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1. Introduction

In the literature, special functions have a great importance in a variety of fields of mathematics, such
as mathematical physics, mathematical biology, fluid mechanics, geometry, combinatory and statistics.
Due of the essential position of special functions in mathematics, they continue to play an essential role
in the subject as well as in the geometric function theory. For geometric behavior of some other special
functions, one can refer to [1–12]. An interesting way to discuss the geometric properties of special
functions is by the means of some criteria due to Ozaki, Fejér and MacGregor. One of the important
special functions is the Mathieu series that appeared in the nineteenth century in the monograph [13]
defined on R by

S (r) =
∑
n≥1

2n
(n2 + r2)2 . (1.1)

Surprisingly, the Mathieu series is considered in a variety of fields of mathematical physics, namely,
in the elasticity of solid bodies [13]. For more applications regarding the Mathieu series, we refer the
interested reader to [14, p. 258, Eq (54)]. The functions bear the name of the mathematician Émile
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Leonard Mathieu (1835–1890). Recently, a more general family of the Mathieu series was studied by
Diananda [15] in the following form:

S µ(r) =
∑
n≥1

2n
(n2 + r2)µ+1 (µ > 0, r ∈ R). (1.2)

In 2020, Gerhold et al. [16], considered a new Mathieu type power series, defined by

S α,β,µ(r; z) =
∞∑

k=0

(k!)αzk

((k!)β + r2)µ+1 , (1.3)

where α, µ ≥ 0, β, r > 0 and |z| ≤ 1, such that α < β(µ + 1).
In [17], Bansal and Sokól have determined sufficient conditions imposed on the parameters such

that the normalized form of the function S (r, z) belong to a certain class of univalent functions, such
as starlike and close-to-convex. In [18], the authors presented some generalizations of the results of
Bansal and Sokól by using the same technique. In addition, Gerhold et al. [18, Theorems 5 and 6] has
established some sufficient conditions imposed on the parameter of the normalized form of the function
S 1,2,µ(r; z) defined by

Qµ(r; z) := z +
∞∑

n=2

n!(r2 + 1)µ+1

((n!)2 + r2)µ+1 zn, (1.4)

to be starlike and close-to-convex in the open unit disk. The main focus of the present paper is to
extend and improve some results from [18] by using a completely different method. More precisely, in
this paper we present some sufficient conditions, such as the normalized form of the function S 1,β,µ(r; z)
defined by

Qµ,β(r; z) = z +
∞∑

n=2

n!(r2 + 1)µ+1zn

((n!)β + r2)µ+1 , (1.5)

satisfying several geometric properties such as starlikeness, convexity and close-to-convexity.
We denoted byH the class of all analytic functions inside the unit disk

D =
{
z : z ∈ C and |z| < 1

}
.

Assume that A denoted the collection of all functions f ∈ H , satisfying the normalization f (0) =
f ′(0) − 1 = 0 such that

f (z) = z +
∞∑

k=2

akzk, (∀z ∈ D).

A function f ∈ A is said to be a starlike function (with respect to the origin zero) in D, if f is
univalent inD and f (D) is a starlike domain with respect to zero in C. This class of starlike functions
is denoted by S∗. The analytic characterization of S∗ is given [19] below:

ℜ

(
z f ′(z)
f (z)

)
> 0 (∀z ∈ D).

If f (z) is a univalent function in D and f (D) is a convex domain in C, then f ∈ A is said to be a
convex function in D. We denote this class of convex functions by K , which can also be described
as follows:

ℜ

(
1 +

z f ′′(z)
f ′(z)

)
> 0 (∀z ∈ D).
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An analytic function f inA is called close-to-convex in the open unit diskD if there exists a function
g(z), which is starlike inD such that

ℜ

(
z f ′(z)
g(z)

)
> 0, ∀z ∈ D.

It can be noted that every close-to-convex function inD is also univalent inD (see, for details, [19,20]).
In order to show the main results, the following preliminary lemmas will be helpful. The first result

is due to Ozaki (see also [21, Lemma 2.1]).

Lemma 1.1. [22] Let

f (z) = z +
∞∑

n=2

anzn,

be analytic inD. If
1 ≥ 2a2 ≥ · · · ≥ (n + 1)an+1 ≥ · · · ≥ 0,

or if
1 ≤ 2a2 ≤ · · · ≤ (n + 1)an+1 ≤ · · · ≤ 2,

then f is close-to-convex with respect to the function − log(1 − z).

Remark 1.2. We note that, as Ponnusamy and Vuorinen pointed out in [21], proceeding exactly as in
the proof of Lemma 1.1, one can verify directly that if a function f : D → C satisfies the hypothesis of
the above lemma, then it is close-to-convex with respect to the convex function

z
1 − z

.

The next two lemmas are due to Fejér [23].

Lemma 1.3. Suppose that a function f (z) = 1 +
∑∞

k=2 akzk−1, with ak ≥ 0 (∀k ≥ 2) as analytic in D. If
(ak)k≥1 is a convex decreasing sequence, i.e., ak − 2ak+1 + ak+2 ≥ 0 and ak − ak+1 ≥ 0 for all k ≥ 1, then

ℜ( f (z)) >
1
2

(∀z ∈ D).

