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Abstract: A novel treatment of fractional-time derivative using the incompressible smoothed particle 

hydrodynamics (ISPH) method is introduced to simulate the bioconvection flow of nano-enhanced 

phase change materials (NEPCM) in a porous hexagonal cavity. The fractional-time derivative is based 

on the Caputo style, which reflects the fractional order behavior in complex systems. In this work, the 

circular rotation of the embedded four-pointed star and the motion of oxytactic microorganisms in a 

hexagonal cavity are conducted. Due to the significance of fractional derivatives in handling real 

physical problems with more flexibility than conventional derivatives, the present scheme of the ISPH 

method is developed to solve the fractional-time derivative of the bioconvection flow in a porous 

hexagonal cavity. This study implicates the variations of a fractional-time derivative, a parametric of 

an inner four-pointed star, and the pertinent physical parameters on the behavior of a bioconvection 

flow of a nanofluid in a hexagonal-cavity containing oxytactic microorganisms. The presence of 

microorganisms has a significant role in many biological, engineering, and medical phenomena. From 

the present numerical investigation, it is well mentioned that the computational time of the transient 

processes can be reduced by applying a fractional-time derivative. The variable sizes of an inner four-

pointed star enhance the bioconvection flow in a hexagonal cavity. 
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1. Introduction 

In recent years, scientists and researchers have been interested in expanding neuroscience by 

developing new types of nanotechnology. There has been an increasing amount of interest in 

nanofluids due to their enhancement of heat transfer [1,2]. Eastman et al. [3] reported that the 

development of nanofluids can enhance thermal conductivity by 40%. The size of nanoparticles is 

scaled (10-100 nm) and most nanoparticles are constructed of a few hundred atoms. Nanofluids can 

be applied to several industrial issues such as the cooling of electronic equipment, chemical processes, 

and heat exchangers [4–10]. 

Bioconvection flow naturally occurs when microorganism swim in an upwards motion within water. 

Commonly, the swimming microorganisms are denser than the water and their motion follows the changes 

of density and hydrodynamic inconstancy [11,12]. There are several uses of bioconvection flows in 

biotechnology, environmental sciences, and thermal engineering. There are two different models to examine 

the bioconvection flow of microorganisms’ motion, namely the oxytactic and erratic motions. The theoretical 

investigations of the bioconvection flow of several kinds of motile microorganisms were developed by 

Hillesdon and Pedley [13] and Pedley et al. [14]. Yamamoto [15] introduced a numerical simulation using 

phototactic microalgae for bioconvection flow in a transparent circular channel. Shermet and Pop [16] 

examined the bioconvection flow of oxytactic microorganisms inside a porous cavity. Balla et al. [17] 

investigated the influence of thermal radiation on the bioconvection of oxytactic microorganisms inside a 

porous enclosure. 

The studies of microorganisms within a nanofluid flow have an important role in enhancing the thermal 

conductivity of many techniques such as microfluid devices, bio-medical, enzyme biosensors, and chip 

microdevices. Several studies on the bioconvection flow of nanofluids are performed in [18–22]. Rashad and 

Nabwey [23] studied the mixed bioconvection flow of a nanofluid over a circular cylinder. Hussain et al. [22] 

adopted Galerkin finite element method to explore the impacts of magnetic force on the bioconvection flow 

of hybrid nanofluids inside a porous cavity containing gyrotactic microorganisms. Pekmen and Oztop [24] 

investigated the influence of a periodic magnetic field on the natural convection of a nanofluid with oxytactic 

bacteria in a cavity containing a conducting solid zone. 

Phase change materials (PCM) are used to enhance heat transfer and are considered to be latent 

heat storage. The numerical/experimental investigations on the preparation of PCM and applications 

of PCM in enhancement heat transfer are discussed in references [25–29]. Liu et al. [30] reviewed the 

uses of NEPCM in thermal energy. There are many studies on the convective heat/mass transfer of 

NEPCM inside a microtube [31], a hexagonal cavity [32], a porous cavity [33], a porous grooved 

cavity [34], and a mini-channel heatsink [35]. 

