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Abstract: For a set X and an integer r ≥ 0, let
(

X
≤r

)
denote the family of subsets of X that have at

most r elements. Two families A ⊂
(

X
≤r

)
and B ⊂

(
X
≤s

)
are cross t-intersecting if |A ∩ B| ≥ t for all

A ∈ A, B ∈ B. In this paper, we considered the measures of cross t-intersecting families A ⊂
(

X
≤r

)
,

B ⊂
(

X
≤s

)
, then we used this result to obtain the maximum sum of sizes of cross t-intersecting separated

families.
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1. Introduction

For a set X, the power set of X (the set of subsets of X) is denoted by 2X. For integer r ≥ 0, the
family of r-element subsets of X is denoted by

(
X
r

)
, and the family of subsets of X of size at most r is

denoted by
(

X
≤r

)
. Let [n] = {1, 2, · · · , n}. For F ⊂ 2[n] and 0 ≤ i ≤ n, define

F (i) = {F ∈ F : |F| = i}.

A family F ⊂ 2X is said to be t-intersecting if |F1 ∩ F2| ≥ t for every F1, F2 ∈ F . IfA,B ⊂ 2X are
families such that |A ∩ B| ≥ t for all A ∈ A, B ∈ B, then A and B are said to be cross t-intersecting.
When t = 1, we usually omit t.

The following theorem by Erdös et al. is a basic result in the extremal set theory.

Theorem 1.1. ([1]) Let n, k and t be positive integers with k ≥ t ≥ 1 and let F ⊂
(

[n]
k

)
be a t-intersecting

family, then

|F | ≤

(
n − t
k − t

)
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for n ≥ n0(k, t).

For t = 1, the exact value
n0(k, t) = (k − t + 1)(t + 1) = 2k

was proved in [1]. For t ≥ 15, it is due to [2]. Finally, Wilson [3] closed the gap 2 ≤ t ≤ 14 with a
proof valid for all t.

Hilton and Milner [4] obtained the maximum sum of sizes of cross intersecting familiesA,B ⊂
(

[n]
k

)
,

which was the first result on the sizes of cross intersecting families.

Theorem 1.2. ([4]) Let n and k be integers. Suppose that n ≥ 2k, A,B ⊂
(

[n]
k

)
are cross intersecting

and nonempty, then

|A| + |B| ≤

(
n
k

)
−

(
n − k

k

)
+ 1,

and the equality holds ifA = {[k]} and

B = {B ∈
(
[n]
k

)
: B ∩ [k] , ∅}.

It should be mentioned that Frankl and Tokushige [5] determined the maximum sum of the sizes of
cross intersecting familiesA ⊂

(
[n]
r

)
and B ⊂

(
[n]
s

)
, and the maximum of |A|+ |B| for cross t-intersecting

families A ⊂
(

[n]
r

)
and B ⊂

(
[n]
s

)
were established in [6]. Recently, Borg and Feghli [7] solved the

analogous maximum sum problem for the case whereA ⊂
(

[n]
≤r

)
and B ⊂

(
[n]
≤s

)
.

Theorem 1.3. ([7]) Let n, s and r be integers with n ≥ 1, 1 ≤ r ≤ s. Suppose that A ⊂
(

[n]
≤r

)
and

B ⊂
(

[n]
≤s

)
are cross intersecting and nonempty, then

|A| + |B| ≤ 1 +
s∑

i=1

((
n
i

)
−

(
n − r

i

))
,

and the equality holds ifA = {[r]} and

B = {B ∈
(
[n]
≤ s

)
: B ∩ [r] , ∅}.

In this paper, we consider the cross t-intersecting families in the setting of measure. For a function
w: [k] → R>0 (the set of all positive reals) and a set A ⊂ [k], we consider the measure w(A) = w(|A|).
Moreover, forA ⊂ 2[k], let

w(A) =
∑
A∈A

w(A).