Lemma 1.4. Suppose that a f (z) = z+
∑∞

k=2 akzk, with ak ≥ 0 (∀k ≥ 2) as analytic inD. If (kak)k≥1 and
(kak − (k + 1)ak+1)k≥1 both are decreasing, then f is starlike inD.

Lemma 1.5 ( [24]). Assume that f ∈ A. If the following inequality∣∣∣∣∣ f (z)
z
− 1

∣∣∣∣∣ < 1,

holds for all z ∈ D, then f is starlike in

D 1
2

:=
{

z ∈ C and |z| <
1
2

}
.
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Lemma 1.6 ( [25]). Assume that f ∈ A and satisfies

| f ′(z) − 1| < 1,

for each z ∈ D, then f is convex inD 1
2
.

2. Main results

Theorem 2.1. Let µ, β > 0 and 0 < r ≤ 1 such that β ≥ 1 + 2
µ+1 . In addition, if the following condition

holds:

H :
(
2β + 1

2

)µ+1

≥ 4,

then the function Qµ,β(r; z) is close-to-convex inD with respect to the function − log(1 − z).

Proof. For the function Qµ,β(r; z), we have

a1 = 1 and ak =
k!(r2 + 1)µ+1

((k!)β + r2)µ+1 (k ≥ 2).

To prove the result, we need to show that the sequence {kak}k≥1 is decreasing under the given conditions.
For k ≥ 2 we have

kak − (k + 1)ak+1 = (r2 + 1)µ+1
[

kk!
((k!)β + r2)µ+1 −

(k + 1)(k + 1)!
(((k + 1)!)β + r2)µ+1

]
= k!(r2 + 1)µ+1

[
k

((k!)β + r2)µ+1 −
(k + 1)2

(((k + 1)!)β + r2)µ+1

]
=

k!(r2 + 1)µ+1Ak(β, µ, r)
[((k!)β + r2)(((k + 1)!)β + r2)]µ+1 ,

(2.1)

where
Ak(β, µ, r) = k(((k + 1)!)β + r2)µ+1 − (k + 1)2((k!)β + r2)µ+1, k ≥ 2.

However, we have

Ak(β, µ, r) =
(
k

1
µ+1 ((k + 1)!)β + k

1
µ+1 r2

)µ+1
−

(
(k + 1)

2
µ+1 (k!)β + (k + 1)

2
µ+1 r2

)µ+1

= exp
(
(µ + 1) log

[
k

1
µ+1 ((k + 1)!)β + k

1
µ+1 r2

])
− exp

(
(µ + 1) log

[
(k + 1)

2
µ+1 (k!)β + (k + 1)

2
µ+1 r2

])
=

∞∑
j=0

[
log j

(
k

1
µ+1 ((k + 1)!)β + k

1
µ+1 r2

)
− log j

(
(k + 1)

2
µ+1 (k!)β + (k + 1)

2
µ+1 r2

)]
(µ + 1) j

j!
.

(2.2)

In addition, for all k ≥ 2, we have

AIMS Mathematics Volume 8, Issue 12, 30963–30980.



30967

k
1
µ+1 ((k + 1)!)β + k

1
µ+1 r2 − (k + 1)

2
µ+1 (k!)β + (k + 1)

2
µ+1 r2

= r2
(
k

1
µ+1 − (k + 1)

2
µ+1

)
+ k

1
µ+1 ((k + 1)!)β − (k + 1)

2
µ+1 (k!)β

≥

k 1
µ+1 − (k + 1)

2
µ+1 +

k
1
µ+1 ((k + 1)!)β

2

 + k
1
µ+1 ((k + 1)!)β

2
− (k + 1)

2
µ+1 (k!)β


= k

1
µ+1

1 + ((k + 1)!)β

2
−

(
(k + 1)2

k

) 1
µ+1

 + (k!)β
k

1
µ+1 (k + 1)β

2
− (k + 1)

2
µ+1


≥ k

1
µ+1 (k + 1)

2
µ+1

(
1 +

(k!)β(k + 1)
2

−
1

k
1
µ+1

)
+ (k!)β(k + 1)

2
µ+1

k
1
µ+1 (k + 1)

2
− 1


≥ k

1
µ+1 (k + 1)

2
µ+1

1 + (k!)βk
1
µ+1 − 1

k
1
µ+1

 + (k!)β(k + 1)
2
µ+1

(
k

1
µ+1 − 1

)
,

(2.3)

which is positive by our assumption. Having (2.1)–(2.3), we conclude that the sequence (kak)k≥2 is
decreasing. Finally, we see that the condition (H) implies that a1 ≥ 2a2, then the function Qµ,β(r; z) is
close-to-convex inD with respect to the function − log(1 − z) by Lemma 1.1. □

If we set β = 3
2 in Theorem 2.1, we derive the following result as follows:

Corollary 2.2. Let 0 < r ≤ 1. If µ ≥ 3, then the function Qµ, 32 (r; z) is close-to-convex inD with respect
to the function − log(1 − z).

Upon setting µ = 2 in Theorem 2.1, we get the following result:

Corollary 2.3. Let 0 < r ≤ 1. If β ≥ 5
3 , then the function Q2,β(r; z) is close-to-convex inD with respect

to the function − log(1 − z).

