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1. Introduction

The unconstrained optimization basically deals with finding the global maximum or minimum of a
continuously differentiable function f : Rn −→ R. The general form of an unconstrained optimization
problem is as follows:

min f (x), x ∈ Rn, (1.1)

where the gradient g(x) = ∇ f (x). Solving the complexity of this problem (1.1) would require the
use of some symbolic aided algebra system and an effective numerical method that would be able
to perform the necessary computations, plot the numerical results and manipulate the mathematical
expression in an analytical form. One of the widely and most preferred methods considered for solving
(1.1) is the nonlinear conjugate gradient (CG) method because of its robustness and ability to deal with
large-scale problems [1,2]. The simplicity and efficiency of the CG algorithm has further motivated its
application to numerous real-life problems including the feed forward training of neural networks [3],
robotic motion control [4], signal recovery [5], regression analysis [1, 6], image deblurring [7, 8] and
portfolio selection [9] among others.

Starting with an initial guess of x0 ∈ R
n, the CG method generates a sequence of iterates {xk} via

the following formula:

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (1.2)

where αk represents the step size that is computed along the search direction dk [10]. Usually, a line
search procedure is required to obtain the step size (αk) which could either be an exact or inexact
procedure. While the exact line search yields the exact minimizer for a given problem, the inexact
scheme computes αk such that it satisfies the Wolfe conditions at each iteration. The most commonly
used Wolfe conditions includes the standard Wolfe condition that requires αk to satisfy

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk, (1.3)

g(xk + αkdk)T dk ≥ σgT
k dk, (1.4)

and the strong Wolfe condition is computed such that αk satisfies (1.3) and

|g(xk + αkdk)T dk| ≤ −σgT
k dk, (1.5)

where 0 < δ < 1
2 , δ < σ < 1.

Another important component of the CG method is the search direction dk. This component plays
an important role in the performance and convergence analysis of any CG method. Also, the search
direction distinguishes the classes of different CG algorithms including the spectral and three-term CG
methods. The search direction dk for the classical CG method is computed as follows:

d0 = −g0, dk+1 = −gk+1 + βkdk, ∀k ≥ 1, (1.6)

where the coefficient βk characterizes the different CG formulas. Selection of the CG choice parameter
and search direction is always crucial in the study of the unconstrained optimization because these
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two components are responsible for the numerical performance and theoretical analysis of any CG
method [11].

For any optimization method to fulfill the general optimization criteria and be able to use the line
search procedure, it is required to possess the following descent property:

dT
k gk < 0 ∀k. (1.7)

Furthermore, a CG method is said to be sufficiently descending if there exists some constant c > 0 such
that the following condition holds:

dT
k gk ≤ −c∥gk∥

2 ∀k. (1.8)

This condition (1.8) plays an important role in the convergence analysis of any nonlinear CG
algorithm, which is always preferred over (1.7). Some of the earliest and known CG coefficients
that possess this condition (1.8) include those developed by Fletcher and Revees (FR) [12], Dai and
Yuan (DY) [13] and Fletcher (conjugate descent (CD)) [14], with formulas as follows:

βFR
k =

∥gk+1∥
2

∥gk∥
2 , β

DY
k =

∥gk+1∥
2

dT
k yk
, βCD

k = −
∥gk+1∥

2

dT
k gk
, (1.9)

where yk = gk+1 − gk and ∥·∥ denotes the ℓ2 norm. This class of CG methods is characterized by
simplicity and less memory requirements under different line search procedures. However, their
numerical performance in practical computations is often affected by jamming phenomena. For
instance, if any of the above CG algorithm generates a tiny step size from xk to xk+1 and poor search
direction and as a result if restart is not performed along the negative direction, then, it is likely that
the subsequent step size and direction will also have poor performance [15].

Due to the challenges reported by the above category of CG algorithms, several studies have shown
that the methods possess nice convergence properties (see [11, 16, 17]). To address the issue related
to the computational performance, several studies involved constructing new CG formulas by either
combining the methods in (1.9) with other efficient formulas or introducing new terms to the set of
methods in (1.9) to improve the computational efficiency and their general structure [18].

In this study, we are interested in modifying the classical DY CG formula for solving optimization
and image restoration problems. The proposed method introduces a new spectral parameter θk to
scale the search direction dk in (1.6) such that it satisfies the Newton search direction and the well-
known D–L [19] conjugacy condition in Section 2. Section 3 demonstrates how the proposed method
satisfies the descent condition and further proves the global convergence under suitable conditions. The
preliminary computational results on a set of optimization functions are analyzed in Section 4 while
Section 5 reports results related to real-world application problem. The last section summarizes the
whole idea related to the study and presents a general conclusion.

