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Abstract: The non-centralizer graph of a finite group G is the simple graph ΥG whose vertices are
the elements of G with two vertices are adjacent if their centralizers are distinct. The induced non-
centralizer graph of G is the induced subgraph of ΥG on G \Z(G). A finite group is called regular (resp.
induced regular) if its non-centralizer graph (resp. induced non-centralizer graph) is regular. In this
paper we study the structure of regular groups and induced regular groups. We prove that if a group
G is regular, then G/Z(G) as an elementary 2-group. Using the concept of maximal centralizers, we
succeeded in proving that if G is induced regular, then G/Z(G) is a p-group. We also show that a group
G is induced regular if and only if it is the direct product of an induced regular p-group and an abelian
group.
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1. Introduction

For standard terminology and notion in graph theory and group theory, we refer the reader to the
textbooks of [1] and [2] respectively. Let Υ be a simple graph. The degree of a vertex x in Υ, denoted
by deg(x), is the number of vertices adjacent with x. Υ is said to be regular if all of its vertices have
the same degree. If deg(x) = n, we say that Υ is n-regular (or regular of degree n).

Throughout this paper, G denotes a finite group. The order of a group G (respectively the order of
x in G) is denoted by |G| (respectively o(x)). The centralizer of x is CG(x) = {y ∈ G | yx = xy}, and the
center of G is Z(G) = {x ∈ G | xy = yx,∀y ∈ G}. For an x in G, the coset xZ(G) is denoted by x. The
set Cent(G) = {CG(x) | x ∈ G} is the set of distinct centralizers in G.

Over the last few decades in the theory of algebraic graphs, which deals with graphs associated
to algebraic structure, it has become of great interest to many researchers in both fields of algebra
and graph theory. Studying algebraic graphs usually aims to investigate the interplay between the
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algebraic structure and graph theory concepts. These investigations led to several interesting results
and problems, see [3–10] and references therein.

Tolue in [11] introduced the notion of the non-centralizer graph of a finite group: The non-
centralizer graph of a finite group G, denoted byΥG, is the simple graph whose vertices are the elements
of G, where two vertices x and y are adjacent if CG(x) , CG(y). The induced subgraph of ΥG associated
with the vertex set G\Z(G) is called the induced non-centralizer graph and denoted byΥG\Z(G). It is clear
that ΥG is a complete |Cent(G)|-partite graph and ΥG\Z(G) is a complete (|Cent(G)| − 1)-partite graph.
Classical properties of these graphs such as diameter, girth, domination and chromatic numbers, and
independent set were studied in [11]. Also, the author showed that the induced non-centralizer graph
and the non-commuting graph associated to an AC-group are isomorphic (for information on non-
commuting graphs see [3, 12]). Interestingly, Tolue proved that ΥG is 6-regular if and only if G � D8

or Q8, and ΥG is not n-regular, for n = 4, 5, 7, 8, 11, 13, leading to the following conjecture.

Conjecture 1.1. [11] ΥG is not p-regular graph, where p is a prime integer.

In this paper we prove this conjecture by showing that ΥG in not n-regular if n is a prime power
integer. This is a direct consequence of deeper results giving the structure of regular groups, such as
Theorem 2.1 and Theorem 2.4.

In the last few decades, there has been much research interest in characterizing groups by properties
of their centralizers, such as commutativity and the number of centralizer, see for instance [13–25].
Our work is no exception to this trend. Indeed, the sets βG(x) = {y ∈ G | CG(y) = CG(x)}, x ∈ G, as
well as the notion of maximal centralizers play key rolls in this paper.

We say that G is regular (resp. induced regular) if ΥG is regular (resp. ΥG\Z(G) is regular). In
Section 2, we study the regularity of the non-centralizer graph. We show that if G is regular then
G/Z(G) is elementary 2-group. We also prove that a group is regular if and only if it is the direct
product of a regular 2-group and an abelian group. Following this result, the notion of reduced regular
groups is introduced. Moreover, we observe that if G is n-regular then every centralizer in G is normal
and n + 2 ≤ |G| ≤ 4n/3. We end this section with a table listing reduced n-regular 2-groups for all
possible values of n ≤ 60.