Remark 2.4. In [18], it is established that the function Qµ,2(r; z) =: Qµ(r; z) is close-to-convex in D
with respect to the function z

1−z for all 0 < r ≤
√
µ. Moreover, in view of Remark 1.2, we conclude

that the function Qµ,2(r; z) is close-to-convex in D with respect to the function − log(1 − z) for all
0 < r ≤

√
µ. However, in view of Corollaries 2.2 and 2.3, we deduce that Theorem 2.1 improves the

corresponding result available in [18, Theorem 5] for 0 < r ≤ 1.

Theorem 2.5. Assume that µ, β > 0, 0 < r ≤ 1 such that β ≥ 1 + 1
µ+1 . In addition, if the condition (H)

holds, then

ℜ

(
Qµ,β(r; z)

z

)
>

1
2
,

for all z ∈ D.

Proof. For k ≥ 1, we get

((k!)β + r2)µ+1(((k + 1)!)β + r2)µ+1(ak − ak+1)
(r2 + 1)µ+1 = k!(((k + 1)!)β + r2)µ+1 − (k + 1)!((k!)β + r2)µ+1

= [(k!)
1
µ+1 ((k + 1)!)β + r2)]µ+1 − [((k + 1)!)

1
µ+1 ((k!)β + r2)]µ+1.

(2.4)
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Further, for all k ≥ 1, we have

(k!)
1
µ+1 ((k + 1)!)β + r2) − ((k + 1)!)

1
µ+1 ((k!)β + r2) = r2

[
(k!)

1
µ+1 − ((k + 1)!)

1
µ+1

]
+ (k!)

1
µ+1 ((k + 1)!)β − ((k + 1)!)

1
µ+1 (k!)β

≥ (k!)
1
µ+1 − ((k + 1)!)

1
µ+1 + (k!)

1
µ+1 ((k + 1)!)β − ((k + 1)!)

1
µ+1 (k!)β

= (k!)
1
µ+1

[
1 +

(k!)β(k + 1)β

2
− (k + 1)

1
µ+1

]
+ (k!)β+

1
µ+1

[
(k + 1)β

2
− (k + 1)

1
µ+1

]
≥ (k!)

1
µ+1

1 + (k + 1)1+ 1
µ+1

2
− (k + 1)

1
µ+1

 + (k!)β+
1
µ+1

 (k + 1)1+ 1
µ+1

2
− (k + 1)

1
µ+1


= (k!)

1
µ+1

[
1 + (k + 1)

1
µ+1

(
(k + 1)

2
− 1

)]
+ (k!)β+

1
µ+1 (k + 1)

1
µ+1

(
(k + 1)

2
− 1

)
> 0.

(2.5)

Hence, in view of (2.4) and (2.5), we deduce that the sequence (ak)k≥1 is decreasing. Next, we prove
that (ak)k≥1 is a convex decreasing sequence, then, for k ≥ 2 we obtain

((k!)β + r2)µ+1(((k + 1)!)β + r2)µ+1(ak − 2ak+1)
(r2 + 1)µ+1

= k!(((k + 1)!)β + r2)µ+1 − 2(k + 1)!((k!)β + r2)µ+1

= [(k!)
1
µ+1 ((k + 1)!)β + r2)]µ+1 − [(2(k + 1)!)

1
µ+1 ((k!)β + r2)]µ+1.

(2.6)

Moreover, we get

(k!)
1
µ+1 (((k + 1)!)β + r2) − (2(k + 1)!)

1
µ+1 ((k!)β + r2) = r2

[
(k!)

1
µ+1 − (2(k + 1)!)

1
µ+1

]
+ (k!)

1
µ+1 ((k + 1)!)β − (2(k + 1)!)

1
µ+1 (k!)β

>
[
(k!)

1
µ+1 − (2(k + 1)!)

1
µ+1

]
+

(k!)
1
µ+1 ((k + 1)!)β

3

+
2(k!)β+

1
µ+1

3

[
(k + 1)β − 3.2−

µ
µ+1 (k + 1)

1
µ+1

]
≥ (k!)

1
µ+1

1 + ((k + 1)!)1+ 1
µ+1

3
− (2(k + 1))

1
µ+1


+

2(k!)β+
1
µ+1

3

[
(k + 1)1+ 1

µ+1 − 3.2−
µ
µ+1 (k + 1)

1
µ+1

]
= (k!)

1
µ+1

1 + (k + 1)
1
µ+1

 (k + 1)(k!)1+ 1
µ+1

3
− 2

1
µ+1




+
2(k!)β+

1
µ+1 (k + 1)

1
µ+1

3

[
(k + 1) − 3.2−

µ
µ+1

]
> 2

[
1 − 2−

µ
µ+1

]
(k!)β+

1
µ+1 (k + 1)

1
µ+1

> 0.