2. Formulation of the spectral algorithm and motivation

The spectral CG methods have been proposed to improve the general structure of CG methods. The
methods are based on the works of Raydan [20], Barzilai and Borwein [21] and Birgin and Martı́nez
[22]. For some recent results on spectral CG methods, see [8,23–31]. Similarly, the standard conjugacy
condition given by

yT
k dk+1 = 0 (2.1)
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is crucial in the convergence analysis of these CG methods. The CG methods proposed with this
structure (2.1) largely depend on exact line criteria for the choice of step size, αk. However, this
requirement is computationally expensive for large-scale problems. Therefore, denoting sk = xk+1− xk,
the selection of αk uses its generalized form called the D–L conjugacy condition introduced in [19],

yT
k dk+1 = −tgT

k+1sk, t > 0, (2.2)

is usually preferable in the design of some nice CG algorithms. The parameter t, called the D-L
parameter is capable of ensuring better convergence. Therefore, it must be carefully chosen.
To address some weaknesses associated with the DY method, its modification has been investigated
recently. For instance, utilizing the strong Wolfe line search, Jiang and Jian [32] proposed the improved
DY [13] CG parameter with the following structure:

βIDY
k = rk

∥gk+1∥
2

dT
k yk
, (2.3)

where rk =
|gT

k+1dk |

−gT
k dk
. Motivated by this idea, Jian et al. [33] introduced a spectral parameter that yields

the descent direction with

θJY JLL
k = 1 +

|gT
k+1dk|

−gT
k dk
. (2.4)

Since θJY JLL
k ≥ 1 it is obvious that dk is a descent direction. Following the idea in [34], they proposed

its conjugate parameter as follows:

βJY JLL
k =

∥gk+1∥
2 −

(gT
k+1dk)2

∥dk∥2

max{∥gk∥
2, dT

k yk}
. (2.5)

However, the search direction including the method in (2.5) only satisfies the descent condition, (1.7)
and it converges globally based on two cases of max{∥gk∥

2, dT
k yk} with the standard Wolfe criteria

respectively. According to this formulation, two other modified DY CG methods were proposed in [35]
with the following forms:

β(1)
k =

∥gk+1∥
2 −

(gT
k+1gk)2

∥gk∥2

dT
k yk

, (2.6)

β(2)
k =

∥gk+1∥
2 −

∥gk+1∥

∥gk∥
gT

k+1gk

µdT
k yk

. (2.7)

Inspired by these modifications, Zhu et al. [36] suggested another DY modification namely, the
DDY1 scheme which has the form of

βDDY1
k =


∥gk+1∥

2−
µ1(gT

k+1dk )2

∥gk+1∥∥gk∥∥dk∥
2 gT

k+1gk

dT
k yk

, gT
k+1gk ≥ 0,

∥gk+1∥
2+

µ1(gT
k+1dk )2

∥gk+1∥∥gk∥∥dk∥
2 gT

k+1gk

dT
k yk

, gT
k+1gk < 0.

(2.8)
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Nonetheless, the method has similar theoretical characteristics with the scheme described by (2.5).
Thus, in order to improve the general structure and establish sufficient descent, as given by (1.8) for the
DY method, we scale the search direction dk in (1.6) with a spectral parameter θk such that it satisfies
the well-known D–L conjugacy condition (2.2), as well as the Newton search direction in the following
form

dk+1 = −θkgk+1 + βkdk, ∀k ≥ 1. (2.9)

Pre-multiplying by yT
k , we obtain

yT
k dk+1 = −θkyT

k gk+1 + β
DY
k yT

k dk.

Using the above relation with (2.2) gives

−tsT
k gk+1 = −θkyT

k gk+1 + β
DY
k yT

k dk.

Re- arranging implies that

θS DL
k =

tsT
k gk+1

yT
k gk+1

+ βDY
k

yT
k dk

yT
k gk+1

. (2.10)

Similarly, in some neighborhood of the minimizer, if the current point xk+1 is close enough to a
local minimizer and the objective function behaves like a quadratic function, then the optimal search
direction to follow is the Newton direction:

dk+1 = −∇
2 f (xk+1)−1gk+1, (2.11)

where ∇2 f (xk+1) is the Hessian matrix of f . Thus, the Newton method requires the Hessian matrix, i.e,
the second derivative information to update (2.11), which provides a nice convergence rate. Motivated
by its quadratic convergence property, we assume that ∇2 f (xk+1) exists at every iteration and satisfies
the conditions of a suitable secant equation; for instance,

∇2 f (xk+1)sk = yk. (2.12)

Now, equating (2.9) with (2.11) gives

−∇2 f (xk+1)−1gk+1 = −θkgk+1 + β
DY
k dk.