Quite a few results for measures of intersecting and cross intersecting families are known [8–11].
In particular, Guapt et al. [10] determined the maximum sum of

∑
i∈[p] wi(Fi) for the nonincreasing

function wi: [k] → R≥0 and p-cross t-intersecting families F1,F2, · · · ,Fp ⊂ 2[k], where families
F1,F2, · · · ,Fp ⊂ 2[k] are called p-cross t-intersecting if | ∩i∈[p] Fi| ≥ t for all Fi ∈ Fi, i ∈ [p].
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30912

Given positive integers t, r, s,m, k with t ≤ r ≤ k and t ≤ m ≤ s ≤ k, define the families

K(m, r, t) =
{

K ∈
(
[k]
≤ r

)
: |K ∩ [m]| ≥ t

}
,

S(m, s) =
{

S ∈
(
[k]
≤ s

)
: [m] ⊂ S

}
.

It is easily checked that K(m, r, t) and S(m, s) are cross t-intersecting.
We first obtain the maximum sum of measures for cross t-intersecting families A ⊂

(
[n]
≤r

)
and B ⊂(

[n]
≤s

)
.

Theorem 1.4. LetA ⊂
(

[k]
≤r

)
and B ⊂

(
[k]
≤s

)
be nonempty cross t-intersecting families with k ≥ r ≥ s ≥ t.

Let w: [k]→ R>0 be nonincreasing, then

w(A) + w(B) ≤ max
{
max
t≤m≤s

w(K(m, r, t)) + w(S(m, s)),max
t≤m≤r

w(K(m, s, t)) + w(S(m, r))
}
.

Let n and k be integers and

X = X1 ⊎ X2 ⊎ · · · ⊎ Xk, |Xi| = n.

We assume that the elements of Xi are ordered and let vi denote its smallest elements. For 1 ≤ r ≤ k,
define

H(n, k, r) =
{

H ∈
(
X
r

)
: |H ∩ Xi| ≤ 1, 1 ≤ i ≤ k

}
.

A family F ⊂ H(n, k, r) is called a separated family. For F ,G ⊂ H(n, k, r), we say that they are cross
t-intersecting if |F ∩G| ≥ t for all F ∈ F ,G ∈ G.

By applying Theorem 1.4 with a specific function w: [k]→ R>0, we obtain the maximum of |F |+ |G|
of cross t-intersecting separated families F ,G ⊂ H(n, k, r).

Theorem 1.5. Let n, k, r and t be integers with n ≥ 2, k ≥ r ≥ t. Suppose that F ,G ⊂ H(n, k, r) are
nonempty and cross t-intersecting, then

|F | + |G| ≤ |F0| + |G0|,

where
F0 = {F ∈ H(n, k, r) : |F ∩ {v1, v2, . . . , vr}| ≥ t}, G0 = {{v1, v2, . . . , vr}}.

2. Proof of Theorem 1.4

The shifting technique will be used in this section. For F ⊂ 2[k] and 1 ≤ i < j ≤ k, define the
shifting operation

S i, j(F ) = {S i, j(F) : F ∈ F },

where

S i, j(F) =
{

(F \ { j}) ∪ {i}, if j ∈ F, i < F and (F \ { j}) ∪ {i} < F ;
F, otherwise.

AIMS Mathematics Volume 8, Issue 12, 30910–30921.
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It is well known ([12]) that S i, j maintains |F |, the t-intersecting property and the cross t-intersecting
property. We say that a family F ⊂ 2[k] is initial if S i, j(F ) = F for all 1 ≤ i < j ≤ k. It is proved
in [12] that by applying the shifting operation repeatedly, every family becomes an initial family.

A family A ⊂
(

[k]
≤r

)
is called monotone if A ∈ A, B ⊃ A and |B| ≤ r imply B ∈ A. Given a family

A ⊂
(

[k]
≤r

)
, let ⟨A⟩r be the up-set ofA defined by

⟨A⟩r =

{
F ∈

(
[k]
≤ r

)
: there exists A ∈ A such that A ⊂ F

}
.

Our proof is based on the generating set method, which follows [9,13]. We recall some well-known
notions for the generating set method.

Let A ⊂
(

[k]
≤r

)
(A , ∅ and A ,

(
[k]
≤r

)
) be a monotone family. A generating set of A is a minimal set

(for containment) G ∈ A. The generating family ofA consists of all generating sets ofA. The extent
of A is the maximal element appearing in a generating set of A. The boundary generating family of
A consists of all generating sets of A containing its extent. For a monotone family A ⊂

(
[k]
≤r

)
with

generating family G, it is easy to see thatA = ⟨G⟩r.
The following result follows from the definitions of the generating family and initiality, and a

detailed proof can be found in [14].

