‖φ‖

3
10
0,3‖∂Z,`δ

h
Z‖φ−1 . (2.14)

From (1.4), (2.2) and (2.14),
‖φ−

1
5∂Z,`δ

h
Z‖0, 5

3
≤ Ch−2. (2.15)

Similarly,
‖φ

1
5∂Z,`G∗Z‖0, 5

3
≤ ‖φ‖

3
10
0,3‖∂Z,`G∗Z‖φ− 1

5
≤ Ch−1‖∂Z,`G∗Z‖φ− 1

5
. (2.16)

From (2.9), (2.10), (2.13), (2.15) and (2.16),∥∥∥∂Z,`G∗Z
∥∥∥2

φ
− 1

5
≤ Ch−2 |ln h|

4
5 + Ch−2 |ln h|

17
10 + Ch−1 |ln h|

4
5 ‖∂Z,`G∗Z‖φ− 1

5

≤ Ch−2 |ln h|
4
5 + Ch−2 |ln h|

17
10 + C(ε)h−2 |ln h|

8
5 + ε‖∂Z,`G∗Z‖

2

φ
− 1

5
.

(2.17)

Taking ε = 1
2 in (2.17) yields ∥∥∥∂Z,`G∗Z

∥∥∥2

φ
− 1

5
≤ Ch−2 |ln h|

17
10 . (2.18)

Combining (1.4), (2.7) and (2.18) immediately yields the result (2.6).
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Lemma 2.2. For ∂Z,`G∗Z the RDGF, we have the W2, 1-seminorm estimate

|∂Z,`G∗Z |2, 1 ≤ Ch−1| ln h|
27
20 . (2.19)

Proof. Obviously,

|∂Z,`G∗Z |2, 1 ≤ (
∫

Ω

φ dX)
1
2 · ‖∇2∂Z,`G∗Z‖φ−1 . (2.20)

By (2.3), (2.6) and (2.20), we immediately obtain the result (2.19).
In order to derive the estimate of the DDGF ∂Z,`Gh

Z, we need the following result [19].

Lemma 2.3. [19] For ∂Z,`G∗Z and ∂Z,`Gh
Z, the RDGF and the DDGF, respectively, we have∣∣∣∂Z,`G∗Z − ∂Z,`Gh

Z

∣∣∣
1, 1
≤ C| ln h|

13
10 . (2.21)

Now, we can derive the following important estimate.

Theorem 2.1. For ∂Z,`Gh
Z the DDGF, we have the W2, 1-seminorm estimate

|∂Z,`Gh
Z |

h
2, 1 ≤ Ch−1| ln h|

27
20 , (2.22)

where |∂Z,`Gh
Z |

h
2, 1 =

∑
e∈T h
|∂Z,`Gh

Z |2, 1, e.

Proof. We denote by Π∂Z,`G∗Z the interpolant of projection type to ∂Z,`G∗Z. Thus, by the triangle
inequality, the interpolation error estimate and the inverse property, we have∣∣∣∂Z,`Gh

Z

∣∣∣h
2, 1
≤

∣∣∣∂Z,`G∗Z − ∂Z,`Gh
Z

∣∣∣h
2, 1

+
∣∣∣∂Z,`G∗Z

∣∣∣
2, 1

≤
∣∣∣∂Z,`G∗Z

∣∣∣
2, 1

+
∣∣∣∂Z,`G∗Z − Π∂Z,`G∗Z

∣∣∣h
2, 1

+
∣∣∣Π∂Z,`G∗Z − ∂Z,`Gh

Z

∣∣∣h
2, 1

≤ C
∣∣∣∂Z,`G∗Z

∣∣∣
2, 1

+ Ch−1
∣∣∣Π∂Z,`G∗Z − ∂Z,`Gh

Z

∣∣∣
1, 1

≤ C
∣∣∣∂Z,`G∗Z

∣∣∣
2, 1

+ Ch−1
∣∣∣∂Z,`G∗Z − Π∂Z,`G∗Z

∣∣∣
1, 1

+Ch−1
∣∣∣∂Z,`G∗Z − ∂Z,`Gh

Z

∣∣∣
1, 1

≤ C
∣∣∣∂Z,`G∗Z

∣∣∣
2, 1

+ Ch−1
∣∣∣∂Z,`G∗Z − ∂Z,`Gh

Z

∣∣∣
1, 1
.