Section 3 is devoted to the regularity of ΥG\Z(G). Using the concept of maximal centralizers, we
obtain many results on the structure of induced regular groups. We prove that if G is induced regular
then G/Z(G) is a p-group. We also show that a group G is induced regular if and only if it is the direct
product of an induced regular p-group and an abelian group.

2. Regularity of ΥG

We start this section by listing some known results that will be used later.

Proposition 2.1. [18, Fact 2] If G is a non-abelian group, then |Cent(G)| ≥ 4.

Proposition 2.2. [18, Fact 6] Let p be a prime. If G/Z(G) � Cp ×Cp, then |Cent(G)| = p + 2.

The following proposition can be directly obtained from [17, Proposition 2.2] and its proof.

Proposition 2.3. Let G be a non-abelian group, such that [G : Z(G)] = p3, where p is the smallest
prime dividing |G|. If [G : CG(x)] = p2 for all x ∈ G \ Z(G), then |Cent(G)| = p2 + p + 2. Otherwise
|Cent(G)| = p2 + 2.
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For every element x in G, define the set βG(x) = {y ∈ G | CG(y) = CG(x)}. These sets form the parts
of ΥG. Clearly deg(x) = |G| − |βG(x)| and βG(e) = Z(G). Also, x ⊆ βG(x) for all x ∈ G. So, βG(x) is
a disjoint union of cosets of Z(G). We also conclude that |Z(G)| divides deg(x) for every x ∈ G, and
|Cent(G)| ≤ [G : Z(G)]. The next proposition shows that ΥG is regular if and only if for each x in G,
βG(x) is a coset of Z(G).

Proposition 2.4. Let G be a non-abelian group. Then, G is regular if and only if βG(x) = x for all
x ∈ G.

Proof. We know that xZ(G) ⊆ βG(x). So

G is regular⇐⇒ deg(x) = deg(e) for all x ∈ G

⇐⇒ |G| − |βG(x)| = |G| − |Z(G)| for all x ∈ G

⇐⇒ |βG(x)| = |Z(G)| = |x| for all x ∈ G

⇐⇒ x = βG(x) for all x ∈ G.

□

Corollary 2.1. Let G be a non-abelian group. Then, G is regular if and only if |Cent(G)| = [G : Z(G)].

Proof. From Proposition 2.4, we see that G is regular if and only if the number of parts of ΥG is equal
to the number of distinct cosets of Z(G). Hence the result. □

A group G is called p-group (where p is a prime) if the order of G is a power of p. A p-group
that is the direct product of copies of Cp is called an elementary abelian p-group. Is it well known in
group theory that a group is an elementary abelian 2-group if and only if the order of each non-identity
element in G is exactly 2. For convenience we call a group G elementary p-group if the order of each
element in G is exactly p. With this convention, an elementary p-group is abelian if and only if it is
the direct product of copies of Cp.

Theorem 2.1. Let G be a non-abelian group. If G is regular then G/Z(G) is an elementary abelian 2-
group.

Proof. Suppose G is regular, and let x ∈ G. By Proposition 2.4 we have βG(x−1) = x−1. Since
x ∈ βG(x−1), we get x = x−1z for some z ∈ Z(G), and so x2 = z ∈ Z(G). Therefore, G/Z(G) is an
elementary abelian 2-group. □

The converse of Theorem 2.1 is not true in general. For example, the group G = ⟨a, b, c | a4 =

b4 = c2 = e, ab = ba, cac−1 = a−1, cbc−1 = b−1⟩ is not regular even though G/Z(G) � C2 × C2 × C2.
In fact, using GAP we find that for each one of the groups with ID’s [32, 27], ..., [32, 35], G/Z(G) is
isomorphic to C2 × C2 × C2, yet none of them are regular. The next two theorems show two cases in
which the converse of Theorem 2.1 is true.

Theorem 2.2. Let G be a non-abelian group. If G/Z(G) � C2 ×C2 then G is regular.

Proof. Suppose that G/Z(G) � C2 ×C2. Then, by Proposition 2.2, |Cent(G)| = 4 = [G : Z(G)]. Hence,
by Corollary 2.1, G is regular. □
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Example 2.1. For any positive integer k ≥ 3, let M(2k) be the group defined by

M(2k) = ⟨a, b | a2k−1
= b2 = 1, bab = a2k−2+1⟩.

We have Z(M(2k)) = ⟨a2⟩. So, M(2k)/Z(M(2k)) � C2 ×C2. Then M(2k) is regular of degree 3 · 2k−2.

