

http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(12): 30910–30921.

DOI: 10.3934/math.20231581 Received: 14 August 2023 Revised: 04 November 2023 Accepted: 09 November 2023 Published: 17 November 2023

Research article

The maximum sum of the sizes of cross t-intersecting separated families

Erica L. L. Liu*

School of Science, Tianjin University of Technology and Education, Tianjin 300222, China

* Correspondence: Email: liulingling@tute.edu.cn.

Abstract: For a set X and an integer $r \ge 0$, let $\binom{X}{\le r}$ denote the family of subsets of X that have at most r elements. Two families $\mathcal{A} \subset \binom{X}{\le r}$ and $\mathcal{B} \subset \binom{X}{\le s}$ are cross t-intersecting if $|A \cap B| \ge t$ for all $A \in \mathcal{A}, B \in \mathcal{B}$. In this paper, we considered the measures of cross t-intersecting families $\mathcal{A} \subset \binom{X}{\le r}$, $\mathcal{B} \subset \binom{X}{\le s}$, then we used this result to obtain the maximum sum of sizes of cross t-intersecting separated families.

Keywords: finite set; separated families; cross intersecting; generating set method; the shifting method

Mathematics Subject Classification: 05C35, 05D05

1. Introduction

For a set X, the power set of X (the set of subsets of X) is denoted by 2^X . For integer $r \ge 0$, the family of r-element subsets of X is denoted by $\binom{X}{r}$, and the family of subsets of X of size at most r is denoted by $\binom{X}{\le r}$. Let $[n] = \{1, 2, \dots, n\}$. For $\mathcal{F} \subset 2^{[n]}$ and $0 \le i \le n$, define

$$\mathcal{F}^{(i)} = \{ F \in \mathcal{F} : |F| = i \}.$$

A family $\mathcal{F} \subset 2^X$ is said to be *t*-intersecting if $|F_1 \cap F_2| \ge t$ for every $F_1, F_2 \in \mathcal{F}$. If $\mathcal{A}, \mathcal{B} \subset 2^X$ are families such that $|A \cap B| \ge t$ for all $A \in \mathcal{A}, B \in \mathcal{B}$, then \mathcal{A} and \mathcal{B} are said to be cross *t*-intersecting. When t = 1, we usually omit t.

The following theorem by Erdös et al. is a basic result in the extremal set theory.

Theorem 1.1. ([1]) Let n, k and t be positive integers with $k \ge t \ge 1$ and let $\mathcal{F} \subset \binom{[n]}{k}$ be a t-intersecting family, then

$$|\mathcal{F}| \le \binom{n-t}{k-t}$$

for $n \ge n_0(k, t)$.

For t = 1, the exact value

$$n_0(k, t) = (k - t + 1)(t + 1) = 2k$$

was proved in [1]. For $t \ge 15$, it is due to [2]. Finally, Wilson [3] closed the gap $2 \le t \le 14$ with a proof valid for all t.

Hilton and Milner [4] obtained the maximum sum of sizes of cross intersecting families $\mathcal{A}, \mathcal{B} \subset {[n] \choose k}$, which was the first result on the sizes of cross intersecting families.

Theorem 1.2. ([4]) Let n and k be integers. Suppose that $n \ge 2k$, $\mathcal{A}, \mathcal{B} \subset \binom{[n]}{k}$ are cross intersecting and nonempty, then

$$|\mathcal{A}| + |\mathcal{B}| \le \binom{n}{k} - \binom{n-k}{k} + 1,$$

and the equality holds if $\mathcal{A} = \{[k]\}$ and

$$\mathcal{B} = \{ B \in \binom{[n]}{k} : B \cap [k] \neq \emptyset \}.$$

It should be mentioned that Frankl and Tokushige [5] determined the maximum sum of the sizes of cross intersecting families $\mathcal{A} \subset {[n] \choose r}$ and $\mathcal{B} \subset {[n] \choose s}$, and the maximum of $|\mathcal{A}| + |\mathcal{B}|$ for cross *t*-intersecting families $\mathcal{A} \subset {[n] \choose r}$ and $\mathcal{B} \subset {[n] \choose s}$ were established in [6]. Recently, Borg and Feghli [7] solved the analogous maximum sum problem for the case where $\mathcal{A} \subset {[n] \choose \leq r}$ and $\mathcal{B} \subset {[n] \choose \leq s}$.

Theorem 1.3. ([7]) Let n, s and r be integers with $n \ge 1$, $1 \le r \le s$. Suppose that $\mathcal{A} \subset \binom{[n]}{\le r}$ and $\mathcal{B} \subset \binom{[n]}{\le s}$ are cross intersecting and nonempty, then

$$|\mathcal{A}| + |\mathcal{B}| \le 1 + \sum_{i=1}^{s} \left(\binom{n}{i} - \binom{n-r}{i} \right),$$

and the equality holds if $\mathcal{A} = \{[r]\}$ and

$$\mathcal{B} = \{ B \in \binom{[n]}{\leq s} : B \cap [r] \neq \emptyset \}.$$

In this paper, we consider the cross *t*-intersecting families in the setting of measure. For a function w: $[k] \to \mathbb{R}_{>0}$ (the set of all positive reals) and a set $A \subset [k]$, we consider the measure w(A) = w(|A|). Moreover, for $\mathcal{A} \subset 2^{[k]}$, let

$$w(\mathcal{A}) = \sum_{A \in \mathcal{A}} w(A).$$

Quite a few results for measures of intersecting and cross intersecting families are known [8–11]. In particular, Guapt et al. [10] determined the maximum sum of $\sum_{i \in [p]} w_i(\mathcal{F}_i)$ for the nonincreasing function w_i : $[k] \to \mathbb{R}_{\geq 0}$ and p-cross t-intersecting families $\mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_p \subset 2^{[k]}$, where families $\mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_p \subset 2^{[k]}$ are called p-cross t-intersecting if $|\cap_{i \in [p]} F_i| \geq t$ for all $F_i \in \mathcal{F}_i$, $i \in [p]$.