(2.7)
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Keeping (2.6) and (2.7) in mind, we have ak − 2ak+1 > 0 for all k ≥ 2. In addition, the condition (H)
implies a1 − 2a2 ≥ 0. This in turn implies that the sequence (ak)k≥1 is convex. Finally, by Lemma 1.3,
we obtain the desired result. □

Taking β = 3
2 in Theorem 2.5, we derive the following result:

Corollary 2.6. Assume that r ∈ (0, 1]. If µ ≥ log(4)

log(2
3
2 +1)−log(2)

− 1 ∼ 1.14, then

ℜ

Qµ, 32 (r; z)

z

 > 1
2

(∀z ∈ D).

Setting µ = 1 in Theorem 2.5, we established the following result which reads as follows:

Corollary 2.7. Let 0 < r ≤ 1. If β ≥ log(3)
log(2) , then

ℜ

(
Q1,β(r; z)

z

)
>

1
2

(∀z ∈ D).

Remark 2.8. The result obtained in the above theorem has been derived from [18, Theorem 6] for
β = 2, µ > 0 and 0 < r <

√
µ. Hence, in view of Corollaries 2.2 and 2.7, we deduce that Theorem 2.5

improves the corresponding result given in [18, Theorem 6] for 0 < r ≤ 1.

Theorem 2.9. Assume that min(µ, β) > 0, 0 < r ≤ 1 such that β ≥ 1 + 3
µ+1 , then the function Qµ,β(r; z)

is starlike inD.

Proof. We see in the proof of Theorem 2.1 that the sequence (kak)k≥1 is decreasing. Hence, with the aid
of Lemma 1.4 to show that the function Qµ,β(r; z) is starlike inD, it suffices to prove that the sequence
(kak − (k + 1)ak+1)k≥1 is decreasing. We have

kak − 2(k + 1)ak+1 =
k!(r2 + 1)µ+1Bk(β, µ, r)

[((k!)β + r2)((k + 1)!)β + r2)]µ+1 , (2.8)

where
Bk(β, µ, r) = k

(
((k + 1)!)β + r2

)µ+1
− 2(k + 1)2

(
(k!)β + r2

)µ+1
, k ≥ 1.

For k ≥ 2, we have

k
1
µ+1

(
((k + 1)!)β + r2

)
− (2(k + 1)2)

1
µ+1

(
(k!)β + r2

)
≥ k

1
µ+1 − (2(k + 1)2)

1
µ+1 +

k
1
µ+1 ((k + 1)!)β

2
+

k
1
µ+1 ((k + 1)!)β

2
− (2(k + 1)2)

1
µ+1 (k!)β


= k

1
µ+1 +

k
1
µ+1 ((k + 1)!)β

2
−

(
2(k + 1)2

) 1
µ+1
+ (k!)β

k
1
µ+1 (k + 1)β

2
− (2(k + 1)2)

1
µ+1


≥ k

1
µ+1 + (k + 1)

2
µ+1

k
1
µ+1 (k!)β(k + 1)

2
− 2

1
µ+1

 + (k!)β(k + 1)
2
µ+1

k
1
µ+1 (k + 1)

2
− 2

1
µ+1


≥ k

1
µ+1 + (k + 1)

2
µ+1

(
k

1
µ+1 (k!)β − 2

1
µ+1

)
+ (k!)β(k + 1)

2
µ+1

(
k

1
µ+1 − 2

1
µ+1

)
> 0,

(2.9)
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which in turn implies that
Bk(β, µ, r) > 0,

for all k ≥ 2, and consequently, the sequence (kak − (k + 1)ak+1)k≥2 is decreasing. Further, a simple
computation gives

a1 − 4a2 + 3a3

(1 + r2)µ+1 =
1

(1 + r2)µ+1 −
8

(2β + r2)µ+1 +
18

(6β + r2)µ+1

≥
1

2µ+1 −
8

2β(µ+1) +
18

(6β + r2)µ+1

=
2β(µ+1) − 2µ+4

2(β+1)(µ+1) +
18

(6β + r2)µ+1

≥
2µ+4 − 2µ+4

2(β+1)(µ+1) +
18

(6β + r2)µ+1 > 0.

Therefore, (kak − (k + 1)ak+1)k≥1 is decreasing, which leads us to the asserted result. □

In the next Theorem we present another set of sufficient conditions to be imposed on the parameters
so that the function Qµ,β(r; z) is starlike inD.

Theorem 2.10. Let the parameters be the same as in Theorem 2.1. In addition, if the following
conditions

H∗ :
(
2β + 1

2

)µ+1

≥ 8(e − 2),

hold true, then the function Qµ,β(r; z) is starlike inD.