Theorem 2.3. Let G be a non-abelian group such that G/Z(G) � C2 × C2 × C2. Then G is regular if
and only if [G : CG(x)] = 4 for all non central elements x of G.

Proof. Suppose G is regular. Then |Cent(G)| = [G : Z(G)] = 8. Now, for each x in G \ Z(G),
[G : Z(G)] = [G : CG(x)][CG(x) : Z(G)], and so [G : CG(x)] , 1, 8. If [G : CG(x)] = 2, for some x ∈ G,
then Proposition 2.3 implies that |Cent(G)| = 6, a contradiction. So [G : CG(x)] = 4 for all x ∈ G\Z(G).
Now for the converse, assume that [G : CG(x)] = 4 for all x ∈ G \ Z(G). Then Proposition 2.3 implies
that |Cent(G)| = 8 = [G : Z(G)]. Hence, by Corollary 2.1, G is regular. □

Theorem 2.4. Let G be a regular group. Then, for each x ∈ G, CG(x) is normal in G and G/CG(x) is
isomorphic to a subgroup of Z(G).

Proof. Suppose G is regular, and let x ∈ G. Since G/Z(G) is abelian, we can associate with every g ∈ G
a unique element zxg in Z(G) such that xg = gxzxg. By Proposition 2.4, we have that CG(xzxg) = CG(x).
So, we obtain that

g−1CG(x)g = CG(g−1xg) = CG(g−1gxzxg) = CG(xzxg) = CG(x).

Hence CG(x) is normal in G. Also, the mapping ϕx : G −→ Z(G) defined by ϕx(g) = zxg is a
homomorphism with Ker(ϕx) = CG(x). Thus, G/CG(x) � Img(ϕx). □

The following corollary proves Conjecture 1.1.

Corollary 2.2. Let G be a non-abelian group. Then ΥG is not n-regular, where n is a prime power
integer.

Proof. Suppose ΥG is n-regular for some integer n. We know that n = |G| − |Z(G)| = |Z(G)|([G :
Z(G)] − 1). By Theorem 2.1 we get that G/Z is a 2-group, and so [G : Z(G)] = 2t for some integer
t ≥ 1. Hence, [G : Z(G)] − 1 is odd. On the other hand, since G be a non-abelian, there exists
x ∈ G \ Z(G), and from the relation [G : Z(G)] = [G : CG(x)][CG(x) : Z], we see that [G : CG(x)] = 2s

for some s ≥ 1. By Theorem 2.4, we know that G/CG(x) is isomorphic to a subgroup of Z(G), therefore
[G : CG(x)] divides |Z(G)|. So |Z(G)| is even. Thus n can not be a power of prime. □

Theorem 2.5. If G is a non-abelian group such that ΥG is n-regular, then n is even, |G| ≡ 0 (mod 8),
and n + 2 ≤ |G| ≤ 4n/3.

Proof. Corollary 2.1 yields that [G : Z(G)] is dividable by 4, and Theorem 2.4 implies that |Z(G)| is
even. Hence |G| is divisible by 8. Since |G| = [G:Z(G)]n

[G:Z(G)]−1 , from Proposition 2.1 we get [G : Z(G)] ≥ 4,
and so we obtain that |G| ≤ 4n/3. In addition, 2 ≤ |Z(G)| = |G| − n. Therefore, n + 2 ≤ |G| ≤ 4n/3. □

Theorem 2.6. Let k ≥ 3 and t ≥ 1 be integers and let G be a group of order 2k(2t − 1). Then, G is
regular if and only if G � H×A, where A is an abelian group of order 2t−1 and H is a regular 2-group
of order 2k.
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Proof. Suppose G is regular. Then G/Z(G) is a 2-group, which yields |Z(G)| = 2s(2t − 1) for some 1 ≤
s ≤ k. Let A be the subgroup of Z(G) of order 2t − 1 and let H be a 2-sylow subgroup of G. Now,
HA = AH. So, HA ≤ G. Also, we have H ∩ A = {e} (this is because H is a 2- group and |A| is odd).
Thus, |HA| = |H||A| = |G|, and so G = HA. Moreover, since ha = ah for all a ∈ A and h ∈ H, we have
HA � H × A. It remains to be shown that H is regular. Since A ≤ Z(G), we obtain that for any two
elements x, y ∈ H, CG(x) = CG(y) if and only if CH(x) = CH(y). So, for each x ∈ H, βH(x) = βG(x)∩H.
Now, Z(G) = Z(H)A, and by Proposition 2.4 we have βG(x) = x. Therefore,

βH(x) = βG(x) ∩ H = x ∩ H = xZ(H)A ∩ H = xZ(H).