Given positive integers t, r, s, m, k with $t \le r \le k$ and $t \le m \le s \le k$, define the families

$$\mathcal{K}(m,r,t) = \left\{ K \in \binom{[k]}{\leq r} \colon |K \cap [m]| \geq t \right\},$$

$$S(m,s) = \left\{ S \in \binom{[k]}{\leq s} \colon [m] \subset S \right\}.$$

It is easily checked that $\mathcal{K}(m, r, t)$ and $\mathcal{S}(m, s)$ are cross *t*-intersecting.

We first obtain the maximum sum of measures for cross *t*-intersecting families $\mathcal{A} \subset \binom{[n]}{\leq r}$ and $\mathcal{B} \subset \binom{[n]}{\leq s}$.

Theorem 1.4. Let $\mathcal{A} \subset {[k] \choose \leq r}$ and $\mathcal{B} \subset {[k] \choose \leq s}$ be nonempty cross t-intersecting families with $k \geq r \geq s \geq t$. Let $w: [k] \to \mathbb{R}_{>0}$ be nonincreasing, then

$$w(\mathcal{A}) + w(\mathcal{B}) \leq \max \left\{ \max_{t \leq m \leq s} w(\mathcal{K}(m, r, t)) + w(\mathcal{S}(m, s)), \max_{t \leq m \leq r} w(\mathcal{K}(m, s, t)) + w(\mathcal{S}(m, r)) \right\}.$$

Let *n* and *k* be integers and

$$X = X_1 \uplus X_2 \uplus \cdots \uplus X_k, |X_i| = n.$$

We assume that the elements of X_i are ordered and let v_i denote its smallest elements. For $1 \le r \le k$, define

$$\mathcal{H}(n,k,r) = \left\{ H \in {X \choose r} : |H \cap X_i| \le 1, 1 \le i \le k \right\}.$$

A family $\mathcal{F} \subset \mathcal{H}(n,k,r)$ is called a separated family. For $\mathcal{F}, \mathcal{G} \subset \mathcal{H}(n,k,r)$, we say that they are cross t-intersecting if $|F \cap G| \ge t$ for all $F \in \mathcal{F}, G \in \mathcal{G}$.

By applying Theorem 1.4 with a specific function $w: [k] \to \mathbb{R}_{>0}$, we obtain the maximum of $|\mathcal{F}| + |\mathcal{G}|$ of cross *t*-intersecting separated families $\mathcal{F}, \mathcal{G} \subset \mathcal{H}(n, k, r)$.

Theorem 1.5. Let n, k, r and t be integers with $n \ge 2$, $k \ge r \ge t$. Suppose that $\mathcal{F}, \mathcal{G} \subset \mathcal{H}(n, k, r)$ are nonempty and cross t-intersecting, then

$$|\mathcal{F}| + |\mathcal{G}| \le |\mathcal{F}_0| + |\mathcal{G}_0|,$$

where

$$\mathcal{F}_0 = \{ F \in \mathcal{H}(n, k, r) : |F \cap \{v_1, v_2, \dots, v_r\}| \ge t \}, \quad \mathcal{G}_0 = \{ \{v_1, v_2, \dots, v_r\} \}.$$

2. Proof of Theorem 1.4

The shifting technique will be used in this section. For $\mathcal{F} \subset 2^{[k]}$ and $1 \leq i < j \leq k$, define the shifting operation

$$S_{i,j}(\mathcal{F}) = \{S_{i,j}(F) \colon F \in \mathcal{F}\},\$$

where

$$S_{i,j}(F) = \begin{cases} (F \setminus \{j\}) \cup \{i\}, & \text{if } j \in F, i \notin F \text{ and } (F \setminus \{j\}) \cup \{i\} \notin \mathcal{F}; \\ F, & \text{otherwise.} \end{cases}$$

It is well known ([12]) that $S_{i,j}$ maintains $|\mathcal{F}|$, the *t*-intersecting property and the cross *t*-intersecting property. We say that a family $\mathcal{F} \subset 2^{[k]}$ is initial if $S_{i,j}(\mathcal{F}) = \mathcal{F}$ for all $1 \le i < j \le k$. It is proved in [12] that by applying the shifting operation repeatedly, every family becomes an initial family.