The smoothed particle hydrodynamics (SPH) method has been widely applied in several fluid flow and 

solid mechanics applications due to its mesh-free Lagrangian nature and its ability to handle large 

deformations. The SPH method was initially developed independently by Gingold and Monaghan [36] and 

Lucy [37]. The incompressible version, entitled the ISPH method, is based on the projection method [38] and 

applied in several fields [39–44]. The ISPH method is implemented to emulate the bioconvection flow of 

NEPCM inside a porous annulus between circular cylinders [45]. Further studies on the magnetic effects on 

the bioconvection flow of NEPCM inside an annulus based on the ISPH method have been introduced by 

Alhejaili and Aly [46]. Due to the applications of NEPCM within storage equipment, the present work 

investigates the bioconvection of NEPCM inside a hexagonal cavity containing a four-pointed star, 

minimization of energy consumption, and thermal management, as well as the uses of bioconvection in 
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biotechnology, pharmaceutical industry, sustainable fuel cell and microbial oil recovery. The definition and 

salient features associated with fractional Caputo operations are mentioned below. 

Due to its numerous applications across numerous domains, fractional evaluation equations have 

recently received a lot of attention [47,48]. There are numerous concepts of fractional derivatives and integrals 

in the literature. The most well-known of these fractional operators are Riemann-Liouville, Riesz, Caputo, 

and Grunwald-Letnikov [49,50]. These fractional ideas, which differ from conventional Newton-Leibniz 

calculus and are crucial in several application fields, are known for having the traits of non-locality and 

heredity [51]. The well-known product, quotient, and chain principles of derivative processes seem to no 

longer apply to these derivatives [52]. This deficiency results in various difficulties while tackling 

mathematical issues. 

This work aims to develop the ISPH method via a time-fractional Caputo derivative in handling the 

bioconvection flow of NEPCM in a porous hexagonal cavity including a rotated four-pointed star. The main 

findings showed that a fractional-time derivative helps speed up the transition processes and can handle the 

physical problem with more flexibility. Hence, it is recommended to apply fractional-time derivatives for 

adjusting the time intervals at several applications in computational fluid dynamics. Due to the high porous 

resistance of a nanofluid flow at a lower Darcy number, the nanofluid’s velocity decreases by 22.64% 

according to a reduction in Darcy number from 10−2  to 10−5 . Due to Lorentz’s magnetic forces, an 

increase in Hartmann's number from 0 to 60 causes a decline in nanofluid velocity by 17.81%. The Rayleigh 

and bioconvection-Rayleigh numbers are considered the main factors in enhancing the strength of 

bioconvection flow and velocity field. 

2. Model of the problem 

Figure 1 indicates the primary diagram of the studied physical problem. The inner shape of a four-

pointed star carries low-temperature 𝑇𝑐, oxygen concentration 𝐶𝑚𝑖𝑛, and microorganisms 𝑚𝑚𝑖𝑛. The 

vertical sides of the walls carry high temperatures 𝑇ℎ , oxygen concentration 𝐶𝑜 , and oxytactic 

microorganisms 𝑚𝑜 . The plane walls maintained at high temperatures 𝑇ℎ  and adiabatic oxygen 

concentration 𝐶𝑜. The circular rotation of an inner four-pointed star is 𝑽𝒄 = 𝜔(𝒓 − 𝒓𝒐), where 𝜔 

represents a frequency. These distributions are introduced separately in Figure 2. In this figure, an 

initial setting of hydrodynamic conditions such as material type, velocity field 𝑉 , oxytactic 

microorganism 𝑁, temperature 𝜃, and oxygen concentration 𝜑 for the studied physical problem are 

introduced. The physical properties of a porous medium, NEPCM (core and shell), and water as a base 

fluid are informed in Table 1. The description of the inner star shape as follows: 

(𝑥 − 𝑥0)2

𝑎
+

(𝑦 − 𝑦0)2

𝑏
≤ 𝑟𝑐      &     

(𝑥 − 𝑥0 )2

𝑏
+

(𝑦 − 𝑦0 )2

𝑎
≤ 𝑟𝑐 . (1) 

Table 1. The thermal properties of a suspension ([53]). 

 𝑘 𝜌 𝛽 × 10−5 𝐶𝑝 

Porous medium 1.05 2700 ------ 840 

Water 0.613 997.1 21 4179 

Shell ------ 721 ------ 2037 

Core ------ 786 17.28 1317.7 
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Figure 1. The primary diagram of the studied physical problem. 

 

Figure 2. An initial setting of hydrodynamic conditions for the present model. 

3. Mathematical analysis 

In the literature, there are different formulations for fractional derivatives. The most often used 

fractional derivative is the Caputo derivative. 