Lemma 2.1. Let A ⊂
(

[k]
≤r

)
be a monotone initial family with extent m ≥ 2, generating family G and

boundary generating family Ḡ. For anyH ⊂ Ḡ, let

G′ = G \ H , G′′ = (G \ H) ∪ {H \ {m} : H ∈ H},

then

A \ ⟨G′⟩r =

{
H ∪ T : H ∈ H , T ∈

(
[m + 1, k]
≤ r − |H|

)}
(2.1)

and

⟨G′′⟩r \ A =

{
(H \ {m}) ∪ T : H ∈ H , T ∈

(
[m + 1, k]
≤ r − |H| + 1

)}
. (2.2)

Now, we are in the position to prove the main result.

Proof of Theorem 1.4. Let A ⊂
(

[k]
≤r

)
and B ⊂

(
[k]
≤s

)
be nonempty cross t-intersecting families with

w(A) + w(B) maximal. Since the shifting operator preserves the cross t-intersecting property and
preserves w(A) + w(B), we may assume that both A and B are initial. By the maximality of w(A) +
w(B), we may also assume thatA and B are monotone.

Suppose thatA has extent m1, generating family G1 and boundary generating family Ḡ1 and B has
extent m2, generating family G2 and boundary generating family Ḡ2. Since G1 ⊂ A and G2 ⊂ B, we
see that G1 and G2 are cross t-intersecting.

Since A and B are nonempty and cross t-intersecting, |F| ≥ t for any F ∈ A ∪ B. It follows that
m1 ≥ t and m2 ≥ t.

AIMS Mathematics Volume 8, Issue 12, 30910–30921.
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Claim 1. m1 = m2.

Proof. Suppose that m1 , m2. By symmetry assume that m1 > m2 ≥ t, then let

G′1 = (G1 \ Ḡ1) ∪ {G \ {m1} : G ∈ Ḡ1}.

Note that m1 < B for any B ∈ G2, thenG′1 andG2 are cross t-intersecting, implying that ⟨G′1⟩r,B = ⟨G2⟩s

are also cross t-intersecting. Since ⟨G′1⟩r ⊋ A and w( j) > 0, we see that

w(⟨G′1⟩r) + w(B) > w(A) + w(B).

This contradicts the maximality of w(A) + w(B). □

Let m1 = m2 = m. We may further assume that A ⊂
(

[k]
≤r

)
and B ⊂

(
[k]
≤s

)
are nonempty cross t-

intersecting families with w(A) + w(B) maximal and m minimal. That is, for any cross t-intersecting
familiesA′ ⊂

(
[k]
≤r

)
, B′ ⊂

(
[k]
≤s

)
with

w(A) + w(B) = w(A′) + w(B′),

ifA′ and B′ have extent m′, then m ≤ m′ holds.

Claim 2. If A ∈ Ḡ1 and B ∈ Ḡ2 satisfy |A ∩ B| = t, then A ∪ B = [m] and |A| + |B| = m + t.

Proof. Note that {m} ∈ A∩B. We show that A∪B = [m] follows from initiality. Indeed, x ∈ [m]\(A∪B)
would imply

A′ := (A \ {m}) ∪ {x} ∈ A

and
|A′ ∩ B| = |(A ∩ B) \ {m}| = t − 1;

a contradiction. Now, |A| + |B| = m + t follows from |A| + |B| = |A ∩ B| + |A ∪ B|. □

If m = t, then
G1 = G2 = {[t]}.

It implies that bothA and B are t-star. Thus,

w(A) + w(B) = w(K(t, r, t)) + w(S(t, s)),

and we are done.
Now, we may assume that m ≥ t + 1 and distinguish the four cases.

Case 1. If Ḡ(t)
1 , ∅, then

[t − 1] ∪ {m} ∈ Ḡ(t)
1 ⊂ A.

By initiality, we have

[t], [t − 1] ∪ {t + 1}, [t − 1] ∪ {t + 2}, · · · , [t − 1] ∪ {m} ∈ A.

Since A and B are cross t-intersecting, then [m] ⊂ B for any B ∈ B. It follows G2 = {[m]} and
t ≤ m ≤ s. Since B is monotone, then

B = ⟨G2⟩s = S(m, s).