Then, Proposition 2.4 yields regularity of H.
Now we prove the converse. Assume that G = H×A where A is an abelian and H is regular 2-group.

We have Z(G) = Z(H) × Z(A) = Z(H) × A. Also, for each (h, a) ∈ G, CG(h, a) = CH(h) × CA(a) =
CH(h) × A. Combining this we obtain

βG(h, a) = βH(h) × A = hZ(H) × aA = (h, a)(Z(H) × A) = (h, a)Z(G).

Therefore, by Proposition 2.4, G is regular. □

Example 2.2. Let A be an abelian group of order k ≥ 1 and let G = D8 × A or G = Q8 × A. Then, ΥG

is K2k,2k,2k,2k which is 6k-regular.

We get the following two remarks from Theorem 2.6 and its proof.

Remark 2.1. The sylow subgroup H is normal in G, and the abelian subgroup A is the direct product
of all other sylow subgroups. So all sylow subgroups of G are normal, and G is isomorphic to the
direct product of its sylow subgroups.

Remark 2.2. Characterizing regular groups reduces to studying regular 2-groups that are not the
direct product of a regular group and an abelian group.

Definition 2.1. A regular 2-group is called reduced regular if it is not the direct product of a regular
group and an abelian group.

Using Theorem 2.5, we can find for a fixed value of n all n-regular and reduced n-regular groups.
For example, for n = 6, Theorem 2.5 implies that |G| must be 8. Among the groups of order 8, we find
that Q8, D8 are the only 6-regular groups and both of them are reduced regular. For the case n = 10,
we obtain that |G| = 12. But, |G| must also be divisible by 8. So, there are no 10-regular groups. For
n = 12 we find that |G| = 16. After investigating the groups of order 16, we find that six of them are 10-
regular, and four out of these six are reduced 10-regular. Table 1 lists all reduced n-regular 2-groups
with n ≤ 60.
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Table 1. Reduced n-regular 2-groups with n ≤ 60.

n Reduced n-Regular 2-Groups
6 Q8, D8

12 [16,3], [16,4], [16,6], [16,13]
24 [32,2], [32,4], [32,5], [32,12], [32,17], [32,24], [32,38]
30 [32,49], [32,50]
48 [64,3], [64,17], [64,27], [64,29], [64,44],

[64,51], [64,57], [64, 86], [64, 112], [64, 185]
56 [64, 73], [64, 74], [64, 75], [64, 76], [64, 77]

[64, 78], [64, 79], [64, 80], [64, 81],[64, 82]
60 [64, 199], [64, 200], [64, 201], [64, 226], [64, 227],

[64, 228], [64, 229], [64, 230], [64, 231], [64, 232],
[64, 233], [64, 234], [64, 235], [64, 236], [64, 237],
[64, 238], [64, 239], [64, 240], [64, 249], [64, 266]

3. Regularity of ΥG\Z(G)

Definition 3.1. Let G be a non-abelian group. A centralizer CG(x) is called maximal if it is not
contained in any other proper centralizer.

Proposition 3.1. Let G be a group. If CG(x) is a maximal centralizer in G, then βG(x) ∪ Z(G) is a
subgroup of G.

Proof. Since CG(y) = CG(y−1), we get that y ∈ βG(x) ∪ Z(G) if and only if y−1 ∈ βG(x) ∪ Z(G). Now,
let y,w ∈ βG(x). Since CG(y) = CG(x) = CG(w), we get CG(x) ⊆ CG(yw). So, by maximality of CG(x),
we obtain that CG(x) = CG(yw) or CG(yw) = G. In both cases yw belongs to βG(x) ∪ Z(G). Therefore,
βG(x) ∪ Z(G) is a subgroup. □

Proposition 3.2. Let G be an induced regular group, and let CG(x) be a maximal centralizer such that
CG(x) , βG(x) ∪ Z(G). Then, there is an element y in CG(x) \ βG(x) such that o(y) is prime.