Definition 1. [54] For 𝛼 ∈ ℂ with 𝑅𝑒(𝛼) > 0, the fractional 𝛼-order Riemann-Liouville integral 

beginning with 𝛼 > 0 is defined as follows [54]: 

ℐ𝑎
𝛼𝑥(𝜏) =

1

Γ(𝛼)
∫ (𝑚 − 𝑎)𝛼−1

𝜏

𝑎

𝑥(𝑚)𝑑𝑚. (2) 

The fractional 𝛼-order Caputo derivative beginning with 𝑎 > 0 is defined as follows: 

𝐷𝜏
𝛼𝑥(𝜏) = ℐ𝑎

𝑛−𝛼𝑥(𝑛)(𝜏)𝑎
𝐶 =

1

Γ(𝑛 − 𝛼)
∫ (𝑚 − 𝑎)𝛼−1

𝜏

𝑎

𝑥(𝑛)(𝑚)𝑑𝑚, (3) 

where [𝛼] = 𝑛 − 1. For simplicity, we write 𝐷𝜏 
𝛼 instead of 𝐷𝜏

𝛼
𝑎
𝐶 . 

Theorem 2. If 𝑍 is endlessly α −differentiable on a region around a point v, then the expansion of 

Z’s power fractional power series is as follows: 



31054 

AIMS Mathematics  Volume 8, Issue 12, 31050–31069. 

𝑍(𝜏) = ∑
(𝐷𝜏 

𝛼𝑍)(𝑣)(𝜏 − 𝑧)𝑎𝛼

𝛼𝑎𝑎!

𝐴

𝑎=0

,         𝑣 < 𝜏 < Υ 1/𝛼 ,   Υ > 0. (4) 

To devote the ISPH structure for resolving time-fractional models, we frame in the following 

symbolizations. Let 𝐹 ∈ ℕ, 𝑐 < 𝐶 ∈ ℝ+ and 𝜏𝑛 = 𝑛 Δ𝜏 + 𝑐, 𝑛 = 0, … , 𝐹 be an identical dividing 

up of the interval [𝑐, 𝐶]. Here, Δ𝜏 = 𝜏𝑛 − 𝜏𝑛−1 is the constant step size and 𝑍(𝜏𝑛) can be denoted 

by 𝑍𝑛. 

Theorem 3. If 𝑍 is endlessly α −differentiable on a region around a point v1 ∈ (v, ∞), then, Z has 

the following fractional series expansion: 

𝑍(𝜏) = 𝑍(𝑣) +
(𝐷𝜏 

𝛼𝑢)(𝑣)Ψ1

𝛼
+

(𝐷𝜏 
𝛼𝑢)(2)(𝑣1)Ψ2

2𝛼2
+

(𝐷𝜏 
𝛼𝑢)(3)(𝑣1)Ψ3

3! 𝛼3
+

(𝐷𝜏 
𝛼𝑍)(4)(𝑣1)Ψ4

4! 𝛼4

+ Υ(𝜏, 𝑣1, 𝑣), 
(5) 

where Υ(𝜏, 𝑣1, 𝑣) represents the reminder, Ψ1 = Σ1
𝛼 − Σ2

𝛼, Ψ2 = Σ1
2𝛼 − Σ2

2𝛼 − 2Σ2
𝛼Ψ1, Ψ3 = Σ1

3𝛼 −
Σ2

3𝛼 − 3Σ2
𝛼Ψ2 − 3Σ2

2𝛼Ψ1 , Ψ4 = Σ1
4𝛼 − Σ2

4𝛼 − 4Σ2
𝛼Ψ3 − 6Σ2

2𝛼Ψ2 − 4Σ2
3𝛼Ψ1 , Σ1 = 𝜏 − 𝑣 , and Σ2 =

𝑣1 − 𝑣. 

Assume 𝑍(𝜏)  solves a fractional system with 0 < 𝛼 ≤ 1 . Due to Theorem 3, the fractional 

Taylor expansion of 𝑍(𝜏𝑛+1) at 𝜏 = 𝜏 implies the following [55]: 

𝑍(𝜏𝑛+1) = 𝑍(𝜏𝑛) +
(Δτ)𝛼((𝑛 + 1)𝛼 − 𝑛𝛼)

𝛼
(𝐷𝜏 

𝛼𝑍)(𝜏𝑛) + Υ(𝜏𝑛+1, 𝜏𝑛, 𝑣). (6) 

The ISPH method is a particle-based, mesh-free and Lagrangian computational method. The 

fractional-time derivatives of dimensionless controlling equations are as follows: 