A family $\mathcal{A} \subset {[k] \choose \le r}$ is called monotone if $A \in \mathcal{A}$, $B \supset A$ and $|B| \le r$ imply $B \in \mathcal{A}$. Given a family $\mathcal{A} \subset {[k] \choose < r}$, let $\langle \mathcal{A} \rangle_r$ be the up-set of \mathcal{A} defined by

$$\langle \mathcal{A} \rangle_r = \left\{ F \in \binom{[k]}{\leq r} : \text{ there exists } A \in \mathcal{A} \text{ such that } A \subset F \right\}.$$

Our proof is based on the generating set method, which follows [9,13]. We recall some well-known notions for the generating set method.

Let $\mathcal{A} \subset \binom{[k]}{\leq r}$ ($\mathcal{A} \neq \emptyset$ and $\mathcal{A} \neq \binom{[k]}{\leq r}$) be a monotone family. A generating set of \mathcal{A} is a minimal set (for containment) $G \in \mathcal{A}$. The generating family of \mathcal{A} consists of all generating sets of \mathcal{A} . The extent of \mathcal{A} is the maximal element appearing in a generating set of \mathcal{A} . The boundary generating family of \mathcal{A} consists of all generating sets of \mathcal{A} containing its extent. For a monotone family $\mathcal{A} \subset \binom{[k]}{\leq r}$ with generating family \mathcal{G} , it is easy to see that $\mathcal{A} = \langle \mathcal{G} \rangle_r$.

The following result follows from the definitions of the generating family and initiality, and a detailed proof can be found in [14].

Lemma 2.1. Let $\mathcal{A} \subset \binom{[k]}{\leq r}$ be a monotone initial family with extent $m \geq 2$, generating family \mathcal{G} and boundary generating family $\bar{\mathcal{G}}$. For any $\mathcal{H} \subset \bar{\mathcal{G}}$, let

$$\mathcal{G}' = \mathcal{G} \setminus \mathcal{H}, \ \mathcal{G}'' = (\mathcal{G} \setminus \mathcal{H}) \cup \{H \setminus \{m\} : H \in \mathcal{H}\},\$$

then

$$\mathcal{A} \setminus \langle \mathcal{G}' \rangle_r = \left\{ H \cup T : H \in \mathcal{H}, \ T \in \begin{pmatrix} [m+1,k] \\ \leq r - |H| \end{pmatrix} \right\}$$
 (2.1)

and

$$\langle \mathcal{G}'' \rangle_r \setminus \mathcal{A} = \left\{ (H \setminus \{m\}) \cup T : H \in \mathcal{H}, \ T \in \begin{pmatrix} [m+1,k] \\ \leq r - |H| + 1 \end{pmatrix} \right\}. \tag{2.2}$$

Now, we are in the position to prove the main result.

Proof of Theorem 1.4. Let $\mathcal{A} \subset {[k] \choose \leq r}$ and $\mathcal{B} \subset {[k] \choose \leq s}$ be nonempty cross *t*-intersecting families with $w(\mathcal{A}) + w(\mathcal{B})$ maximal. Since the shifting operator preserves the cross *t*-intersecting property and preserves $w(\mathcal{A}) + w(\mathcal{B})$, we may assume that both \mathcal{A} and \mathcal{B} are initial. By the maximality of $w(\mathcal{A}) + w(\mathcal{B})$, we may also assume that \mathcal{A} and \mathcal{B} are monotone.

Suppose that \mathcal{A} has extent m_1 , generating family \mathcal{G}_1 and boundary generating family $\bar{\mathcal{G}}_1$ and \mathcal{B} has extent m_2 , generating family \mathcal{G}_2 and boundary generating family $\bar{\mathcal{G}}_2$. Since $\mathcal{G}_1 \subset \mathcal{A}$ and $\mathcal{G}_2 \subset \mathcal{B}$, we see that \mathcal{G}_1 and \mathcal{G}_2 are cross *t*-intersecting.

Since \mathcal{A} and \mathcal{B} are nonempty and cross *t*-intersecting, $|F| \ge t$ for any $F \in \mathcal{A} \cup \mathcal{B}$. It follows that $m_1 \ge t$ and $m_2 \ge t$.

Claim 1. $m_1 = m_2$.

Proof. Suppose that $m_1 \neq m_2$. By symmetry assume that $m_1 > m_2 \geq t$, then let

$$\mathcal{G}_1' = (\mathcal{G}_1 \setminus \bar{\mathcal{G}}_1) \cup \{G \setminus \{m_1\} \colon G \in \bar{\mathcal{G}}_1\}.$$

Note that $m_1 \notin B$ for any $B \in \mathcal{G}_2$, then \mathcal{G}'_1 and \mathcal{G}_2 are cross *t*-intersecting, implying that $\langle \mathcal{G}'_1 \rangle_r$, $\mathcal{B} = \langle \mathcal{G}_2 \rangle_s$ are also cross *t*-intersecting. Since $\langle \mathcal{G}'_1 \rangle_r \supseteq \mathcal{A}$ and w(j) > 0, we see that

$$w(\langle \mathcal{G}'_1 \rangle_r) + w(\mathcal{B}) > w(\mathcal{A}) + w(\mathcal{B}).$$

This contradicts the maximality of $w(\mathcal{A}) + w(\mathcal{B})$.