Proof. Assume that for each y ∈ CG(x) \ βG(x), o(y) is not prime. We claim that for each w ∈ CG(x) \
(βG(x) ∪ Z(G)), CG(w) ⊆ CG(x). Indeed, take a prime divisor p of o(w), and let y0 = w

o(w)
p . Then,

o(y0) = p and thus y0 ∈ βG(x). Hence CG(w) ⊆ CG(y0) = CG(x), as we claimed. Now let y ∈ CG(x) \
(βG(x)∪Z(G)). We claim that yβG(x) ⊆ βG(y). By Proposition 3.1, βG(x)∪Z(G) is a group. This implies
that, for all g ∈ βG(x), yg < βG(x) ∪ Z(G). Now let g ∈ βG(x), we want to show that CG(gy) = CG(y).
Clearly CG(g) ∩ CG(y) ⊆ CG(gy), and so CG(y) = CG(x) ∩ CG(y) = CG(g) ∩ CG(y) ⊆ CG(gy). For the
other inclusion, let h ∈ CG(gy), then hgy = gyh. Also since gy ∈ CG(x) \ (βG(x) ∪ Z(G)), according
to our first claim we get CG(gy) ⊆ CG(x). So h ∈ CG(x) = CG(g), and so hgy = ghy. Thus we have
hy = yh, which yields h ∈ CG(y). This proves our claim. Since G is an induced regular group, we get
that |yβG(x)| = |βG(y)|, and so yβG(x) = βG(y). This implies that 1 ∈ βG(x), a contradiction. Therefore,
there must be y ∈ CG(x) \ βG(x) such that o(y) is prime. □
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Proposition 3.3. Let G be an induced regular group, and let CG(x) be a maximal centralizer in G. If

there exists an element y in CG(x) \ βG(x) such that o(y) is a prime p , 2, then
βG(x) ∪ Z(G)

Z(G)
is an

elementary p−group.

Proof. Let Hx = βG(x)∪Z(G) and let B = {w ∈ βG(x) | o(w) , p}. For w ∈ B, CG(w)∩CG(y) ⊆ CG(wy).
Also, CG(wy) ⊆ CG((wy)p) = CG(wp) = CG(w). Then, CG(w) ∩ CG(y) = CG(wy). Hence, we obtain
that yB ⊆ βG(w0y) for some w0 ∈ B. Let T = ⟨{w ∈ Hx | o(w) = p}⟩. Then, T/Z(G) is an elementary
p-subgroup of Hx/Z(G). We have y(Hx \ T ) ⊆ βG(w0y) and y−1(Hx \ T ) ⊆ βG(w0y). If y(Hx \ T ) and
y−1(Hx \ T ) are not disjoint then yu = y−1v for some u, v ∈ Hx \ T . This implies that y2 ∈ v u−1

⊆

βG(x)∪Z(G). But also, since yp ∈ Z(G) and p , 2, we get that y ∈ βG(x), a contradiction. So, y(Hx \T )
and y−1(Hx \ T ) are disjoint. This implies that

2|y(Hx \ T )| = |y(Hx \ T )| + |y−1(Hx \ T )| ≤ |βG(w0y)| < |Hx|.

So 2(|Hx| − |T |) < |Hx|. This implies that |Hx| < 2|T |, which yields [Hx : T ] = 1. Thus Hx = T , and
hence Hx/Z(G) is an elementary p-group. □

Theorem 3.1. If G is a non-abelian induced regular group, then G/Z(G) is a p-group.

Proof. Let G be a non-abelian induced regular group. If CG(x) = βG(x) ∪ Z(G), for all x ∈ G, then
G is an AC-group. Thus, by [11, Theorem 2.11] and [3, Proposition 2.6], we have G = P × A, where

P is a p-group and A is an abelian group. Hence,
G

Z(G)
=

P × A
Z(P) × A

�
P

Z(P)
, and so it is a p-group.

Now suppose that G is not an AC-group. Let CG(x0) be a non-abelian maximal centralizer of G and let
Hx0 = βG(x0) ∪ Z(G). By Proposition 3.2, there exists an element y in CG(x0) \ Hx0 such that o(y) is
prime p. The next goal is to show the following claim.