∂𝑈

𝜕𝑋
+

∂𝑉

𝜕𝑌
= 0, (7) 

1

𝜀
𝐷𝜏

𝛼𝑈 = −
𝜌𝑓

𝜌𝑏

𝜕𝑃

𝜕𝑋
+

𝜇𝑏

𝜀𝜇𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟 (

𝜕2U

𝜕𝑋2
+

𝜕2U

𝜕𝑌2
) −

𝜇𝑏

𝜇𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟

𝑈

𝐷𝑎
−

1.75

√150

1

√𝐷𝑎𝜀3
𝑈√𝑈2 + 𝑉2

+
𝜎𝑏

𝜎𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟𝐻𝑎2(𝑉 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 − 𝑈𝑠𝑖𝑛2𝛾), 

(8) 

1

𝜀
𝐷𝜏

𝛼𝑉 = −
𝜌𝑓

𝜌𝑏

𝜕𝑃

𝜕𝑌
+

𝜇𝑏

𝜀𝜇𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟 (

𝜕2V

𝜕𝑋2
+

𝜕2V

𝜕𝑌2
) +

(𝜌𝛽)𝑏

(𝜌𝛽)𝑓

𝜌𝑓

𝜌𝑏
𝑅𝑎 𝑃𝑟(𝜃 − 𝑅𝑎𝑏 ) −

𝜇𝑏

𝜇𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟

𝑉

𝐷𝑎

−
1.75

√150

1

√𝐷𝑎𝜀3
𝑉√𝑈2 + 𝑉2 +

𝜎𝑏

𝜎𝑓

𝜌𝑓

𝜌𝑏
𝑃𝑟𝐻𝑎2(𝑈 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 − 𝑉𝑐𝑜𝑠2𝛾), 

(9) 

(𝜀𝐶𝑟 + (1 − 𝜀)
(𝜌𝐶)𝑠

(𝜌𝐶)𝑓
) 𝐷𝜏

𝛼𝜃 =
𝑘𝑚,𝑏

𝑘𝑓
(

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
), (10) 
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𝐷𝜏
𝛼𝜑 =

1

𝐿𝑒
(

𝜕2𝜑

𝜕𝑋2
+

𝜕2𝜑

𝜕𝑌2
) −  

𝜎

𝐿𝑒
 𝑁, (11) 

𝜒 𝐷𝜏
𝛼𝑁 =

1

𝐿𝑒
(

𝜕2𝑁

𝜕𝑋2
+

𝜕2𝑁

𝜕𝑌2
) −

𝑃𝑒

𝐿𝑒
(𝑁 (

𝜕2𝜑

𝜕𝑋2
+

𝜕2𝜑

𝜕𝑌2
) +

𝜕𝑁

𝜕𝑋

𝜕𝜑

𝜕𝑋
+

𝜕𝑁

𝜕𝑌

𝜕𝜑

𝜕𝑌
). (12) 

The dimensionless set is as follows: 

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
, 𝑈 =

𝑢𝐿

𝜁𝑓 

 , 𝑉 =
𝑣𝐿

𝜁𝑓 

 , 𝜃 =
𝑇 − 𝑇𝑐

𝑇ℎ − 𝑇𝑐
, 𝑁 =

𝑚

𝑚0 

 , 𝑃 =
𝑝𝐿2

𝜌𝑓𝜁𝑓
2 ,

𝜏 =
𝑡𝜁𝑓

 𝐿2
 
, 𝜒 =

𝐷𝑐

𝐷𝑚
, 𝜙 =

𝐶 − 𝐶𝑚𝑖𝑛

𝐶𝑜 − 𝐶𝑚𝑖𝑛
, 

(13) 

The dimensionless boundary conditions are as follows: 

Outer walls: 𝜃 = 0, 𝜑 = 0, 𝑈 = 0, 𝑉 = 0, 𝑃𝑒N
𝜕𝜑

𝜕𝑛
−

𝜕𝑁

𝜕𝑛
= 0, 

(14) 
Inner fins: 𝜃 = 0, 𝑈 = 0, 𝑉 = 0 𝜑 = 1, 𝑁 = 1, 

Inner wavy cylinder: 𝜃 = 1, 𝑈 = 𝑈𝑟𝑜𝑡, 𝑉 = 𝑉𝑟𝑜𝑡 , N = 1, 𝜑 = 1. 