AIMS Mathematics Volume 8, Issue 12, 30910–30921.
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By the maximality of w(A) + w(B), we infer thatA = K(m, r, t) and

w(A) + w(B) = w(K(m, r, t)) + w(S(m, s)).

Note that in this case, t ≤ m ≤ s holds. Thus,

w(A) + w(B) ≤ max
t≤m≤s

w(K(m, r, t)) + w(S(m, s)).

Case 2. If Ḡ(t)
2 , ∅, by a similar argument as in Case 1, we obtain that

w(A) + w(B) = w(K(m, s, t)) + w(S(m, r))

and t ≤ m ≤ r. Thus,
w(A) + w(B) ≤ max

t≤m≤r
w(K(m, s, t)) + w(S(m, r)).

Case 3. There exists a, b with a + b = m + t and exactly one of Ḡ(a)
1 and Ḡ(b)

2 is nonempty.

Without loss of generality, assume that Ḡ(a)
1 , ∅. By Case 1, we assume that a ≥ t + 1. Let

G′1 = (G1 \ Ḡ
(a)
1 ) ∪ {G \ {m} : G ∈ Ḡ(a)

1 }.

By Claim 2 we infer that G′1 and G2 are cross t-intersecting. Thus ⟨G′1⟩r and B are cross t-intersecting,
thenA ⊊ ⟨G′1⟩r and w( j) > 0 for j ∈ [k] imply

w(⟨G′1⟩r) + w(B) > w(A) + w(B)

contradicting the maximality of w(A) + w(B).

Case 4. For all a, b ≥ t + 1 with a + b = m + t, both Ḡ(a)
1 and Ḡ(b)

2 are nonempty or both Ḡ(a)
1 and Ḡ(b)

2
are empty.

By Cases 1–3, we may assume that Ḡ(t)
1 , Ḡ

(m)
1 , Ḡ

(t)
2 and Ḡ(m)

2 are empty in this case. We claim that
G1 \ Ḡ1 and G2 \ Ḡ2 are nonempty. Ḡ(m)

1 = ∅ and G1 , ∅ imply that there exists G ∈ G1 ⊂ A and
|G| < m. Since A is initial, A′ = [|G|] ∈ A and m < A′, then A′ (or a subset of A′) belongs to G1 \ Ḡ1.
Similarly, G2 \ Ḡ2 is nonempty.

Since Ḡ1, Ḡ2 , ∅, there exists a, b ≥ t + 1 with a + b = m + t and both Ḡ1
(a) and Ḡ(b)

2 are nonempty.
Let

G′1 = (G1 \ Ḡ
(a)
1 ) ∪ {G \ {m} : G ∈ Ḡ(a)

1 }, G
′
2 = G2 \ Ḡ

(b)
2

and
G′′1 = G1 \ Ḡ

(a)
1 , G

′′
2 = (G2 \ Ḡ

(b)
2 ) ∪ {G \ {m} : G ∈ Ḡ(b)

2 }.

By Claim 2, ⟨G′1⟩r and ⟨G′2⟩s are cross t-intersecting and ⟨G′′1 ⟩r and ⟨G′′2 ⟩s are cross t-intersecting.
By Lemma 2.1 we have

w(⟨G′1⟩r) + w(⟨G′2⟩s) = w(A) + w(B) − |Ḡ(b)
2 |

∑
b≤ j≤s

(
k − m
j − b

)
w( j) + |Ḡ(a)

1 |
∑

a−1≤ j≤r

(
k − m

j − a + 1

)
w( j) (2.3)

AIMS Mathematics Volume 8, Issue 12, 30910–30921.
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and

w(⟨G′′1 ⟩r) + w(⟨G′′2 ⟩s) = w(A) + w(B) − |Ḡ(a)
1 |

∑
a≤ j≤r

(
k − m
j − a

)
w( j) + |Ḡ(b)

2 |
∑

b−1≤ j≤s

(
k − m

j − b + 1

)
w( j). (2.4)

Since w( j − 1) ≥ w( j) > 0, we obtain∑
a−1≤ j≤r

(
k − m

j − a + 1

)
w( j) −

∑
a≤ j≤r

(
k − m
j − a

)
w( j) =

∑
a≤ j≤r+1

(
k − m
j − a

)
w( j − 1) −

∑
a≤ j≤r

(
k − m
j − a

)
w( j)