Claim: Hx0/Z(G) is a p-group.
If there is an element y in CG(x0) \ Hx0 such that o(y) = p , 2, then by Proposition 3.3, Hx0/Z(G)

is an elementary p-group. Now suppose that for each element y in CG(x0) \ Hx, o(y) is either 2 or not
prime. In this case we show that Hx0/Z(G) is a 2-group. This is achieved in three steps.

Step 1: We show that CG(x0)/Hx0 is a 2-group. For simplicity, we will denote the coset yHx0 in
CG(x0) by ỹ. Assume there is y ∈ CG(x0) such that o(ỹ) is divisible by a prime p , 2, and let y0 = y

o(ỹ)
p .

Clearly, o(ỹ0) = p and x0y0 < Hx0 . Now, yp
0 and (x0y0)p belong to Hx0 . But, since o(y0) and o(x0y0)

are either 2 or not prime, we have yp
0 and (x0y0)p belong to βG(x0). Therefore, CG(x0y0) ∪ CG(y0) ⊆

CG((x0y0)p) ∪ CG((y0)p) = CG(x0). Using the same method as in the proof of Proposition 3.2 one
can easily show that CG(wy0) = CG(x0) ∩ CG(y0) = CG(y0) for all w ∈ βG(x). Thus, we obtain that
y0βG(x0) ⊆ β(y0). From the fact that y0 < y0βG(x0), we get that |βG(y0)| > |y0βG(x0)| = |βG(x0)|, a
contradiction. Therefore CG(x0)/Hx0 is a 2-group.

Step 2: We show that for all y < Hx0 , o(y) is a power of 2. Let y < Hx0 , and suppose that
o(y) = 2k(2t − 1). If y2t−1 belongs to βG(x0), then (ỹ)2t−1 = 1̃ in CG(x0)/Hx0 , and so by Step 1, we
get that 2 divides 2t − 1, a contradiction. Thus, y2t−1 < βG(x). Now suppose that p is a prime divisor
of 2t − 1 and let yp = y

2t−1
p . Then, o(yp) = p, and so yp ∈ βG(x0). This implies that 2 divides (2t − 1)/p,

a contradiction. Thus, 2t − 1 = 1, and hence o(y) is a power of 2.
Step 3: We show that

Hx0
Z(G) is a 2-group. Assume that there is an element w ∈ Hx0 such that o(w) =

p , 2. By Proposition 3.2, there is y ∈ CG(x0) \ Hx0 such that o(y) = 2. Then we have wy < Hx0 and
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o(wy) = 2p, which contradicts the result in Step 2. Hence,
Hx0
Z(G) is a 2-group. This completes the proof

of the claim.
Now let CG(x) be an arbitrary maximal centralizer in G, and let Hx = βG(x) ∪ Z(G). Then, from the

regularity of ΥG\Z(G), we obtain that |Hx| = |Hx0 |. So, |Hx| is a p-group. Now we come to the last step in
the proof, which is showing that G/Z(G) is a p-group. Assume that [G : Z(G)] is divisible by a prime
q , p. Let y ∈ G such that o(y) = q, and let CG(x) be maximal centralizer that contains CG(y). Again,
following the same argument as in the proof of Proposition 3.2, one can show that yβG(x) ⊆ βG(y).
But since y < yβG(x), we obtain that |βG(x)| = |yβG(x)| < |βG(y)|, which contradicts the fact that G is
induced regular. Therefore, G/Z(G) is a p-group. □

Proposition 3.4. Let G be an induced regular group. If [G : Z(G)] = pq where p and q are primes,
then G/Z(G) is an elementary p-group. Moreover, for each x ∈ G, |βG(x)| = (p − 1)|Z(G)|.

Proof. Suppose [G : Z(G)] = pq for some q ≥ 2. Consider a maximal centralizer CG(x) in G. Then,
|βG(x)|/|Z(G)| = ps − 1 for some 1 ≤ s ≤ q − 1 and (|Cent(G)| − 1)(ps − 1) = pq − 1, and hence ps − 1
divides pq − 1. This implies that s divides q. Thus, if q is prime, then s = 1, which completes the
proof. □

Corollary 3.1. Let G be an induced regular group of odd order. If CG(x) , βG(x)∪ Z(G) for all x ∈ G,
then G/Z(G) is an elementary p-group.