Proof. First of all, we need to prove that the sequences (uk)k≥2 and (vk)k≥2 defined by

uk =
(k!)2(r2 + 1)µ+1

((k!)β + r2)µ+1 and vk =
(k − 1)(k!)2(r2 + 1)µ+1

((k!)β + r2)µ+1 ,

are decreasing. Indeed, we have

((k!)β + r2)µ+1(((k + 1)!)β + r2)µ+1(uk − uk+1)
(k!)2(r2 + 1)µ+1 = (((k + 1)!)β + r2)µ+1 − (k + 1)2((k!)β + r2)µ+1. (2.10)

In addition, for any k ≥ 2, we have

((k + 1)!)β + r2 − (k + 1)
2
µ+1 ((k!)β + r2) = r2

(
1 − (k + 1)

2
µ+1

)
+ ((k + 1)!)β − (k + 1)

2
µ+1 (k!)β

≥ 1 − (k + 1)
2
µ+1 + ((k + 1)!)β − (k + 1)

2
µ+1 (k!)β

= 1 +
(
((k + 1)!)β

2
− (k + 1)

2
µ+1

)
+

(
((k + 1)!)β

2
− (k + 1)

2
µ+1 (k!)β

)
≥ 1 +

 (k!)β(k + 1)1+ 2
µ+1

2
− (k + 1)

2
µ+1

 + (k!)β
 (k + 1)1+ 2

µ+1

2
− (k + 1)

2
µ+1


= 1 + (k + 1)

2
µ+1

(
(k!)β(k + 1)

2
− 1

)
+ (k!)β(k + 1)

2
µ+1

(
k + 1

2
− 1

)
> 0.

(2.11)
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According to (2.10) and (2.11) we conclude that the sequence (uk)k≥2 is decreasing. Also, for k ≥ 2,
we have

((k!)β + r2)µ+1(((k + 1)!)β + r2)µ+1(vk − vk+1)
(k!)2(r2 + 1)µ+1 = (k−1)(((k+1)!)β+r2)µ+1−k(k+1)2((k!)β+r2)µ+1. (2.12)

Moreover, for all k ≥ 2, we find

(k − 1)
1
µ+1 (((k + 1)!)β + r2) − (k(k + 1)2)

1
µ+1 ((k!)β + r2) = r2

(
(k − 1)

1
µ+1 − (k(k + 1)2)

1
µ+1

)
+ (k − 1)

1
µ+1 ((k + 1)!)β − (k(k + 1)2)

1
µ+1 (k!)β

≥ (k − 1)
1
µ+1 − (k(k + 1)2)

1
µ+1 +

(k − 1)
1
µ+1 ((k + 1)!)β

3
+

2(k − 1)
1
µ+1 ((k + 1)!)β

3
− (k(k + 1)2)

1
µ+1 (k!)β

≥ (k − 1)
1
µ+1 + (k + 1)

2
µ+1

 (k − 1)
1
µ+1 (k!)1+ 2

µ+1 (k + 1)
3

− k
1
µ+1


+ (k!)β(k + 1)

2
µ+1

2(k − 1)
1
µ+1 (k + 1)
3

− k
1
µ+1


≥ (k − 1)

1
µ+1 + (k + 1)

2
µ+1

(
(k − 1)

1
µ+1 (k!)1+ 2

µ+1 − k
1
µ+1

)
+ (k!)β(k + 1)

2
µ+1

(
2(k − 1)

1
µ+1 − k

1
µ+1

)
.

(2.13)

Since the sequence (k/(k − 1))n≥2 is decreasing, we deduce that k
k−1 ≤ 2 for all k ≥ 2 and consequently,(

k
k − 1

) 1
µ+1

≤ 2
1
µ+1 ≤ 2 ( k ≥ 2, µ > 0).

Hence, in view of the above inequality combined with (2.13) and (2.12), we conclude that the sequence
(vk)k≥2 is decreasing. Now, we set

Q̃µ,β(r; z) :=
z
[
Qµ,β(r; z)

]′
Qµ,β(r; z)

, z ∈ D.

We see that the function Q̃µ,β(r; z) is analytic in D and satisfies Q̃µ,β(r; 0) = 1. Hence, to derive the
desired result, it suffices to prove that, for any z ∈ D, we have

ℜ(Q̃µ,β(r; z)) > 0.

For this goal in view, it suffices to show that

|Q̃µ,β(r; z) − 1| < 1 (z ∈ D).

For all z ∈ D, we get ∣∣∣∣∣∣[Qµ,β(r; z)
]′
−
Qµ,β(r; z)

z

∣∣∣∣∣∣ < ∞∑
k=2

(k − 1)k!(r2 + 1)µ+1

((k!)β + r2)µ+1

=

∞∑
k=2

vk

k!

≤ v2(e − 2).

(2.14)
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In addition, in view of the inequality:

|a + b| ≥ ||a| − |b||,

we obtain ∣∣∣∣∣∣Qµ,β(r; z)
z

∣∣∣∣∣∣ > 1 −
∞∑

k=2

(k!)(r2 + 1)µ+1

((k!)β + r2)µ+1

= 1 −
∞∑

k=2

uk

k!

≥ 1 − u2(e − 2).

(2.15)

By using (2.14) and (2.15), for z ∈ D, we get

|Q̃µ,β(r; z) − 1| =

∣∣∣∣[Qµ,β(r; z)
]′
−
Qµ,β(r;z)

z

∣∣∣∣∣∣∣∣Qµ,β(r;z)
z

∣∣∣∣
<

v2(e − 2)
1 − u2(e − 2)

.

(2.16)

Furthermore, by using the fact that the function r 7→ χµ,β(r) =
(

r2+1
r2+2β

)µ+1
is strictly increasing on (0, 1],

and with the aid of condition (H∗), we obtain

(v2 + u2)(e − 2) =
8(e − 2)(r2 + 1)µ+1

(2β + r2)µ+1

< 8(e − 2)
(

2
2β + 1

)µ+1

≤ 1.