The average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ are as follows: 

𝑁𝑢̅̅ ̅̅ =
−1

𝐿ℎ
∫

𝑘𝑚,𝑏

𝑘𝑓

𝜕𝜃

𝜕𝒏

𝐿ℎ

0

 𝑑𝜁, (15) 

𝑆ℎ̅̅ ̅ =
−1

𝐿ℎ
∫

𝜕𝜑

𝜕𝒏

𝐿ℎ

0

 𝑑𝜁. (16) 

4. Results and discussion 

This section represents the obtained numerical simulations of the time-fractional derivative of the 

bioconvection flow of NEPCM in a porous hexagonal cavity containing oxytactic microorganisms and 

a rotated four-pointed star shape. The time-fractional factor α  is varied from 0.9 to 1, the 

dimensionless time 𝜏 reached 0.16, the length parameters of an inner four-pointed star 𝑎 varied from 

0.2 to 0.7 and 𝑏 varied from 0.05 to 0.1. The bioconvection Rayleigh number 𝑅𝑎𝑏 is varied from 0 

to 1000, Darcy's number 𝐷𝑎  is varied from 10−2  to 10−5 , the Hartmann number 𝐻𝑎  is varied 

from 0 to 60, and the Lewis number 𝐿𝑒 is varied from 1 to 20. The Rayleigh number 𝑅𝑎 is varied 

from 103 to 106 and the solid volume fraction 𝜙 is varied from 0 to 0.08. Due to the importance 

of fractional-time derivatives in the treatment of real physical problems, the effects of the time-
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fractional derivative α on the contours of 𝐶𝑟, 𝑁, 𝜃, and velocity field 𝑽 as well as the average 

𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ at different time instants 𝜏 = 0.01, 0.02, 0.05, and 0.16 are presented in Figures 3–7. 

Here, when α = 1 gives a conventional-time derivative without considering the fractional case when 

𝛼 < 1  gives a fractional-time derivative. Thus, at 𝜏 ≤ 0.02 , the contours of 𝐶𝑟  are dramatically 

influenced by the variation of α. The physical meaning is that low values for α speed up the transition 

processes from an  unsteady to a steady state. The new fractional-time derivative based on the Caputo 

style is more effective in speeding up the transition process compared to the recent studies in [45,46]. 

Generally, the rotation of an inner four-pointed star is affected by the variation of α  due to the 

dependence of rotational motion on the fractional-time derivative of their locations. At 𝜏 ≥ 0.05, the 

contours of 𝐶𝑟 are almost similar under the variations of α, which confirms the previous note on 

speeding up the transition processes by the fractional-time derivative α. Then, it is well mentioned the 

fractional-space derivative of governing equations is significantly and rapidly needed. Figure 4 

represents the effects of α  on the contours of 𝑁  at time instants 𝜏 = 0.01, 0.02, 0.05  and 0.16 . 

Here, the contours of 𝑁 are dramatically influenced by an increment in α. The distributions of 𝑁 

soon reached a steady state regardless of the rotation of an inner four-pointed star when α = 0.9. As 

a result, the computational time of the transient processes can be reduced by applying a fractional-time 

derivative. In addition, due to speeding up the transition processes, it is recommended to apply 

fractional-time derivatives for adjusting the time intervals at delayed simulations compared to the 

experimental data. Figure 5 depicts the effects of the fractional-time derivative factor α  on the 

isotherms 𝜃 at different time instants 𝜏 = 0.01, 0.02, 0.05, and 0.16. At 𝜏 ≤ 0.02, the lower value 

of α supports the transient processes which shows that the isotherms are completely over the star 

shape inside the hexagonal cavity. The strength of the isotherms shrinks across the hexagonal cavity 

when α  increases. Whilst, at 𝜏 ≥ 0.05 , the isotherms have reached the steady state and there are 

almost no changes on the isotherms under a change on α . Figure 6 represents the effects of the 

fractional-time derivative factor α on the velocity field 𝑉 at time instants 𝜏 = 0.01, 0.02, 0.05 and 

0.16. The velocity field is influenced by the variations of α due to the changes in the circular rotation 

of an inner four-pointed star. At the steady state 𝜏 ≥ 0.16, the velocity’s maximum increases as α 

increases. The observed contributions of α in changing the strength of the velocity field, as well as 

the distributions of isotherms, oxytactic microorganisms, and the heat capacity ratio, are significant. 