Pre-multiplying by yT
k and using the secant equation (2.12), we get

−∇2 f (xk+1)−1gk+1 = −θkgk+1 + β
DY
k dk

−sT
k gk+1 = −θksT

k∇
2 f (xk+1)gk+1 + β

DY
k sT

k∇
2 f (xk+1)dk

−sT
k gk+1 = −θkyT

k gk+1 + β
DY
k yT

k dk.

After some simple simplification, we obtain

θS NM
k =

sT
k gk+1

yT
k gk+1

+ βDY
k

yT
k dk

yT
k gk+1

. (2.13)
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Remark 2.1. Observe that, if t = 1, then the parameter θS DL
k = θS NM

k , which implies that, the
spectral search direction dk+1 does not only satisfy the generalized D-L conjugacy condition it also
takes advantage of the nice convergence property of the Newton direction. However, for a sufficient
descent condition to hold, we always select t > 1 in this paper.

To achieve the sufficient descent of the search direction described by (2.9), we suggest the following
modification of (2.10) as follows:

θS NM1
k =

tsT
k gk+1

max{|yT
k gk+1|, dT

k yk}
+ βDY

k

yT
k dk

max{|yT
k gk+1|, dT

k yk}
. (2.14)

Thus, if |yT
k gk+1| > dT

k yk, then (2.14) reduces (2.10). Hence, for dT
k yk > |yT

k gk+1|, we obtain another
spectral parameter:

θS NM2
k =

tsT
k gk+1

dT
k yk

+ βDY
k

yT
k dk

dT
k yk
. (2.15)

Combining (2.10) and (2.15) implies that the optimal θk can be computed as follows:

θNS DY
k =

θS DL
k , i f |yT

k gk+1| > dT
k yk,

θS NM2
k , otherwise.

(2.16)

Now, we describe the new spectral DY (NSDY) algorithm as follows:

Algorithm 1: NSDY
Step 1: Apply x0 ∈ R

n and the parameters 0 < δ < σ ≤ 1. Set d0 = −g0, α0 = 1.
Step 2: Verify the convergence: If ∥gk∥ ≤ ϵ, then stop. Otherwise , proceed to the next step.
Step 3: Select αk > 0 such that (1.3) and (1.5) are satisfied.
Step 4: Compute θNS DY

k using (2.16).
Step 5: Compute βDY

k from (1.9) and dk using (2.9).
Step 6: Update the next iteration from Step 2.

Theorem 2.2. Let θk be given by (2.16) with 0 < αk ≤ σ < 1. Suppose that the NSDY algorithm
generates sequences {gk} and {dk} , where αk is determined by strong Wolfe rules (1.3)–(1.5); then,
there exists a constant ρ > 0 for which the condition

dT
k+1gk+1 ≤ −ρ∥gk+1∥

2, ∀k ≥ 0. (2.17)

holds.

The criterion (2.17) is called the sufficient descent condition, and it ensure that the direction
described by (2.9) is indeed sufficient for the minimizer.

Proof. The proof is achieved by mathematical induction. Initially, for k = 0 it follows easily that
gT

0 d0 = − ∥g0∥
2
≤ −ρ∥g0∥

2. Suppose that (2.17) holds for index k, that is, dT
k gk ≤ −ρ∥gk∥

2. We now
show for k + 1. Now, according to the strong Wolfe criterion (1.3), it holds that

|gT
k+1dk| ≤ −σgT

k dk,
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i.e.,
dT

k yk = dT
k gk+1 − dT

k gk ≥ −(1 − σ)dT
k gk. (2.18)

Then
|gT

k+1dk|

|dT
k yk|

≤
σ

1 − σ
. (2.19)

Pre-multiplying (2.9) by gT
k+1, we have

gT
k+1dk+1 = −θk∥gk+1∥ + β

DY
k gT

k+1dk. (2.20)

Using (2.14) with sk = αkdk gives

θS NM1
k =

tsT
k gk+1

max{|yT
k gk+1|, dT

k yk}
+ βDY

k

yT
k dk

max{|yT
k gk+1|, dT

k yk}

≤
tsT

k gk+1

|dT
k yk|

+ βDY
k

yT
k dk

|dT
k yk|

≤
tαk|dT

k gk+1|

|dT
k yk|

+ βDY
k

yT
k dk

|dT
k yk|
. (2.21)

Obtaining βDY
k from (1.9) and applying it with (2.21) and (2.20), we get

gT
k+1dk+1 ≤ −

( tαk|dT
k gk+1|

|dT
k yk|

+ βDY
k

yT
k dk

|dT
k yk|

)
∥gk+1∥

2 + βDY
k gT

k+1dk.