(2.17)

Finally, by combining (2.16) and (2.17), we derived the desired results. □

By setting β = 2 in Theorem 2.10, we obtain the following corollary:

Corollary 2.11. If 0 < r ≤ 1 and µ ≥ 1, then the function Qµ(r; z) defined in (1.4) is starlike inD.

Taking β = 3
2 in Theorem 2.10, we obtain:

Corollary 2.12. Under the assumptions of Corollary 2.2, the function Qµ, 32 (r; z) is starlike inD.

Setting in Theorem 2.10 the values µ = 2, we compute the following corollary:

Corollary 2.13. Suppose that all hypotheses of Corollary 2.3 hold, then the function Q2,β(r; z) is
starlike inD.

Example 2.14. The functions Q3, 32
(1/2; z) and Q2, 53

(1/2; z) are starlike inD.

Figure 1 illustrates the mappings of the above examples inD.
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(a) Mapping of Q3, 32

(
1
2 ; z

)
overD.

 

(b) Mapping of Q2, 53

(
1
2 ; z

)
overD.

Figure 1. Mappings of Qµ,β (r; z) overD.

Theorem 2.15. Let µ, β > 0 and 0 < r ≤ 1 such that β ≥ 1 + 3
µ+1 . If the following condition

H∗∗ :
(
2β + 1

2

)µ+1

≥ 16(e − 2),

holds true, then the function Qµ,β(r; z) is convex inD.

Proof. We define the sequences (xk)k≥2 and (yk)k≥2 by

xk =
k(k!)2(r2 + 1)µ+1

((k!)β + r2)µ+1 and yk =
k(k − 1)(k!)2(r2 + 1)µ+1

((k!)β + r2)µ+1 .

Let k ≥ 2, then

((k!)β + r2)µ+1(((k + 1)!)β + r2)µ+1(xk − xk+1)
(k!)2(r2 + 1)µ+1 = k(((k + 1)!)β + r2)µ+1 − (k + 1)3((k!)β + r2)µ+1. (2.18)

However, we have

k
1
µ+1 (((k + 1)!)β + r2) − (k + 1)

3
µ+1 ((k!)β + r2) ≥ k

1
µ+1 − (k + 1)

3
µ+1 + k

1
µ+1 ((k + 1)!)β − (k + 1)

3
µ+1 (k!)β

= k
1
µ+1 +

k
1
µ+1 (k!)β(k + 1)β

2
− (k + 1)

3
µ+1

 + k
1
µ+1 (k!)β(k + 1)β

2
− (k + 1)

3
µ+1 (k!)β


≥ k

1
µ+1 + (k + 1)

3
µ+1

k
1
µ+1 (k!)β(k + 1)

2
− 1

 + (k!)β(k + 1)
3
µ+1

k
1
µ+1 (k + 1)

2
− 1


> 0.

(2.19)

Hence, in view of (2.18) and (2.19), we get that (xk)k≥2 is decreasing. Also, we have

((k!)β + r2)µ+1(((k + 1)!)β + r2)µ+1(yk − yk+1)
k(k!)2(r2 + 1)µ+1

= (k − 1)(((k + 1)!)β + r2)µ+1 − (k + 1)3((k!)β + r2)µ+1.

(2.20)
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Moreover, for k ≥ 2, we find that

(k − 1)
1
µ+1 (((k + 1)!)β + r2) − (k + 1)

3
µ+1 ((k!)β + r2)

≥ (k − 1)
1
µ+1 +

 (k − 1)
1
µ+1 (k!)β(k + 1)β

2
− (k + 1)

3
µ+1

 + (k!)β
 (k − 1)

1
µ+1 (n + 1)β

2
− (n + 1)

3
µ+1


≥ (k − 1)

1
µ+1 + (k + 1)

3
µ+1

 (k − 1)
1
µ+1 (k!)β(k + 1)

2
− 1

 + (k!)β(k + 1)
3
µ+1

 (k − 1)
1
µ+1 (k + 1)
2

− 1


> 0.

(2.21)

Having (2.20) and (2.21) in mind, we deduce that the sequence (yk)k≥2 is decreasing. To show that the
function Qµ,β(r; z) is convex inD, it suffices to establish that the function

Q̂µ,β(r; z) := z
[
Qµ,β(r; z)

]′
,

is starlike inD. For this objective in view, it suffices to find that∣∣∣∣∣∣∣∣
z
[
Q̂µ,β(r; z)

]′
Q̂µ,β(r; z)

− 1

∣∣∣∣∣∣∣∣ < 1 (∀z ∈ D).

For all z ∈ D and since (yk)k≥2 is decreasing, we get∣∣∣∣∣∣∣[Q̂µ,β(r; z)
]′
−
Q̂µ,β(r; z)

z

∣∣∣∣∣∣∣ <
∞∑

k=2

k(k − 1)k!(r2 + 1)µ+1

((k!)β + r2)µ+1

=

∞∑
k=2

yk

k!

≤ y2(e − 2).