(2.23)

Combining (2.19), (2.21) and (2.23) yields the result (2.22).

3. Weak estimate of the second type for the finite element

In this section, we first introduce an interpolation operator of projection type, and then derive the
weak estimate of the second type for the finite element by using the interpolation operator of projection
type.

Let element

e = (x1,e − h1,e, x1,e + h1,e) × (x2,e − h2,e, x2,e + h2,e) × (x3,e − h3,e, x3,e + h3,e)
×(x4,e − h4,e, x4,e + h4,e) × (x5,e − h5,e, x5,e + h5,e)

≡ I1 × I2 × I3 × I4 × I5,
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and let {l1, j(x1)}∞j=0, {l2, j(x2)}∞j=0, {l3, j(x3)}∞j=0, {l4, j(x4)}∞j=0, {l5, j(x5)}∞j=0 be the normalized orthogonal
Legendre polynomial systems on L2(I1), L2(I2), L2(I3), L2(I4), L2(I5), respectively. Now, let
∂x1∂x2∂x3∂x4∂x5u ∈ L2(e) then we have the following expansion:

∂x1∂x2∂x3∂x4∂x5u =

∞∑
i1=0

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

∞∑
i5=0

αi1i2i3i4i5

5∏
k=1

lk,ik(xk),

where

αi1i2i3i4i5 =

∫
e
∂x1∂x2∂x3∂x4∂x5u

5∏
k=1

lk,ik(xk) dX.

Set
ωk,0(xk) = 1, ωk, j+1(xk) =

∫ xk

xk,e−hk,e

lk, j(ξ) dξ, k = 1, · · · , 5, j ≥ 0.

By the Parseval equality for X = (x1, x2, x3, x4, x5) ∈ e,

u(X) =

∞∑
i1=0

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

∞∑
i5=0

βi1i2i3i4i5

5∏
k=1

ωk,ik(xk), (3.1)

where
β00000 = u(x1,e − h1,e, x2,e − h2,e, · · · , x5,e − h5,e),

βi10000 =

∫
I1

∂x1u(x1, x2,e − h2,e, · · · , x5,e − h5,e) · l1,i1−1(x1) dx1,

βi1i2000 =

∫
I1×I2

∂x1∂x2u(x1, x2, x3,e − h3,e, · · · , x5,e − h5,e) · l1,i1−1(x1)l2,i2−1(x2) dx1dx2,

βi1i2i3i4i5 =

∫
e
∂x1∂x2∂x3∂x4∂x5u(X)

5∏
k=1

lk,ik−1(xk) dX,

where ik ≥ 1, k = 1, · · · , 5. Similarly, the other coefficients can also be given.
We introduce standard tensor-product polynomial spaces of degree m ≥ 1 denoted by Tm, i.e.,

q(X) =
∑

(i1,i2,i3,i4,i5)∈I

ai1i2i3i4i5 xi1
1 xi2

2 xi3
3 xi4

4 xi5
5 , q ∈ Tm,

where the indexing set I is as follows:

I = {(i1, i2, i3, i4, i5)|0 ≤ ik ≤ m, k = 1, · · · , 5}.

Define the tensor-product interpolation operator of projection type by Πe
m: H5(e)→ Tm(e) such that

Πe
mu(X) =

∑
(i1,i2,i3,i4,i5)∈I

βi1i2i3i4i5

5∏
k=1

ωk,ik(xk). (3.2)

By the definitions of the finite element space S h
0(Ω) and Πe

m, we have the tensor-product interpolation
operator of project type

Πm : H5(Ω) ∩ H1
0(Ω)→ S h

0(Ω),

AIMS Mathematics Volume 8, Issue 12, 31092–31103.
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where (Πmu)|e = Πe
mu.

For simplicity, we write

λi1i2i3i4i5 = βi1i2i3i4i5

5∏
k=1

ωk,ik(xk).