= −

( tαk|gT
k+1dk|

|dT
k yk|

+
∥gk+1∥

2

|dT
k yk|

)
∥gk+1∥

2 +
∥gk+1∥

2

dT
k yk

gT
k+1dk.

≤ −

( tαk|gT
k+1dk|

|dT
k yk|

+
∥gk+1∥

2

|dT
k yk|

)
∥gk+1∥

2 +
|gT

k+1dk|

|dT
k yk|
∥gk+1∥

2

≤ −

(
σtαk

1 − σ
+
∥gk+1∥

2

|dT
k yk|

)
∥gk+1∥

2 +
σ

1 − σ
∥gk+1∥

2 (2.22)

where the second to the last and last inequalities follow (2.19) respectively. Now, from (2.18), we get

1
dT

k yk
≤

1
−(1 − σ)dT

k gk
.

Combining this with (2.17), we get

1
dT

k yk
≤

1
(1 − σ)ρ∥gk∥

2 . (2.23)

The result by the last inequality follows from the induction hypothesis. Finally, using (2.22) and (2.23),
we conclude that

gT
k+1dk+1 ≤ −

(
σtαk

(1 − σ)
+

∥gk+1∥
2

(1 − σ)ρ∥gk∥
2 −

σ

(1 − σ)

)
∥gk+1∥

2.
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≤ −

(
σtαk

(1 − σ)
−

σ

(1 − σ)

)
∥gk+1∥

2.

Since ∥gk+1∥
2

(1−σ)ρ∥gk∥
2 > 0, we have

gT
k+1dk+1 ≤ −

(
σtαk

(1 − σ)
−

σ

(1 − σ)

)
∥gk+1∥

2.

Denoting ρ =
(
σtαk

(1−σ) −
σ

(1−σ)

)
, with t ≥ 1.2, αk ∈ (0, 0.9] and σ ∈ (0, 0.9] the required result is achieved.

□

3. Convergence analysis

The convergence analysis requires the following presumptions.

Assumption 3.1.

1. Given an initial point x0, the function f (x) is bounded below on the level set η = {x ∈ Rn : f (x0) ≥
f (x)}.

2. Denote Γ as some neighborhood of η, and the function f is smooth with its gradient that is
Lipschitz-continuous and satisfying

∥g(x) − g(y)∥ ≤ L∥x − y∥, ∀x, y ∈ Γ, L > 0. (3.1)

Note that these assumptions, imply that

∥g(x)∥ ≤ γ, ∀x ∈ η, γ > 0, (3.2)
∥x − y∥ ≤ b, ∀x, y ∈ η, b > 0. (3.3)

The following lemma was taken from [17] and is very crucial in our analysis.

Lemma 3.2. Suppose that {xk} and {dk} are sequences generated by the NSDY algorithm, where the
spectral search direction dk is descending and αk satisfies the strong Wolfe conditions; then,

∞∑
k≥0

(gT
k dk)2

∥dk∥
2 < +∞. (3.4)

Theorem 3.3. If Assumption (3.1) holds and the sequence of iterations {xk} is produced by the NSDY
algorithm, then

lim inf
k→∞

∥gk∥ = 0. (3.5)

Proof. If (3.5) does not hold, then there exists some constant r > 0 so that

∥gk∥ > r. (3.6)

Claim: The search direction defined by (2.9) is bounded, i.e., there exists a constant P > 0 such that

∥dk+1∥ ≤ P, ∀k ≥ 0. (3.7)
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To proceed with the proof of this claim by induction, we need to show that |βDY
k | and |θk| are bounded

below. According to (2.18), it yields

1
dT

k yk
≤

1
−(1 − σ)dT

k gk
.

Combining this with (2.17), we get

1
dT

k yk
≤

1
(1 − σ)ρ∥gk∥

2 . (3.8)

Therefore, obtaining βDY
k from (1.9) and applying it with (3.2), (3.6) and (3.8), we have

|βDY
k | ≤

∥gk+1∥
2

|dT
k yk|

≤
γ2

ρ(1 − σ)r2 = E. (3.9)

Next, from (2.14), (3.2), (3.8) and (3.9), we obtain

|θk| ≤

∣∣∣∣∣ tsT
k gk+1

max{|yT
k gk+1|, dT

k yk}
+ βDY

k

yT
k dk

max{|yT
k gk+1|, dT

k yk}

∣∣∣∣∣
≤

∣∣∣∣∣ tsT
k gk+1

dT
k yk

+ βDY
k

∣∣∣∣∣
≤

t∥sk∥∥gk+1∥

|dT
k yk|

+ E

≤
tbγ

ρ(1 − σ)r2 + E = M. (3.10)

Now, for k = 0, we get that d1 = −θ1g1 + β1d0 from (2.9), which implies that d1 = −θ1g1 − β1g0, since
d0 = −g0; this yields

∥d1∥ ≤ |θ1|∥g1∥ + |β1|∥g0∥

≤ γ + Eγ = γ∗,

that is, the claim (3.7) holds for k = 0. Next we assume that the claim (3.7) is true for k, that is,
∥dk∥ ≤ P. To show that it is true for k + 1, consider the search direction described by (2.9).

dk+1 = −βkgk+1 + βkdk.