Hence, it is well-mentioned that the need for fractional calculus in computational fluid dynamics still 

requires more attention. Figure 7 depicts the effects of the fractional-time derivative factor α on the 

average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅. As α increases from 0.9 to 1, the average 𝑁𝑢̅̅ ̅̅  decreases by 9.63% and the 

average 𝑆ℎ̅̅ ̅ decreases by 13.32%. 
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Figure 3. Effects of fractional-time derivative factor α on the contours of 𝐶𝑟 at time 

instants 𝜏 = 0.01, 0.02, 0.05  and 0.16  when 𝐷𝑎 = 10−3 , 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 = 1,
𝐿𝑒 = 10, 𝜃𝑓 = 0.05, 𝑅𝑎 = 104 , 𝑅𝑎𝑏 = 10 , 𝜙 = 0.05,  𝐻𝑎 = 20, 𝑎 = 0.1  and 𝑏 =

0.4. 

 

Figure 4. Effects of fractional-time derivative factor α  on the contours of 𝑁  at time 

instants 𝜏 = 0.01, 0.02, 0.05  and 0.16  when 𝐷𝑎 = 10−3 , 𝑁 = 2 , 𝜎 = 1, 𝑃𝑒 = 1,
𝐿𝑒 = 10, 𝜃𝑓 = 0.05, 𝑅𝑎 = 104 , 𝜙 = 0.05, 𝑅𝑎𝑏 = 10 , 𝐻𝑎 = 20,  𝑎 = 0.1  and 𝑏 =

0.4. 
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Figure 5. Effects of fractional-time derivative factor α  on the isotherms 𝜃  at time 

instants 𝜏 = 0.01, 0.02, 0.05  and 0.16  when 𝐷𝑎 = 10−3 , 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 = 1,
𝐿𝑒 = 10, 𝜃𝑓 = 0.05, 𝑅𝑎 = 104 , 𝜙 = 0.05,  𝑅𝑎𝑏 = 10, 𝐻𝑎 = 20, 𝑎 = 0.1  and 𝑏 =

0.4. 

 

Figure 6. Effects of fractional-time derivative factor α on the velocity field 𝑽 at time 

instants 𝜏 = 0.01, 0.02, 0.05  and 0.16  when 𝐷𝑎 = 10−3 , 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 =
1, 𝐿𝑒 = 10, 𝜃𝑓 = 0.05, 𝑅𝑎 = 104 , 𝜙 = 0.05,  𝑅𝑎𝑏 = 10, 𝐻𝑎 = 20, 𝑎 = 0.1  and 𝑏 =

0.4. 
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Figure 7. Effects of fractional-time derivative factor α on the average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅ at 

𝜏 = 0.16, 𝐷𝑎 = 10−3 , 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 = 1, 𝐻𝑎 = 20, 𝐿𝑒 = 10, 𝜃𝑓 = 0.05, 𝑅𝑎 =

104, 𝜙 = 0.05, 𝑎 = 0.1, 𝑅𝑎𝑏 = 10 and 𝑏 = 0.4. 

Figures 8 and 9 represent the effects of length parameters of an inner four-pointed star 𝑎 & 𝑏 on 

the contours of 𝐶𝑟, 𝑁, 𝑽 and 𝜃, as well as the average 𝑁𝑢̅̅ ̅̅  and 𝑆ℎ̅̅ ̅. In Figure 8, the contours of 

𝐶𝑟 are formed around the cool shape of a four-pointed star at any size of an inner star shape. The 

contours of 𝑁 and isotherms are affected by variations of the inner star sizes. Also, the velocity field 

is influenced by the variations in an inner star’s size. In Figure 9, the average 𝑁𝑢̅̅ ̅̅   is enhanced 

according to an increment in the size of an inner star and the average 𝑆ℎ̅̅ ̅ is slightly changed under 

the changes in an inner star’s size. Hence, the size of an inner star is effective in controlling the 

distributions of the hydrodynamics properties and nanofluid flow. The contribution of sizes for an 

embedded star in enhancing heat/mass transfer within a hexagonal cavity is more clarified in this article 

compared to previous studies in [45,46]. Figure 10 indicates the effects of the bioconvection Rayleigh 

number 𝑅𝑎𝑏  on the contours of 𝐶𝑟 , 𝑁 , 𝑽  and 𝜃 . As the 𝑅𝑎𝑏  represents a main factor in 

bioconvection flow, an increase in 𝑅𝑎𝑏  dramatically enhances the strength of oxytactic 

microorganisms and velocity field in a hexagonal cavity. There are slight variations in the isotherms 

and contours of 𝐶𝑟 under the changes of 𝑅𝑎𝑏. In this work, due to the numerous bioconvection flows 