Thus, from (3.1) and (3.2),

u − Πe
mu

= (
∑m

i1=0
∑m

i2=0
∑m

i3=0
∑m

i4=0
∑∞

i5=m+1 +
∑m

i1=0
∑m

i2=0
∑m

i3=0
∑∞

i4=m+1
∑∞

i5=0
+

∑m
i1=0

∑m
i2=0

∑∞
i3=m+1

∑∞
i4=0

∑∞
i5=0 +

∑m
i1=0

∑∞
i2=m+1

∑∞
i3=0

∑∞
i4=0

∑∞
i5=0

+
∑∞

i1=m+1
∑∞

i2=0
∑∞

i3=0
∑∞

i4=0
∑∞

i5=0)λi1i2i3i4i5 .

Next, we will derive the weak estimate of the second type for the finite element.

Theorem 3.1. Let {T h} be a regular family of rectangular partitions of Ω̄, u ∈ Wm+2,∞(Ω)∩H1
0(Ω) and

v ∈ S h
0(Ω) then the tensor-product m-degree interpolation operator of projection type Πm satisfies the

weak estimate of the second type

|a(u − Πmu, v)| ≤ Chm+2‖u‖m+2,∞,Ω|v|h2, 1,Ω, m ≥ 2, (3.3)

where |v|h2, 1,Ω =
∑

e∈T h
|v|2, 1, e.

Proof. By the properties of ωk,i(xk) as well as the orthogonality of the Legendre polynomial system,
we have ∫

e
∇(u − Πe

mu) · ∇v dX =

∫
e
∇r · ∇v dX ≡ Ie ∀e ∈ T h,

where
r = (

∑m
i1=0

∑m
i2=0

∑m
i3=0

∑m
i4=0

∑m+2
i5=m+1 +

∑m
i1=0

∑m
i2=0

∑m
i3=0

∑m+2
i4=m+1

∑m+2
i5=0

+
∑m

i1=0
∑m

i2=0
∑m+2

i3=m+1
∑m+2

i4=0
∑m+2

i5=0 +
∑m

i1=0
∑m+2

i2=m+1
∑m+2

i3=0
∑m+2

i4=0
∑m+2

i5=0
+

∑m+2
i1=m+1

∑m+2
i2=0

∑m+2
i3=0

∑m+2
i4=0

∑m+2
i5=0)λi1i2i3i4i5 .

(3.4)

Clearly, r only contains finite terms.
Among the indices ik, k = 1, · · · , 5, when some ik = m + 1 or m + 2 and the others are zero, we have

by the orthogonality of the Legendre polynomial system∫
e
∇λi1i2i3i4i5 · ∇v dX = 0. (3.5)

For m ≥ 2, without loss of generality, we assume ik , 0, k = 1, · · · , j and i j+1 = · · · = i5 = 0.

Ii1···i j0···0 ≡

∫
e
∇λi1···i j0···0 · ∇v dX =

j∑
s=1

∫
e
∂xsλi1···i j0···0∂xsv dX =

j∑
s=1

Is. (3.6)

We assume i1 ≥ m + 1; thus, i1 ≥ m + 1 ≥ 3. By the orthogonality of the Legendre polynomial system,

I1 = βi1···i j0···0 ×

∫
e

l1,i1−1(x1)ω2,i2(x2) · · ·ω j,i j(x j)∂x1v dX = 0. (3.7)
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In addition,
I2 = βi1···i j0···0 ×

∫
e
ω1,i1(x1)l2,i2−1(x2) · · ·ω j,i j(x j)∂x2v dX

= −βi1···i j0···0 ×
∫

e
D−1ω1,i1(x1)l2,i2−1(x2) · · ·ω j,i j(x j) · ∂x1∂x2v dX,

(3.8)

and it is easy to prove
|βi1···i j0···0| ≤ Chm+2− j

2 ‖u‖m+2,∞, e. (3.9)

In fact,
D−1ω1,i1(x1)l2,i2−1(x2) · · ·ω j,i j(x j) = O(h

j
2 ). (3.10)

Combining (3.8)–(3.10) yields
|I2| ≤ Chm+2‖u‖m+2,∞, e|v|2, 1, e. (3.11)

Similarly, we have
|Ik| ≤ Chm+2‖u‖m+2,∞, e|v|2, 1, e, k = 3, · · · , j. (3.12)

From (3.6), (3.7), (3.11) and (3.12),

|Ii1···i j0···0| ≤ Chm+2‖u‖m+2,∞, e|v|2, 1, e, k = 3, · · · , j. (3.13)

When each ik , 0, k = 1, · · · , 5, similar to the above arguments, we easily get

|

∫
e
∇λi1i2i3i4i5 · ∇v dX| ≤ Chm+2‖u‖m+2,∞, e|v|2, 1, e. (3.14)

From (3.4), (3.5), (3.13) and (3.14),

|Ie| ≤ Chm+2‖u‖m+2,∞, e|v|2, 1, e.