Thus, using (3.2), (3.9) and (3.10), we obtain

∥dk+1∥ ≤ |θk|∥gk+1∥ + |βk|∥dk∥

≤ Mγ + EP;

therefore, the claim also holds for k + 1. Now since (3.7) holds for all values of k, then we have

1
∥dk∥

≥
1
P
, P > 0. (3.11)
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From the above inequality, it follows that

∞∑
k=0

1
∥dk∥

2 = +∞. (3.12)

Accordingly, from (2.17), (3.4) and (3.6), it follows that

ρ2r4
∞∑

k≥0

1
∥dk∥

2 ≤

∞∑
k≥0

ρ2∥gk∥
4

∥dk∥
2 ≤

∞∑
k≥0

(gT
k dk)2

∥dk∥
2 < +∞ (3.13)

Therefore, this implies that
∞∑

k=0

1
∥dk∥

2 < +∞. (3.14)

It is obvious that, (3.12) and (3.14) cannot hold concurrently. Thus, (3.5) must hold. □

4. Numerical results

In this part, we present a numerical comparison of the NSDY method versus the classical DY
method and three other modifications of the DY method. The evaluations are based on a number of test
functions considered from [37,38]. For the computation, we consider the dimension ranging from 2 to
100,000 as presented in Tables 1 and 2. To analyze the results further, the following specifications are
considered for the algorithms:

• JYJLL algorithm of Jian et al. [33] that uses (2.4) and (2.5) for the search direction described by
(2.9) and δ = 0.01 and σ = 0.1 in (1.3) and (1.4) respectively.
• IDY algorithm of Jiang and Jian [32] that uses (2.3) for the search direction described by (1.6)

and δ = 0.01 and σ = 0.1 in (1.3) and (1.4) respectively.
• DDY1 algorithm of Zhu et al. [36] that uses (2.8) for the search direction described by (1.6) with
µ1 = 0.4 and δ = 0.01 and σ = 0.1 in (1.3) and (1.4) respectively.
• DY algorithm of Dai and Yuan [13] with βDY

k =
∥gk+1∥

2

dT
k yk

for the search direction described by (1.6)
and δ = 0.01 and σ = 0.1 in (1.3) and (1.4) respectively.

The MATLAB R2022a codes for the numerical experiment were run on a Dell Core i7 laptop with
16 GB RAM and a 2.90 GHz CPU. We set δ = 10−3 and σ = 0.9 in (1.3) and (1.5) for the NSDY
method and ∥gk∥ ≤ 10−6 as the stopping condition for all schemes. We also use the symbol ∗ ∗ ∗ to
indicate a situation in which the stopping condition is not met. The results from the computational
experiments based on number of iterations (NI), number of function evaluations (FE), and CPU time
(ET) is presented at the following link https://acrobat.adobe.com/link/review?uri=urn:
aaid:scds:US:ed485b92-05e2-40f3-a1f2-6e159858c515.

We will employ the performance profiling technique to interpret and discuss the performance of the
methods examined. Let P be the collection of np test problems and S be the set of ns solvers used in
the comparison. The performance profiles thus constitute the performance metric for a problem p ∈ P
and a solver s ∈ S , which denote either NI, FE or ET relative to the other solvers s ∈ S on a set of
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problems p ∈ P. Then, Dolan and Moré [39] described the measure of performance ratio to compare
and evaluate the performance:

rp,s =
fp,s

min
{
fp,s : s ∈ S and p ∈ P

} .
Thus, the best method is indicated by the performance profile plot at the top curve. The experiments
can therefore be interpreted graphically by using Figures 1–3 based on numerical performance.