Proof. This result follows directly from Proposition 3.3. □

Proposition 3.5. Let G be a non-abelian group. If there is a prime p such that G/Z(G) � Cp × Cp,
then G is induced regular.

Proof. Suppose that G/Z(G) � Cp × Cp. Then, by Proposition 2.2, ΥG\Z(G) has p + 1 parts. Let
βG(x1), · · · , βG(xp+1) be the parts ΥG\Z(G) . Then

1
|Z(G)|

p+1∑
i=1

|βG(xi)| = [G : Z(G)] − 1 = p2 − 1.

On the other hand, o(xi) = p for all i. Then for each i ∈ {1, · · · , p + 1},
p−1⋃
j=1

x j
i ⊆ βG(xi), which implies

that |βG(xi)|
|Z(G)| ≥ (p − 1) for all i. If we assume that |βG(xi)|

|Z(G)| > (p − 1) for some i, we obtain that

p2 − 1 =
1
|Z(G)|

p+1∑
i=1

|βG(xi)| > (p + 1)(p − 1) = p2 − 1,

a contradiction. Thus, |βG(xi)|
|Z(G)| = (p − 1) for all i, and hence ΥG\Z(G) is regular. □

Theorem 3.2. A group G is induced regular if and only if G � H ×A where A is an abelian group, and
H is an induced regular p-group for some prime p.

Proof. Suppose G is induced regular. Then G/Z(G) is a p-group. Let |G| = pkm, where (m, p) = 1.
Then, |Z(G)| = psm for some 1 ≤ s ≤ k. Let A be the subgroup of Z(G) of order m and let H be
a p-sylow subgroup of G. Now, HA = AH. So, HA ≤ G. Also, we have H ∩ A = {e} (because
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(|H|, |A|) = 1), and hence |HA| = |H||A| = |G|. Therefor G = HA. Moreover, since ha = ah for all
a ∈ A and h ∈ H, we have HA � H × A. It remains to be shown that H is induced regular. Fix x in
H \ Z(H) and let s = |βG(x)|/|Z(G)|. Since A ≤ Z(G), we obtain that y belongs to βG(x) if and only if
CH(x) = CH(y). So, βH(x) = βG(x) ∩ H. Also, since Z(G) = Z(H)A, there are y1, · · · , ys in H such that

βG(x) =
s⊔

i=1
yiZ(G). So,

βH(x) = βG(x) ∩ H =

 s⊔
i=1

yiZ(G)

 ∩ H =
s⊔

i=1

yi(Z(G) ∩ H) =
s⊔

i=1

yiZ(H).

Thus, |βH(x)| =
|βG(x)|
|Z(G)|

|Z(H)|. Therefore, H is induced regular.

Now we prove the converse. Assume that G = H × A where A is an abelian group, H is an induced
regular group of order pk. Now, Z(G) = Z(H) × Z(A) = Z(H) × A. Also, for each (h, a) ∈ G,
CG(h, a) = CH(h) × CA(a) = CH(h) × A. So βG(h, a) = βH(h) × A, for all (h, a) ∈ G. Therefore G is
induced regular. □

4. Conclusions

In this paper we introduced the notion of regular and induced regular groups using the non-
centralizer graph of a group. We were able to prove that if G is regular, then G/Z(G) is an elementary 2-
group and the group is regular if and only if it is the direct product of a regular 2-group and an abelian
group. Regarding the regularity of ΥG\Z(G), we applied the the concept of maximal centralizers to prove
that, if G is induced regular, then G/Z(G) is a p-group. We also show that a group G is induced regular
if and only if it is the direct product of an induced regular p-group and an abelian group.

It is worth mentioning that there are several induced regular groups G for which G/Z(G) is not
abelian, such as the groups with GAP ID’s [243, 2] to [243, 9]. On the other hand, we checked
many groups and we could not find one induced regular group G for which G/Z(G) is not elementary.
Based on these observations and the results obtained in this paper, one may conjecture that if G is an
induced regular group, then G/Z(G) is an elementary p-group, which amounts to proving the following
problem:

Problem 4.1. Let G be an induced regular group, and let CG(x) be a maximal centralizer such that
CG(x) = βG(x)∪Z(G) or (βG(x)∪Z(G))/Z(G) is 2-group. Then, βG(x)∪Z(G) is an elementary p-group.
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