Let $m_1 = m_2 = m$. We may further assume that $\mathcal{A} \subset {[k] \choose \leq r}$ and $\mathcal{B} \subset {[k] \choose \leq s}$ are nonempty cross *t*-intersecting families with $w(\mathcal{A}) + w(\mathcal{B})$ maximal and *m* minimal. That is, for any cross *t*-intersecting families $\mathcal{A}' \subset {[k] \choose \leq r}$, $\mathcal{B}' \subset {[k] \choose \leq s}$ with

$$w(\mathcal{A}) + w(\mathcal{B}) = w(\mathcal{A}') + w(\mathcal{B}'),$$

if \mathcal{A}' and \mathcal{B}' have extent m', then $m \leq m'$ holds.

Claim 2. If $A \in \overline{\mathcal{G}}_1$ and $B \in \overline{\mathcal{G}}_2$ satisfy $|A \cap B| = t$, then $A \cup B = [m]$ and |A| + |B| = m + t.

Proof. Note that $\{m\} \in A \cap B$. We show that $A \cup B = [m]$ follows from initiality. Indeed, $x \in [m] \setminus (A \cup B)$ would imply

$$A' := (A \setminus \{m\}) \cup \{x\} \in \mathcal{F}$$

and

$$|A' \cap B| = |(A \cap B) \setminus \{m\}| = t - 1;$$

a contradiction. Now, |A| + |B| = m + t follows from $|A| + |B| = |A \cap B| + |A \cup B|$.

If m = t, then

$$G_1 = G_2 = \{[t]\}.$$

It implies that both \mathcal{A} and \mathcal{B} are t-star. Thus,

$$w(\mathcal{A}) + w(\mathcal{B}) = w(\mathcal{K}(t, r, t)) + w(\mathcal{S}(t, s)),$$

and we are done.

Now, we may assume that $m \ge t + 1$ and distinguish the four cases.

Case 1. If $\bar{\mathcal{G}}_1^{(t)} \neq \emptyset$, then

$$[t-1] \cup \{m\} \in \bar{\mathcal{G}}_1^{(t)} \subset \mathcal{A}.$$

By initiality, we have

$$[t], [t-1] \cup \{t+1\}, [t-1] \cup \{t+2\}, \cdots, [t-1] \cup \{m\} \in \mathcal{A}.$$

Since \mathcal{A} and \mathcal{B} are cross *t*-intersecting, then $[m] \subset B$ for any $B \in \mathcal{B}$. It follows $\mathcal{G}_2 = \{[m]\}$ and $t \leq m \leq s$. Since \mathcal{B} is monotone, then

$$\mathcal{B} = \langle \mathcal{G}_2 \rangle_s = \mathcal{S}(m, s).$$

By the maximality of $w(\mathcal{A}) + w(\mathcal{B})$, we infer that $\mathcal{A} = \mathcal{K}(m, r, t)$ and

$$w(\mathcal{A}) + w(\mathcal{B}) = w(\mathcal{K}(m, r, t)) + w(\mathcal{S}(m, s)).$$

Note that in this case, $t \le m \le s$ holds. Thus,

$$w(\mathcal{A}) + w(\mathcal{B}) \le \max_{t \le m \le s} w(\mathcal{K}(m, r, t)) + w(\mathcal{S}(m, s)).$$

Case 2. If $\bar{\mathcal{G}}_{2}^{(t)} \neq \emptyset$, by a similar argument as in Case 1, we obtain that

$$w(\mathcal{A}) + w(\mathcal{B}) = w(\mathcal{K}(m, s, t)) + w(\mathcal{S}(m, r))$$

and $t \le m \le r$. Thus,

$$w(\mathcal{A}) + w(\mathcal{B}) \le \max_{t \le m \le r} w(\mathcal{K}(m, s, t)) + w(\mathcal{S}(m, r)).$$

Case 3. There exists a, b with a + b = m + t and exactly one of $\bar{\mathcal{G}}_1^{(a)}$ and $\bar{\mathcal{G}}_2^{(b)}$ is nonempty.

Without loss of generality, assume that $\bar{\mathcal{G}}_1^{(a)} \neq \emptyset$. By Case 1, we assume that $a \geq t + 1$. Let

$$\mathcal{G}_1' = (\mathcal{G}_1 \setminus \bar{\mathcal{G}}_1^{(a)}) \cup \{G \setminus \{m\} \colon G \in \bar{\mathcal{G}}_1^{(a)}\}.$$

By Claim 2 we infer that \mathcal{G}'_1 and \mathcal{G}_2 are cross *t*-intersecting. Thus $\langle \mathcal{G}'_1 \rangle_r$ and \mathcal{B} are cross *t*-intersecting, then $\mathcal{A} \subseteq \langle \mathcal{G}'_1 \rangle_r$ and w(j) > 0 for $j \in [k]$ imply

$$w(\langle \mathcal{G}'_1 \rangle_r) + w(\mathcal{B}) > w(\mathcal{A}) + w(\mathcal{B})$$

contradicting the maximality of $w(\mathcal{A}) + w(\mathcal{B})$.

Case 4. For all $a, b \ge t + 1$ with a + b = m + t, both $\bar{\mathcal{G}}_1^{(a)}$ and $\bar{\mathcal{G}}_2^{(b)}$ are nonempty or both $\bar{\mathcal{G}}_1^{(a)}$ and $\bar{\mathcal{G}}_2^{(b)}$ are empty.