The interpretation of Figure 1 for the value τ chosen within the 0 < τ < 0.5 interval shows that the
NSDY method solved the test problems and won in 98%/38% to be the best, followed by the JYJLL
method with 95%/45%, whereas the DY, IDY and DDY1 methods solved and won in 96%/25%,
90%/37% and 55%/20% of the given problems respectively. Accordingly, if we increase the τ to
an interval τ ≥ 1, the NSDY method is the best with 68% accuracy, whereas the JYJLL, IDY, DY
and DDY1 methods have 66%, 60%, 55% and 40% accuracy, respectively. Similarly, the comparison
among the five schemes based on interpretation of Figure 2 shows that the NSDY, DY, JYJLL, IDY
and DDY1 methods solved the problems and won in 98%/12%, 96%/28%, 94%/54%, 90%/30% and
57%/14% respectively for the value τ chosen within 0 < τ < 0.5. However, increasing the τ value to
the interval τ ≥ 6 reveals that the NSDY method wins when solving 97% of the test problems compared
to JYJLL, IDY, DY and DDY1 methods with 90%, 88%, 96%, and 52% of problems solved to the best
respectively. Finally, Figure 3 also shows that for the value τ chosen within 0 < τ < 0.5, NSDY, DY,
JYJLL, IDY and DDY1 methods solved and won in 98%/33%, 96%/08%, 94%/38%, 90%/22% and
58%/05% problems, respectively. Alternatively, taking the value of τ in the interval τ ≥ 6 reveals
that the NSDY method wins when solving 97% of the test problems compared to the JYJLL, IDY,
DY and DDY1 methods with 93%, 88%, 92%, and 52% of problems solved to the best, respectively.
Therefore, interpretations of Figures 1–3 indicate that the NSDY method is more preferable than other
CG methods.

Figure 1. NI performance profile for the methods.
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Figure 2. FE performance profile for the methods.

Figure 3. ET performance profile for the methods.
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Table 1. List of test problems part 1/2.

NO Problem Dim NO Problem Dim

1 EXTENDED PENALTY 100 43 DIAGONAL 1 100
2 EXTENDED PENALTY 10000 44 HAGER 500
3 EXTENDED PENALTY 20000 45 HAGER 300
4 EXTENDED MARATOS 2 46 HAGER 5000
5 DIAGONAL 5 10 47 HAGER 1000
6 DIAGONAL 5 50000 48 ZIRILLI 2
7 DIAGONAL 5 100000 49 RAYDAN 1 100
8 TRECANNI 2 50 RAYDAN 1 10
9 TRECANNI 2 51 RAYDAN 1 10
10 QUADRATIC PENALTY 1 4 52 RAYDAN 1 50
11 QUADRATIC PENALTY 1 100 53 RAYDAN 2 10000
12 QUADRATIC PENALTY 1 1000 54 RAYDAN 2 50000
13 QUADRATIC PENALTY 2 500 55 RAYDAN 2 100000
14 QUADRATIC PENALTY 2 100 56 FLETCHCER 10
15 QUADRATIC PENALTY 2 10 57 FLETCHCER 1000
16 QUADRATIC FUNCTION 1 100 58 FLETCHCER 50000
17 QUADRATIC FUNCTION 1 10 59 DIAGONAL 3 2
18 QUADRATIC FUNCTION 1 10 60 DIAGONAL 3 10
19 QUADRATIC FUNCTION 2 50 61 EXTENDED DENSCHN B 100
20 QUADRATIC FUNCTION 2 1000 62 EXTENDED DENSCHN B 5000
21 QUADRATIC FUNCTION 2 5000 63 EXTENDED DENSCHN B 10000
22 POWER 2 64 DIAGONAL 6 10000
23 POWER 2 65 DIAGONAL 6 5000
24 ZETTL 2 66 DIAGONAL 6 10000
25 DIAGONAL 2 1000 67 DIAGONAL 6 50000
26 DIAGONAL 2 10000 68 DIAGONAL 4 1000
27 DIAGONAL 2 50000 69 DIAGONAL 4 10000
28 TEST 3 70 DIAGONAL 4 100000
29 TEST 3 71 DIAGONAL 7 10
30 SUM OF SQUARES 100 72 DIAGONAL 7 100
31 SUM OF SQUARES 2000 73 DIAGONAL 7 100
32 SUM OF SQUARES 5000 74 DIAGONAL 8 100
33 SHALLOW 1000 75 DIAGONAL 8 500
34 QUARTIC 100 76 DIAGONAL 9 10
35 QUARTIC 1000 77 DIAGONAL 9 100
36 QUARTIC 5000 78 DENSCHN A 3000
37 QUARTIC 10000 79 DENSCHN A 15000
38 MATYAS 2 80 DENSCHN C 1000
39 MATYAS 2 81 DENSCHN C 10000
40 DIAGONAL 1 10 82 EXTENDED BLOCK DIAGONAL 1 10
41 DIAGONAL 1 100 83 EXTENDED BLOCK DIAGONAL 1 100
42 DIAGONAL 1 10 84 EXTENDED BLOCK DIAGONAL 1 1000
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Table 2. List of test problems part 2/2.