(2.22)

Further, for any z ∈ D, we obtain∣∣∣∣∣∣∣Q̂µ,β(r; z)
z

∣∣∣∣∣∣∣ > 1 −
∞∑

k=2

k(k!)(r2 + 1)µ+1

((k!)β + r2)µ+1

= 1 −
∞∑

k=2

xk

k!

≥ 1 − x2(e − 2).

(2.23)

Keeping (2.22) and (2.23) in mind, for z ∈ D, we get∣∣∣∣∣∣∣∣
z
[
Q̂µ,β(r; z)

]′
Q̂µ,β(r; z)

− 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣[Q̂µ,β(r; z)

]′
−
Q̂µ,β(r;z)

z

∣∣∣∣∣∣∣∣ Q̂µ,β(r;z)
z

∣∣∣∣
<

y2(e − 2)
1 − x2(e − 2)

=
8(e − 2)(r2 + 1)µ+1

(2β + r2)µ+1 − 8(e − 2)(r2 + 1)µ+1 .

(2.24)
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Again, by using the fact that the function r 7→ χµ,β(r) is increasing on (0, 1] and with the aid of
hypothesis (H∗∗) we obtain that

8(e − 2)(r2 + 1)µ+1

(2β + r2)µ+1 − 8(e − 2)(r2 + 1)µ+1 < 1. (2.25)

Finally, by combining the above inequality and (2.24), we obtain the desired result asserted by
Theorem 2.15. □

Taking β = 2 in Theorem 2.15, in view of (1.4), the following result holds true:

Corollary 2.16. Let 0 < r ≤ 1. If µ ≥ 2, then the function Qµ(r; z) is convex inD.

If we set µ = 1 in Theorem 2.15, in view of (1.5), we derive the following result:

Corollary 2.17. Let 0 < r ≤ 1. If β ≥ log(8
√

e−2−1)
log(2) , then the function Q1,β(r; z) is convex inD.

Example 2.18. The functions Q2(r; z) and Q1, 83
(r; z) are convex inD.

Figure 2 gives the mappings of the above presented examples inD.

 

(a) Mapping of Q2 (1; z) overD.
 

(b) Mapping of Q1, 83

(
1
2 ; z

)
overD.

Figure 2. Mappings of Qµ,β (r; z) overD.

Theorem 2.19. Let the parameters be the same as in Theorem 2.1, then the functionQµ,β(r; z) is starlike
inD 1

2
.

Proof. For any z ∈ D we get ∣∣∣∣∣∣Qµ,β(r; z)
z

− 1

∣∣∣∣∣∣ < ∞∑
k=2

k!(r2 + 1)µ+1

(k!)β + r2)µ+1

=

∞∑
k=2

ck

k!
,

(2.26)

where

ck :=
(k!)2(r2 + 1)µ+1

((k!)β + r2)µ+1 , k ≥ 2.
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Straightforward calculation gives

[((k!)β + r2)(((k + 1)!)β + r2)]µ+1(ck − ck+1)
(k!)2(r2 + 1)µ+1

=
(
((k + 1)!)β + r2

)µ+1
−

(
(k + 1)

2
µ+1 ((k!)β + r2)

)µ+1
.

(2.27)

Furthermore, for k ≥ 2, we get

((k + 1)!)β + r2 − (n + 1)
2
µ+1 ((k!)β + r2) = r2(1 − (k + 1)

2
µ+1 ) + ((k + 1)!)β − (k!)β(k + 1)

2
µ+1

≥

(
1 +

((k + 1)!)β

2
− (k + 1)

2
µ+1

)
+ (k!)β

(
(k + 1)β

2
− (k + 1)

2
µ+1

)
≥

1 + (k!)β(k + 1)1+ 2
µ+1

2
− (k + 1)

2
µ+1

 + (k!)β(k + 1)
2
µ+1 (k − 1)

2

≥

1 + (k + 1)
2
µ+1 ((k!)β(k + 1) − 2)

2

 + (k!)β(k + 1)
2
µ+1 (k − 1)

2

> 0.

(2.28)

Thus, the sequence (ck)k≥2 is decreasing. However, in view of (2.26), for z ∈ D we obtain∣∣∣∣∣∣Qµ,β(r; z)
z

− 1

∣∣∣∣∣∣ < ∞∑
k=2

k!(r2 + 1)µ+1

((k!)β + r2)µ+1 =

∞∑
k=2

c2

k!
= c2(e − 2) =

4(e − 2)(r2 + 1)µ+1

(2β + r2)µ+1 . (2.29)

According to the monotony property of the function r 7→ χβ,µ(r) on (0, 1) we get

χβ,µ(r) <
1
4
. (2.30)

Hence, in view (2.29) and (2.30) we find for all z ∈ D that∣∣∣∣∣∣Qµ,β(r; z)
z

− 1

∣∣∣∣∣∣ < (e − 2) < 1.

With the help of Lemma 1.5, we deduce that the function Qµ,β(r; z) is starlike inD 1
2
. □

Corollary 2.20. Assume that all conditions of Corollary 2.2 are satisfied, then the function Qµ, 32 (r; z)
is starlike inD 1

2
.

Corollary 2.21. Suppose that all hypotheses of Corollary 2.3 hold, then the function Q2,β(r; z) is
starlike inD 1

2
.