By Cases 1–3, we may assume that $\bar{\mathcal{G}}_1^{(t)}, \bar{\mathcal{G}}_2^{(m)}, \bar{\mathcal{G}}_2^{(t)}$ and $\bar{\mathcal{G}}_2^{(m)}$ are empty in this case. We claim that $\mathcal{G}_1 \setminus \bar{\mathcal{G}}_1$ and $\mathcal{G}_2 \setminus \bar{\mathcal{G}}_2$ are nonempty. $\bar{\mathcal{G}}_1^{(m)} = \emptyset$ and $\mathcal{G}_1 \neq \emptyset$ imply that there exists $G \in \mathcal{G}_1 \subset \mathcal{H}$ and |G| < m. Since \mathcal{H} is initial, $A' = [|G|] \in \mathcal{H}$ and $m \notin A'$, then A' (or a subset of A') belongs to $\mathcal{G}_1 \setminus \bar{\mathcal{G}}_1$. Similarly, $\mathcal{G}_2 \setminus \bar{\mathcal{G}}_2$ is nonempty.

Since $\bar{\mathcal{G}}_1, \bar{\mathcal{G}}_2 \neq \emptyset$, there exists $a, b \geq t + 1$ with a + b = m + t and both $\bar{\mathcal{G}}_1^{(a)}$ and $\bar{\mathcal{G}}_2^{(b)}$ are nonempty. Let

$$\mathcal{G}_1' = (\mathcal{G}_1 \setminus \bar{\mathcal{G}}_1^{(a)}) \cup \{G \setminus \{m\} \colon G \in \bar{\mathcal{G}}_1^{(a)}\}, \ \mathcal{G}_2' = \mathcal{G}_2 \setminus \bar{\mathcal{G}}_2^{(b)}$$

and

$$\mathcal{G}_1^{\prime\prime}=\mathcal{G}_1\setminus\bar{\mathcal{G}}_1^{(a)},\;\mathcal{G}_2^{\prime\prime}=(\mathcal{G}_2\setminus\bar{\mathcal{G}}_2^{(b)})\cup\{G\setminus\{m\}\colon G\in\bar{\mathcal{G}}_2^{(b)}\}.$$

By Claim 2, $\langle \mathcal{G}'_1 \rangle_r$ and $\langle \mathcal{G}'_2 \rangle_s$ are cross *t*-intersecting and $\langle \mathcal{G}''_1 \rangle_r$ and $\langle \mathcal{G}''_2 \rangle_s$ are cross *t*-intersecting. By Lemma 2.1 we have

$$w(\langle \mathcal{G}'_1 \rangle_r) + w(\langle \mathcal{G}'_2 \rangle_s) = w(\mathcal{A}) + w(\mathcal{B}) - |\bar{\mathcal{G}}_2^{(b)}| \sum_{b \le j \le s} {k - m \choose j - b} w(j) + |\bar{\mathcal{G}}_1^{(a)}| \sum_{a - 1 \le j \le r} {k - m \choose j - a + 1} w(j)$$
 (2.3)

and

$$w(\langle \mathcal{G}_{1}^{"}\rangle_{r}) + w(\langle \mathcal{G}_{2}^{"}\rangle_{s}) = w(\mathcal{A}) + w(\mathcal{B}) - |\bar{\mathcal{G}}_{1}^{(a)}| \sum_{a \leq j \leq r} \binom{k-m}{j-a} w(j) + |\bar{\mathcal{G}}_{2}^{(b)}| \sum_{b-1 \leq j \leq s} \binom{k-m}{j-b+1} w(j). \quad (2.4)$$

Since $w(j-1) \ge w(j) > 0$, we obtain

$$\sum_{a-1 \le j \le r} {k-m \choose j-a+1} w(j) - \sum_{a \le j \le r} {k-m \choose j-a} w(j) = \sum_{a \le j \le r+1} {k-m \choose j-a} w(j-1) - \sum_{a \le j \le r} {k-m \choose j-a} w(j)$$

$$\geq {k-m \choose r+1-a} w(r)$$

$$\geq 0. \tag{2.5}$$

Similarly,

$$\sum_{b-1 \le j \le s} {k-m \choose j-b+1} w(j) - \sum_{b \le j \le s} {k-m \choose j-b} w(j) \ge 0.$$
 (2.6)

Adding (2.3) and (2.4) and using (2.5) and (2.6), we obtain that

$$\frac{1}{2} \left(w(\langle \mathcal{G}'_1 \rangle_r) + w(\langle \mathcal{G}'_2 \rangle_s) + w(\langle \mathcal{G}''_1 \rangle_r) + w(\langle \mathcal{G}''_2 \rangle_s) \right) - (w(\mathcal{A}) + w(\mathcal{B}))$$

$$= \frac{|\bar{\mathcal{G}}_1^{(a)}|}{2} \left(\sum_{a-1 \le j \le r} {k-m \choose j-a+1} w(j) - \sum_{a \le j \le r} {k-m \choose j-a} w(j) \right)$$

$$+ \frac{|\bar{\mathcal{G}}_2^{(b)}|}{2} \left(\sum_{b-1 \le j \le s} {k-m \choose j-b+1} w(j) - \sum_{b \le j \le s} {k-m \choose j-b} w(j) \right)$$

$$\ge 0. \tag{2.7}$$

By the maximality of $w(\mathcal{A}) + w(\mathcal{B})$, we have

$$w(\langle \mathcal{G}_1' \rangle_r) + w(\langle \mathcal{G}_2' \rangle_s) \leq w(\mathcal{A}) + w(\mathcal{B}), \quad w(\langle \mathcal{G}_1'' \rangle_r) + w(\langle \mathcal{G}_2'' \rangle_s) \leq w(\mathcal{A}) + w(\mathcal{B}).$$

Combining (2.7), we obtain the following claim.