Summing over all elements proves the result (3.3).

4. W1,∞-seminorm superconvergence of the block finite element approximation

In this section, we will give the superconvergent estimate for the m-degree block finite element
approximation by using the weak estimate of the second type and the W2,1-seminorm estimate for the
DDGF.

Let uh be the m-degree block finite element approximation to u, the solution of problem (1.2) and
Πmu the corresponding interpolant of projection type to u. Thus, we have the following theorem.

Theorem 4.1. Let {T h} be a regular family of rectangular partitions of Ω̄ and u ∈ Wm+2,∞(Ω)∩H1
0(Ω)

then we have the superconvergent estimate

|uh − Πmu|1,∞,Ω ≤ Chm+1| ln h|
27
20 ‖u‖m+2,∞, m ≥ 2. (4.1)

Proof. For every Z ∈ Ω, applying the definition of ∂Z,`Gh
Z and the Galerkin orthogonality relation (1.3),

we derive
∂Z,`(uh − Πmu)(Z) = a(uh − Πmu , ∂Z,`Gh

Z) = a(u − Πmu , ∂Z,`Gh
Z). (4.2)

From (2.22), (3.3) and (4.2), we immediately obtain the result (4.1).
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5. A numerical example

Example 5.1. Consider the following Poisson equation:{
−∆u = f in Ω = (0, 1) × (0, 1) × (0, 1) × (0, 1) × (0, 1),
u = 0 on ∂Ω,

where

f = 5π2 sin(πx1) sin(πx2) sin(πx3) sin(πx4) sin(πx5).

The true solution is

u = sin(πx1) sin(πx2) sin(πx3) sin(πx4) sin(πx5).

Let uh be the tensor-product two-degree finite element approximation to u on uniform rectangular
meshes and Πu the corresponding interpolant of the projection type. Set X∗ = (0.5, 0.5, 0.5, 0.5, 0.5),
Y∗ = (0.25, 0.25, 0.25, 0.25, 0.25) and Z∗ = (0.125, 0.125, 0.125, 0.125, 0.125). We solve Example 5.1
and obtain the following numerical results (see Table 1):

Table 1. Numerical results at X∗, Y∗ and Z∗.

h
∣∣∣∇̄(uh − Πu)(X∗)

∣∣∣ ∣∣∣∇̄(uh − Πu)(Y∗)
∣∣∣ ∣∣∣∇̄(uh − Πu)(Z∗)

∣∣∣
0.5 8.0218e-003 6.7152e-003 4.9384e-003

0.25 1.9724e-003 5.3517e-004 5.1322e-004
0.125 3.1481e-004 5.8873e-005 6.0237e-005

Here, the operator ∇̄ = (∂̄x1 , ∂̄x2 , ∂̄x3 , ∂̄x4 , ∂̄x5) and ∂̄xiv = 1
2 (|∂+

xi
v|+ |∂−xi

v|), i = 1, · · · , 5. The numerical
results demonstrate our theoretical results.

6. Conclusions

In this paper, we proposed two important analytic tools: The DDGF and the weak estimate of
the second type. By combining these tools, we obtained a pointwise superconvergence estimate for
the finite element approximation in the W1,∞-seminorm, which is a challenging issue in the field of
superconvergence for the finite element method. The main difficulty of the paper lies in deriving the
optimal order estimate for the DDGF in the W2,1-seminorm. Notably, the estimates for the DDGF vary
for different dimensions of elliptic equations, necessitating different approaches for them. Although
the methods presented in the paper are specifically developed for the five-dimensional second-order
elliptic equation, they can also be applied to other high-dimensional second-order elliptic equations.
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