If we set β = 2 in the above Theorem, in view of (1.4), the following result is true:

Corollary 2.22. Let 0 < r ≤ 1 If µ ≥ 1, then the function Qµ(r; z) is starlike inD 1
2
.

Example 2.23. The functions Q3, 32
(1/2; z),Q1(1; z) and Q2, 53

(1/2; z) are starlike inD 1
2
.
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In Figure 3, we give the mappings of the above presented examples in D.

 

(a) Mapping of Q1 (1; z) over
D 1

2
.

 

(b) Mapping of Q2, 53

(
1
2 ; z

)
over

D 1
2
.

Figure 3. Mappings of Qµ,β (r; z) overD 1
2
.

Theorem 2.24. Let β, µ > 0 and 0 < r < 1. If β ≥ 1 + 3
µ+1 , then the function Qµ,β(r; z) is convex inD 1

2
.

Proof. For all z ∈ D, it follows that

|Q′µ,β(r; z) − 1| <
∞∑

k=2

kk!(r2 + 1)µ+1

((k!)β + r2)µ+1 =

∞∑
k=2

dk

k(k − 1)
, (2.31)

where

dk :=
k2(k − 1)k!(r2 + 1)µ+1

(k!)β + r2)µ+1 , k ≥ 2.

For all k ≥ 2, we get

((k!)β + r2)µ+1(((k + 1)!)β + r2)µ+1(dk − dk+1)
kk!(1 + r2)µ+1

=
(
(k(k − 1))

1
µ+1

[
((k + 1)!)β + r2

])µ+1
−

(
((k + 1))

3
µ+1

[
(k!)β + r2

])µ+1
.

(2.32)

However, for all k ≥ 2 and under the conditions imposed on the parameters, we have

(k(k − 1))
1
µ+1

[
((k + 1)!)β + r2

]
− ((k + 1))

3
µ+1

[
(k!)β + r2

]
≥ (k(k − 1))

1
µ+1 − ((k + 1))

3
µ+1 + (k(k − 1))

1
µ+1 ((k + 1)!)β − (k + 1)

3
µ+1 (k!)β

= (k(k − 1))
1
µ+1 +

 (k(k − 1))
1
µ+1 (k!)β(k + 1)β

2
− (k + 1)

3
µ+1


+ (k!)β

 (k(k − 1))
1
µ+1 (k + 1)β

2
− (k + 1)

3
µ+1


≥ (k(k − 1))

1
µ+1 + (n + 1)

3
µ+1

 (k(k − 1))
1
µ+1 (k!)β(k + 1)

2
− 1


+ (k!)β(k + 1)

3
µ+1

 (k(k − 1))
1
µ+1 (k + 1)

2
− 1


≥ (k(k − 1))

1
µ+1 + (k + 1)

3
µ+1

(
(k(k − 1))

1
µ+1 (k!)β − 1

)
+ (k!)β(k + 1)

3
µ+1

(
(k(k − 1))

1
µ+1 − 1

)
> 0.

(2.33)
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Hence, in view of (2.32) and (2.33) we conclude that the sequence (dk)k≥2 is decreasing. Therefore,
by (2.31), we conclude

|Q′µ,β(r; z) − 1| <
∑
k≥2

d2

k(k − 1)
= d2. (2.34)

Moreover, since β ≥ 1 + 3
µ+1 and r ∈ (0, 1], we get(

r2 + 1
r2 + 2β

)µ+1

≤
1
8
,

and consequently, for all z ∈ D, we obtain

|Q′µ,β(r; z) − 1| < 1. (2.35)

Finally, with the means of Lemma 1.6, we conclude that the function Qµ,β(r; z) is convex inD 1
2
. □

If we take β = 2 in Theorem 2.15, in view of (1.4), the following result holds true:

Corollary 2.25. Let 0 < r ≤ 1. If µ ≥ 2, then the function Qµ(r; z) is convex inD 1
2
.

If we let µ = 1 in Theorem 2.15, in view of (1.5), we derive the following result:

Corollary 2.26. Let 0 < r ≤ 1. If β ≥ 5
2 , then the function Q1,β(r; z) is convex inD 1

2
.

Example 2.27. The functions Q2(r; z) and Q1, 52
(r; z) are convex inD 1

2
.

In Figure 4, we present the mappings of these examples in D.

 

(a) Mapping of Q2 (1; z) over
D 1

2
.

 

(b) Mapping of Q1, 52

(
1
2 ; z

)
over

D 1
2
.

Figure 4. Mappings of Qµ,β (r; z) overD 1
2
.

Remark 2.28. The geometric properties of the function Qµ(r; z) derived in Corollaries 2.16, 2.22
and 2.25 are new.

3. Conclusions

In our present paper, we have derived sufficient conditions such that a class of functions associated
to the generalized Mathieu type power series are to be starlike, close-to-convex and convex in the unit
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disk D. The various results, which we have established in this paper, are believed to be new, and their
importance is illustrated by several interesting corollaries and examples. Furthermore, we are confident
that our paper will inspire further investigation in this field and pave the way for some developments
in the study of geometric functions theory involving certain classes of functions related to the Mathieu
type powers series.
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