NO Problem Dim

85 HIMMELBLAU 1000
86 HIMMELBLAU 10000
87 HIMMELBLAU 50000
88 HIMMELBLAU 10000
89 DQDRTIC 1000
90 DQDRTIC 10000
91 DQDRTIC 100
92 DQDRTIC 10
93 QUARTICM 1000
94 QUARTICM 10000
95 LINEAR PERTURBED 5000
96 LINEAR PERTURBED 10000
97 LINEAR PERTURBED 20000
98 TWH 2
99 ENGVAL1 2
100 ENGVAL1 2
101 ENGVAL8 4
102 ENGVAL8 2
103 DENSCHN F 1000
104 DENSCHN F 10000
105 DENSCHN F 50000
106 ARWHEAD 10
107 ARWHEAD 100
108 ARWHEAD 500
109 SIX HUMP 2
110 PRICE4 2
111 PRICE4 2
112 ZIRILLI 2
113 ZIRILLI 2
114 EXTENDED HIMMELBLAU 500
115 EXTENDED HIMMELBLAU 1000
116 EXTENDED HIMMELBLAU 2000
117 ROTATED ELLIPSE 2
118 ROTATED ELLIPSE 2
119 EL-ATTAR-VIDYASAGAR-DUTTA 2
120 EL-ATTAR-VIDYASAGAR-DUTTA 2
121 EXTENDED HIEBERT 2
122 EXTENDED TRIDIAGONAL 1 100
123 EXTENDED TRIDIAGONAL 1 500
124 THUMP 2
125 THUMP 2

5. Application of the NSDY algorithm in restoration of corrupted images

The CG method is among the most efficient minimization algorithms used for faster optimization of
both linear and non-linear systems because of its rapid solution for large-scale problems. Recently, the
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CG iterative scheme has been widely considered for solving real-world application problems because
of its fewer iterations and less computational resources required to optimize a given problem. Some
of the most relevant problems solved by the CG method includes the feed forward training of neural
networks [3], the problem of motion control of robotic manipulators [8], regression analysis [1,6], and
the restoration of corrupted images [8, 9].

Image restoration is among the family of inverse problems used to obtain some highly-quality
images from those images that have possibly been corrupted during the data acquisition process.
Choosing an appropriate algorithm that is capable of restoring these corrupted images is very crucial
because knowledge of the degradation system has to be considered in order to achieve better quality
images. In this study, we consider restoring some images which that include a building (512 × 512)
and camera (512 × 512). These images were possibly corrupted by salt-and-pepper impulse noise
during the data acquisition or storage process. For the purpose of this study, the following metrics
have been employed to measure the quality of the restored images and evaluate the performance of the
algorithms. These metrics include the following

• peak signal-to-noise ratio (PSNR),
• relative error (RelErr),
• CPU time.

The PSNR has widely been used to measure the perceptual quality of restored images because,
it calculates the ratio between the power of corrupting noises and the maximum possible power of
a signal affecting the fidelity of the representation. This metric is very crucial when evaluating the
quality of both corrupted and restored images. It is important to note that a method with higher PSNR
will produce images with better quality [40]. The PSNR can be obtained as follows

PNS R = 10 · log10

(
MAX2

I

MS E

)
= 20 · log10

(
MAXI
√

MS E

)
= 20 · log10 (MAXI) − 10 · log10 (MS E) (5.1)

where MS E is used to measure the average pixel differences of the complete images and MAXI

represents the maximum pixel value of the images. Also, an algorithm with higher MS E values
will produce greater difference between the original and corrupted images. The MS E values can
be obtained via:

MS E =
1
N

∑∑(
Ei, j − oi, j

)2
, (5.2)

where N denotes image size, E is the edge image and o represents the original image.

5.1. Image restoration problem

Consider the following image restoration problem:

H(u) =
∑

(i, j)∈G

 ∑
(m,n)∈Ti, j/G

ϕα(ui, j − ξm,n) +
1
2

∑
(m,n)∈Ti, j∩G

ϕα(ui, j − um,n)

 ,
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where the edge-preserving potential function ϕα(t) =
√

t2 + α for some constant αwhose value is given
as 1.

The above problem is transformed into the following optimization problem [41]

minH(u),

where x is the original M ×N pixel image. Also, G denotes the following index set of noise candidates
x:

G = {(i, j) ∈ Q|ξ̄i j , ξi j, ξi j = smin or smax}, (5.3)

where i, j ∈ Q = {1, 2, ·,M} × {1, 2, ·,N} its neighborhood is defined as

Ti j = {(i, j − 1), (i, j + 1), (i − 1, j), (i + 1, j)}. (5.4)

From (5.3), the maximum and minimum values of the noisy pixel are smax and smin. Also, ξ is the
observed noisy corrupted image whose adaptive median filter is denoted as ξ̄.