Claim 3. If both $\bar{\mathcal{G}}_1^{(a)}$ and $\bar{\mathcal{G}}_2^{(b)}$ are nonempty and a+b=m+t, $a,b\geq t+1$, then

$$w(\langle \mathcal{G}'_1 \rangle_r) + w(\langle \mathcal{G}'_2 \rangle_s) = w(\mathcal{A}) + w(\mathcal{B}),$$

where

$$\mathcal{G}'_1 = (\mathcal{G}_1 \setminus \bar{\mathcal{G}}_1^{(a)}) \cup \{G \setminus \{m\} \colon G \in \bar{\mathcal{G}}_1^{(a)}\}, \quad \mathcal{G}'_2 = \mathcal{G}_2 \setminus \bar{\mathcal{G}}_2^{(b)}.$$

Now, we make the foregoing operation for all nonempty pairs $\bar{\mathcal{G}}_1^{(a)}$ and $\bar{\mathcal{G}}_2^{(b)}$ with a+b=m+t and we will obtain a pair of new generating families. Define

$$\mathcal{G}_1^* = (\mathcal{G}_1 \setminus \bar{\mathcal{G}}_1) \cup \{G \setminus \{m\} \colon G \in \bar{\mathcal{G}}_1\}, \quad \mathcal{G}_2^* = \mathcal{G}_2 \setminus \bar{\mathcal{G}}_2.$$

We claim that $\langle \mathcal{G}_1^* \rangle_r$ and $\langle \mathcal{G}_2^* \rangle_s$ are cross *t*-intersecting. Note that $\mathcal{G}_1 \subset \mathcal{G}_1^*$ and $\mathcal{G}_2^* \subset \mathcal{G}_2$. For $G \in \mathcal{G}_1^* \setminus \mathcal{G}_1$ and $F \in \mathcal{G}_2^*$, we have $m \notin G$, $m \notin F$ and $G \cup \{m\} \in \mathcal{G}_1$. Since \mathcal{G}_1 and \mathcal{G}_2 are cross *t*-intersecting,

$$|G \cap F| = |(G \cup \{m\}) \cap F| \ge t,$$

then \mathcal{G}_1^* and \mathcal{G}_2^* are cross *t*-intersecting. Thus, $\langle \mathcal{G}_1^* \rangle_r$ and $\langle \mathcal{G}_2^* \rangle_s$ are cross *t*-intersecting. Claim 3 shows that

$$w(\langle \mathcal{G}_1^* \rangle_r) + w(\langle \mathcal{G}_2^* \rangle_s) = w(\mathcal{A}) + w(\mathcal{B}).$$

Moreover, $m \notin G$ for all $G \in \mathcal{G}_1^* \cup \mathcal{G}_2^*$, then the extents of $\langle \mathcal{G}_1^* \rangle_r$ and $\langle \mathcal{G}_2^* \rangle_s s$ are less than m, contradicting the minimality of m.

3. Cross *t*-intersecting separated families

The shifting operation can also be used in separated families. Let $\mathcal{F} \subset \mathcal{H}(n,k,r)$ be a separated family on $X = X_1 \uplus X_2 \uplus \cdots \uplus X_k$. Recall that the elements of X_i are linearly ordered for each $1 \le i \le k$ and v_i is the minimal element of X_i . The shift $S_{x,y}$ is allowed to apply on \mathcal{F} only if x,y are in the same X_i and x < y. A separated family $\mathcal{F} \subset \mathcal{H}(n,k,r)$ is called initial if $S_{x,y}(\mathcal{F}) = \mathcal{F}$ for all x,y in the same X_i and x < y. Similarly, by applying the allowed shifting operation repeatedly, every separated family becomes an initial family.

For a set $H \in \mathcal{H}(n, k, r)$, define

$$A(H) = \{i : H \cap X_i = \{v_i\}\}.$$

For $\mathcal{F} \subset \mathcal{H}(n,k,r)$, let

$$\mathcal{A}(\mathcal{F}) = \{A(H) : H \in \mathcal{F}\},\$$

then

$$\mathcal{A}(\mathcal{F}) \subset \binom{[k]}{\leq r}$$
.

The following reduction Lemma will be used in the proofs. Frankl and Füredi [15] showed the result for an intersecting family \mathcal{F} , and we gave a cross *t*-intersecting version of the reduction lemma in [14].

Lemma 3.1. (reduction lemma [14, 15]) Suppose that $\mathcal{F}, \mathcal{G} \subset \mathcal{H}(n, k, r)$ are cross t-intersecting and both initial, then $\mathcal{A}(\mathcal{F})$ and $\mathcal{A}(\mathcal{G})$ are cross t-intersecting.

When r = s, we may obtain the maximum value of $w(\mathcal{A}) + w(\mathcal{B})$ from Theorem 1.4 by some calculations.