in the pharmaceutical industry, microbial-boosted oil recovery, ecological fuel cell equipment and 

biotechnology, the contributions of 𝑅𝑎𝑏 in enhancing bioconvection flow, as well as the nanofluid’s 

velocity, represent their important roles. Figure 11 represents the effects of Darcy number 𝐷𝑎 on the 

contours of 𝐶𝑟, 𝑁, 𝑽 and 𝜃. Physically, the Darcy number 𝐷𝑎 signifies the ratio influence between 

the medium’s permeability to the cross-sectional area of a medium. Consequently, a reduction in 𝐷𝑎 

slightly reduces the contours of 𝐶𝑟 , oxytactic microorganisms, and isotherms. The velocity field 

shrinks by 22.64%  as 𝐷𝑎  decreases from 10−2  to 10−5.  Figure 12 shows the effects of the 

Hartmann number 𝐻𝑎 on the contours of 𝐶𝑟, 𝑁, 𝑽 and 𝜃. The Hartmann number 𝐻𝑎 represents 

the relationship between electromagnetic and viscous forces. Increasing 𝐻𝑎  supports the Lorentz 

forces that shrink the nanofluid’s velocity. Accordingly, the nanofluid’s velocity decreases by 17.81% 

as 𝐻𝑎 boosts from 0 to 60. There are minor changes in the contours of 𝐶𝑟, 𝑁, and 𝜃 under the 

variations of 𝐻𝑎. Figure 13 indicates the effects of the Lewis number 𝐿𝑒 on 𝑽 and contours of 𝜑. 

As 𝐿𝑒 increases from 1 to 20, the velocity field shrinks by 28.31%. A Lewis number is defined as 

the relative of thermal to mass diffusivity. Due to the consumption of oxygen at a higher mass 
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diffusivity, the oxygen concentration strongly decreases as 𝐿𝑒 boosts. Figure 14 introduces the effects 

of the Rayleigh number 𝑅𝑎  on the contours of 𝐶𝑟 , 𝑁 , 𝑽  and 𝜃 . The Rayleigh number 𝑅𝑎 

represents a buoyancy-driven flow and describes the fluid’s flow regime. Therefore, an increase in 

𝑅𝑎 augments the strength of the isotherms, as well as the contours of 𝑁, 𝜑, 𝐶𝑟 and 𝜃. There is a 

strong enhancement in the velocity field according to an augmentation in 𝑅𝑎 . A Physical reason 

returns to higher buoyancy forces that augments the nanofluid’s velocity. Figure 15 presents the effects 

of the solid volume fraction 𝜙 on the contours of 𝐶𝑟, 𝑁, 𝑽 and 𝜃. The solid volume fraction 𝜙 

signifies the volume of solid particles divided by the total volume of a suspension. Here, to avoid 

solidification between the porous media and a nanofluid, the addition of solid nanoparticles is limited 

to 8%. It is noted that the addition of solid nanoparticles up to 8% shrinks the nanofluid velocity due 

to the extra viscosity of a nanofluid. There are minor reductions in the isotherms, oxygen concentration 

and oxytactic microorganisms under the augmentations in 𝜙. 

 

Figure 8. Effects of length parameters of an inner four-pointed star 𝑎 & 𝑏 on the contours 

of 𝐶𝑟 , 𝑁 , 𝑽  and 𝜃  at α = 0.96, 𝜏 = 0.16, 𝐷𝑎 = 10−3 , 𝐻𝑎 = 20 , 𝑁 = 2, 𝜎 = 1,
𝑃𝑒 = 1, 𝐿𝑒 = 10, 𝜃𝑓 = 0.05, 𝑅𝑎 = 104, 𝑅𝑎𝑏 = 10 and 𝜙 = 0.05. 
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Figure 9. Effects of length parameters of an inner four-pointed star 𝑎 & 𝑏 on the average 

𝑁𝑢̅̅ ̅̅   and 𝑆ℎ̅̅ ̅  at α = 0.96, 𝜏 = 0.16, 𝐷𝑎 = 10−3 , 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 = 1, 𝐻𝑎 = 20,
𝐿𝑒 = 10,  𝜃𝑓 = 0.05, 𝑅𝑎 = 104, 𝑅𝑎𝑏 = 10 and 𝜙 = 0.05. 