Next, we present the computational performance of the proposed algorithm in Tables 3, 4, and 5.
The performance was compared with that of other similar algorithms with the same characteristics
in terms of the PNSR, RelErr, and CPU time to demonstrate the robustness of the algorithm. All
computations were carried out under the conditions of the strong Wolfe line search with the restoration
noise degrees set as 30, 50 and 80, respectively.

From the results presented in the tables above, it is obvious that all of the methods are very
competitive. Starting with the CPU time of the camera image, it can be observed that at 30% noise
degree, the CPU time for the proposed method is lower than that of DDY1 and IDY algorithms but
higher than that of DY and JYJLL methods. However, at the 50% noise degree, the proposed algorithm
outperformed all of the other methods, achieving the shortest CPU time. Also, at the 80% noise
degree, our method was superior to all other algorithms except the IDY algorithm which produced the
shortest CPU time. Similarly, by considering the Performance of the new method in terms of restoring
the building corrupted image also shows that the method is very competitive. Furthermore, overall
performance analysis of the methods (see Tables 4 and 5) in terms of the PSNR and RelErr shows that
the proposed method performed better because its produced higher values for PSNR and RelErr in most
of the noise degrees considered. Based on the previous discussion, the higher the PNSR and RelErr
values, the better the quality of the output images. For the graphical representation of the results, we
refer the reader to Figures 4 and 5. These results were obtained for the 30%, 50%, and 80% noise
degrees, respectively.

Based on Tables 3, 4 and 5 and Figures 4 and 5, we can conclude that the proposed method is more
efficient and robust because it restored most of the corrupted images with high accuracy than other
existing methods.
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Table 3. Image restoration outputs for NSDY, DY, DDY1, JYJLL, and IDY in terms of CPU
time (CPUT).

METHOD NSDY DY DDY1 JYJLL IDY

IMAGE NOISE CPUT CPUT CPUT CPUT CPUT

CAMERA

30% 48.2371 46.2840 48.3230 46.6328 74.4926
50% 76.4981 112.2052 78.4817 76.7701 109.4473
80% 170.6165 261.6915 184.9280 174.2533 141.6278

BUILDING

30% 60.47630 61.8992 64.5338 46.4718 98.3261
50% 143.6863 147.1558 104.1381 82.7440 144.3797
80% 174.7825 187.3404 159.8783 191.3842 187.2095

Table 4. Image restoration outputs for NSDY, DY, DDY1, JYJLL, and IDY in terms of
RelErr.

METHOD NSDY DY DDY1 JYJLL IDY

IMAGE NOISE RelErr RelErr RelErr RelErr RelErr

CAMERA

30% 1.2046 1.0732 1.2665 1.1387 1.1129
50% 1.6940 1.9179 1.6558 1.5858 1.6827
80% 3.6860 3.5995 3.2609 3.0341 3.0700

BUILDING

30% 1.4926 1.4439 1.4831 1.3775 1.5324
50% 2.5823 2.6177 2.5245 2.5926 2.6678
80% 4.9713 5.3007 5.4765 4.9022 5.0085

Table 5. Image restoration outputs for NSDY, DY, DDY1, JYJLL, and IDY in terms of
PSNR.

METHOD NSDY DY DDY1 JYJLL IDY

IMAGE NOISE PSNR PSNR PSNR PSNR PSNR

CAMERA

30% 30.6398 30.9961 30.5249 30.8717 30.8786
50% 27.6515 27.2421 27.5891 27.7729 27.3638
80% 23.7462 23.2416 23.3517 23.6676 23.9367

BUILDING

30% 29.8875 29.8283 29.7804 29.9679 29.6387
50% 26.4309 26.4154 26.5512 26.3220 26.1593
80% 22.2909 21.9993 22.0771 22.2824 22.5207
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 4. Camera image corrupted by (a) 30 %, (b) 50% and (c) 80 % salt-and-pepper noise;
the restored images using NSDY: (d,e,f), DY: (g,h,i), DDY1: (j,k,l), JYJLL (m,n,o), IDY
(p,q,r).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 5. Building image corrupted (a) 30 %, (b) 50% and (c) 80 % salt-and-pepper noise;
the restored images using NSDY: (d,e,f), DY: (g,h,i), DDY1: (j,k,l), JYJLL (m,n,o), IDY
(p,q,r).
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6. Conclusions

In this study, considering the D-L conjugacy condition as well as the Newton search direction, a
spectral DY CG method for large-scale unconstrained optimization and image restoration problems is
suggested. The proposed method introduces a new spectral parameter θk to scale the search direction dk

such that it satisfies the sufficient descent property and converges globally with strong Wolfe criteria.
The preliminary computational results a set of optimization functions analyzed in comparison to those
obtained for some DY modifications in literature indicated that the proposed method is efficient and
reliable.
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