Proposition 3.2. Let k, r and t be positive integers with $k \ge r \ge t$, and $\mathcal{A}, \mathcal{B} \subset \binom{[k]}{\le r}$ be nonempty and cross t-intersecting. Let w: $[k] \to \mathbb{R}_{>0}$ be nonincreasing, then

$$w(\mathcal{A}) + w(\mathcal{B}) \le w(\mathcal{K}(r, r, t)) + w(\mathcal{S}(r, r)),$$

where

$$\mathcal{S}(r,r) = \{[r]\}, \quad \mathcal{K}(r,r,t) = \left\{ F \in \binom{[k]}{\leq r} : |F \cap [r]| \geq t \right\}.$$

Proof. We will prove the result by showing that for $t \le m < r$, the following inequality holds:

$$w(\mathcal{K}(m,r,t)) + w(\mathcal{S}(m,r)) \le w(\mathcal{K}(m+1,r,t)) + w(\mathcal{S}(m+1,r)).$$

By the definition of S(m, r) for $j + m \le r$, the subfamily of S(m, r) consisting of the elements of S(m, r) with size j + m is

$$S(m,r)^{(j+m)} = \left\{ [m] \cup R \colon R \in {[k] \setminus [m] \choose j} \right\}.$$

We obtain that

$$w(S(m,r)) - w(S(m+1,r)) = \sum_{j=0}^{r-m} w(j+m) \binom{k-m}{j} - \sum_{j=0}^{r-m-1} w(j+m+1) \binom{k-m-1}{j}$$

$$= \sum_{j=0}^{r-m} w(j+m) \binom{k-m-1}{j} + \binom{k-m-1}{j-1} - \sum_{j=1}^{r-m} w(j+m) \binom{k-m-1}{j-1}$$

$$= \sum_{j=0}^{r-m} w(j+m) \binom{k-m-1}{j}.$$
(3.1)

Recall the definition of $\mathcal{K}(m,r,t)$. It is easy to see that $\mathcal{K}(m,r,t) \subset \mathcal{K}(m+1,r,t)$, and

$$\mathcal{K}(m+1,r,t)\setminus\mathcal{K}(m,r,t)=\left\{F\in\binom{[k]}{\leq r}\colon |F\cap[m]|=t-1 \text{ and } m+1\in F\right\}.$$

Thus we have

$$w(\mathcal{K}(m+1,r,t)) - w(\mathcal{K}(m,r,t)) = \sum_{j=0}^{r-t} w(j+t) \binom{m}{t-1} \binom{k-m-1}{j}.$$
 (3.2)

By $r - t \ge r - m$ and $w(j + t) \ge w(j + m)$, it follows that

$$\sum_{j=0}^{r-t} w(j+t) \binom{m}{t-1} \binom{k-m-1}{j} \ge \sum_{j=0}^{r-m} w(j+m) \binom{k-m-1}{j}. \tag{3.3}$$

By (3.1)–(3.3), we obtain that

$$w(\mathcal{K}(m,r,t)) + w(\mathcal{S}(m,r)) \le w(\mathcal{K}(m+1,r,t)) + w(\mathcal{S}(m+1,r)).$$

Therefore,

$$\max_{t < m < r} w(\mathcal{K}(m, r, t)) + w(\mathcal{S}(m, r)) = w(\mathcal{K}(r, r, t)) + w(\mathcal{S}(r, r)).$$

By Theorem 1.4, the proposition holds.

Using the reduction lemma and assigning specific measures in Proposition 3.2, we may obtain the maximum of $|\mathcal{F}| + |\mathcal{G}|$ for cross *t*-intersecting separated families $\mathcal{F}, \mathcal{G} \subset \mathcal{H}(n, k, r)$.

Proof of Theorem 1.5. Let $\mathcal{F}, \mathcal{G} \subset \mathcal{H}(n, k, r)$ be cross *t*-intersecting families with maximal $|\mathcal{F}| + |\mathcal{G}|$. Since the shifting operating preserves the cross *t*-intersecting property, we may assume that both \mathcal{F} and \mathcal{G} are initial. By the Reduction lemma, $\mathcal{A} = \mathcal{A}(\mathcal{F})$ and $\mathcal{B} = \mathcal{A}(\mathcal{G})$ are cross *t*-intersecting. Moreover,

$$\mathcal{A}, \mathcal{B} \subset \binom{[k]}{\leq r}$$
.

By the maximality of $|\mathcal{F}| + |\mathcal{G}|$, we further assume that \mathcal{F} and \mathcal{G} form a saturated pair; that is, adding further sets would destroy the cross *t*-intersecting property, then

$$|\mathcal{F}| = \sum_{0 \le i \le r} |\mathcal{A}^{(i)}| \binom{k-i}{r-i} (n-1)^{r-i}, \quad |\mathcal{G}| = \sum_{0 \le i \le r} |\mathcal{B}^{(i)}| \binom{k-i}{r-i} (n-1)^{r-i}.$$

To put it another way, if cross *t*-intersecting pairs $\mathcal{A}, \mathcal{B} \subset \binom{[k]}{\leq r}$ are given, then we can uniquely construct cross *t*-intersecting and saturated pairs $\mathcal{F}, \mathcal{G} \subset \mathcal{H}(n, k, r)$.