 

Figure 10. Effects of bioconvection Rayleigh number 𝑅𝑎𝑏 on the contours of 𝐶𝑟, 𝑁, 𝑽 

and 𝜃  at α = 0.96, 𝜏 = 0.16, 𝐷𝑎 = 10−3 , 𝐻𝑎 = 20, 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 = 1, 𝐿𝑒 =
10, 𝜃𝑓 = 0.05, 𝑅𝑎 = 104, 𝜙 = 0.05, 𝑎 = 0.1 and 𝑏 = 0.4. 
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Figure 11. Effects of Darcy number 𝐷𝑎 on the contours of 𝐶𝑟, 𝑁, 𝑽 and 𝜃 at 𝑅𝑎𝑏 =
10, α = 0.96, 𝜏 = 0.16, 𝐻𝑎 = 20, 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 = 1, 𝐿𝑒 = 10, 𝜃𝑓 = 0.05,

𝑅𝑎 = 104, 𝜙 = 0.05, 𝑎 = 0.1 and 𝑏 = 0.4. 

 

Figure 12. Effects of Hartmann number 𝐻𝑎  on the contours of 𝐶𝑟 , 𝑁 , 𝑽  and 𝜃  at 

𝑅𝑎𝑏 = 10, α = 0.96, 𝜏 = 0.16, 𝐷𝑎 = 10−3, 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 = 1, 𝐿𝑒 = 10, 𝜃𝑓 =

0.05, 𝑅𝑎 = 104, 𝜙 = 0.05, 𝑎 = 0.1 and 𝑏 = 0.4. 
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Figure 13. Effects of Lewis number 𝐿𝑒  on 𝑽  and contours of 𝜑  at 𝑅𝑎𝑏 = 10, α =
0.96, 𝜏 = 0.16, 𝐷𝑎 = 10−3, 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 = 1, 𝐻𝑎 = 20, 𝜃𝑓 = 0.05, 𝑅𝑎 = 104,

𝜙 = 0.05, 𝑎 = 0.1 and 𝑏 = 0.4. 

 

Figure 14. Effects of Rayleigh number 𝑅𝑎  on the contours of 𝐶𝑟 , 𝑁 , 𝑽  and 𝜃  at 

𝐻𝑎 = 20, 𝑅𝑎𝑏 = 10, α = 0.96, 𝜏 = 0.16, 𝐷𝑎 = 10−3, 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 = 1, 𝐿𝑒 =
10, 𝜃𝑓 = 0.05, 𝜙 = 0.05, 𝑎 = 0.1 and 𝑏 = 0.4. 
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Figure 15. Effects of solid volume fraction 𝜙 on the contours of 𝐶𝑟, 𝑁, 𝑽 and 𝜃 at 

𝐻𝑎 = 20, 𝑅𝑎𝑏 = 10, α = 0.96, 𝜏 = 0.16, 𝐷𝑎 = 10−3, 𝑁 = 2, 𝜎 = 1, 𝑃𝑒 = 1, 𝐿𝑒 =
10, 𝜃𝑓 = 0.05, 𝑎 = 0.1 and 𝑏 = 0.4 

5. Conclusions 

The present work has a novelty in developing the fractional-time derivative on the ISPH method 

to simulate the bioconvection flow of NEPCM in a porous hexagonal cavity. The circular rotation of 

an embedded four-pointed star is considered. The major findings of this study are as follows: 

1) The fractional-time derivative of the ISPH method speeds up the transient processes and it can 

handle the physical problem with more flexibility. It is recommended to apply the fractional-time 

derivative in computational fluid dynamics since it has flexibility in handling the physical problem 

and can reduce the computational time. 

2) The size of an inner four-pointed star is effective in enhancing the bioconvection flow and 

nanofluid velocity that can be applied in electronic devices and thermal industries. 

3) The Rayleigh and bioconvection Rayleigh numbers work well to enhance the bioconvection flow 

and nanofluid’s velocity in a hexagonal cavity. 

4) Due to high porous resistance at lower values of Darcy number, the nanofluid’s velocity declines 
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by a reduction in Darcy number. Additionally, the nanofluid’s velocity reduces according to an 

increment in Hartmann number and the addition of nanoparticles. 

5) As a future study, it is recommended to extend the fractional calculus in space for the governing 

equations and expand the fractional calculus in computational fluid dynamics. 

As a future work, space-time fractional derivatives can be applied to the ISPH method in 

simulating convection flows in complex geometries. Furthermore, double parameter fractional 

derivatives will be employed in the ISPH method to obtain more realistic physical results of convection 

flows. 
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