Thus,

$$|\mathcal{F}| + |\mathcal{G}| = \sum_{0 \le i \le r} |\mathcal{A}^{(i)}| \binom{k-i}{r-i} (n-1)^{r-i} + \sum_{0 \le i \le r} |\mathcal{B}^{(i)}| \binom{k-i}{r-i} (n-1)^{r-i}.$$

Let

$$w(i) = \binom{k-i}{r-i}(n-1)^{r-i}, \quad i \in [k],$$

then it is easy to see that

$$|\mathcal{F}| + |\mathcal{G}| = w(\mathcal{A}) + w(\mathcal{B}).$$

Since $n \ge 2$ and $k \ge r$, we have w(i) > 0. By

$$w(i) = \binom{k-i}{r-i}(n-1)^{r-i} \ge \binom{k-i-1}{r-i-1}(n-1)^{r-i-1} = w(i+1),$$

then w(i) is nonincreasing. Applying Proposition 3.2 with

$$w(i) = \binom{k-i}{r-i}(n-1)^{r-i}, \quad i \in [k],$$

we obtain that

$$\begin{aligned} |\mathcal{F}| + |\mathcal{G}| &\leq \max \left\{ w(\mathcal{A}) + w(\mathcal{B}) \colon \mathcal{A}, \mathcal{B} \subset \binom{[k]}{\leq r} \text{ are cross } t\text{-intersecting} \right\} \\ &\leq w(\mathcal{K}(r, r, t)) + w(\mathcal{S}(r, r)) \\ &= |\mathcal{F}_0| + |\mathcal{G}_0|, \end{aligned}$$

where

$$\mathcal{F}_0 = \{ F \in \mathcal{H}(n, k, r) : |F \cap \{v_1, v_2, \dots, v_r\}| \ge t \}$$

and

$$G_0 = \{\{v_1, v_2, \dots, v_r\}\}.$$

Thus, the theorem holds.

4. Conclusions

In this paper, we discussed the measures of cross t-intersecting families. By applying the main result with a specific weight function w, we obtained the maximum sum of the sizes of cross t-intersecting separated families.

Use of AI tools declaration

The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by Scientific Research Program Project of Tianjin Municipal Education Commission (No. 2022KJ117).

Conflict of interest

The author declares there is no conflict of interest.

References

- 1. P. Erdös, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Q. J. Math., 12 (1961), 313–320. https://doi.org/10.1093/qmath/12.1.313
- 2. P. Frankl, The Erdös-Ko-Rado theorem is true for n = ckt, Combinatorics, 1 (1978), 365–375.
- 3. R. M. Wilson, The exact bound in the Erdös-Ko-Rado theorem, *Combinatorica*, **4** (1984), 247–257. https://doi.org/10.1007/BF02579226
- 4. A. J. W. Hilton, E. C. Milner, Some intersection theorems for systems of finite sets, *Q. J. Math.*, **18** (1967), 369–384. https://doi.org/10.1093/qmath/18.1.369
- 5. P. Frankl, N. Tokushige, Some best possible inequalities concerning cross-intersecting families, *J. Comb. Theory*, **61** (1992), 87–97. https://doi.org/10.1016/0097-3165(92)90054-X
- 6. J. Wang, H. Zhang, Nontrivial independent sets of bipartite graphs and cross-intersecting families, *J. Comb. Theory*, **120** (2013), 129–141. https://doi.org/10.1016/j.jcta.2012.07.005
- 7. P. Borg, C. Feghali, The maximum sum of sizes of cross-intersecting families of subsets of a set, *Discrete Math.*, **345** (2022), 112981. https://doi.org/10.1016/j.disc.2022.112981
- 8. I. Dinur, S. Safra, On the hardness of approximating minimum vertex cover, *Ann. Math.*, **162** (2005), 439–485.
- 9. Y. Filmus, The weighted complete intersection theorem, *J. Comb. Theory*, **151** (2017), 84–101. https://doi.org/10.1016/j.jcta.2017.04.008
- 10. P. Gupta, Y. Mogge, S. Piga, B. Schülke, *r*-Cross *t*-intersecting families via necessary intersection points, *Bull. London Math. Soc.*, **55** (2023), 1447–1458. https://doi.org/10.1112/blms.12803

- 11. S. J. Lee, M. Siggers, N. Tokushige, AK-type stability theorems on cross *t*-intersecting families, *Eur. J. Combin.*, **82** (2019), 102993. https://doi.org/10.1016/j.ejc.2019.07.004
- 12. P. Frankl, The shifting technique in extremal set theory, Surv. Comb., 123 (1987), 81–110.
- 13. R. Ahlswede, L. H. Khachatrian, The complete intersection theorem for systems of finite sets, *Eur. J. Combin.*, **18** (1997), 125–136. https://doi.org/10.1006/eujc.1995.0092
- 14. P. Frankl, E. L. L Liu, J. Wang, Z. Yang, Non-trivial *t*-intersecting separated families, *Discret. Appl. Math.*, **342** (2024), 124–137. https://doi.org/10.1016/j.dam.2023.09.011
- 15. P. Frankl, Z. Füredi, The Erdös-Ko-Rado theorem for integer sequences, SIAM J. Algebraic Discrete Methods, 1 (1980), 376–381. https://doi.org/10.1137/0601044

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)