≥

(
k − m

r + 1 − a

)
w(r)

≥ 0. (2.5)

Similarly, ∑
b−1≤ j≤s

(
k − m

j − b + 1

)
w( j) −

∑
b≤ j≤s

(
k − m
j − b

)
w( j) ≥ 0. (2.6)

Adding (2.3) and (2.4) and using (2.5) and (2.6), we obtain that

1
2

(
w(⟨G′1⟩r) + w(⟨G′2⟩s) + w(⟨G′′1 ⟩r) + w(⟨G′′2 ⟩s)

)
− (w(A) + w(B))

=
|Ḡ

(a)
1 |

2

 ∑
a−1≤ j≤r

(
k − m

j − a + 1

)
w( j) −

∑
a≤ j≤r

(
k − m
j − a

)
w( j)


+
|Ḡ

(b)
2 |

2

 ∑
b−1≤ j≤s

(
k − m

j − b + 1

)
w( j) −

∑
b≤ j≤s

(
k − m
j − b

)
w( j)


≥ 0. (2.7)

By the maximality of w(A) + w(B), we have

w(⟨G′1⟩r) + w(⟨G′2⟩s) ≤ w(A) + w(B), w(⟨G′′1 ⟩r) + w(⟨G′′2 ⟩s) ≤ w(A) + w(B).

Combining (2.7), we obtain the following claim.

Claim 3. If both Ḡ(a)
1 and Ḡ(b)

2 are nonempty and a + b = m + t, a, b ≥ t + 1, then

w(⟨G′1⟩r) + w(⟨G′2⟩s) = w(A) + w(B),

where
G′1 = (G1 \ Ḡ

(a)
1 ) ∪ {G \ {m} : G ∈ Ḡ(a)

1 }, G
′
2 = G2 \ Ḡ

(b)
2 .

Now, we make the foregoing operation for all nonempty pairs Ḡ(a)
1 and Ḡ(b)

2 with a + b = m + t and
we will obtain a pair of new generating families. Define

G∗1 = (G1 \ Ḡ1) ∪ {G \ {m} : G ∈ Ḡ1}, G
∗
2 = G2 \ Ḡ2.

AIMS Mathematics Volume 8, Issue 12, 30910–30921.
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We claim that ⟨G∗1⟩r and ⟨G∗2⟩s are cross t-intersecting. Note that G1 ⊂ G
∗
1 and G∗2 ⊂ G2. For G ∈ G∗1 \G1

and F ∈ G∗2, we have m < G, m < F and G ∪ {m} ∈ G1. Since G1 and G2 are cross t-intersecting,

|G ∩ F| = |(G ∪ {m}) ∩ F| ≥ t,

then G∗1 and G∗2 are cross t-intersecting. Thus, ⟨G∗1⟩r and ⟨G∗2⟩s are cross t-intersecting.
Claim 3 shows that

w(⟨G∗1⟩r) + w(⟨G∗2⟩s) = w(A) + w(B).

Moreover, m < G for all G ∈ G∗1∪G
∗
2, then the extents of ⟨G∗1⟩r and ⟨G∗2⟩ss are less than m, contradicting

the minimality of m. □

3. Cross t-intersecting separated families

The shifting operation can also be used in separated families. Let F ⊂ H(n, k, r) be a separated
family on X = X1 ⊎ X2 ⊎ · · · ⊎ Xk. Recall that the elements of Xi are linearly ordered for each 1 ≤ i ≤ k
and vi is the minimal element of Xi. The shift S x,y is allowed to apply on F only if x, y are in the same
Xi and x < y. A separated family F ⊂ H(n, k, r) is called initial if S x,y(F ) = F for all x, y in the same
Xi and x < y. Similarly, by applying the allowed shifting operation repeatedly, every separated family
becomes an initial family.

For a set H ∈ H(n, k, r), define

A(H) = {i : H ∩ Xi = {vi}}.

For F ⊂ H(n, k, r), let
A(F ) = {A(H) : H ∈ F },

then

A(F ) ⊂
(
[k]
≤ r

)
.

The following reduction Lemma will be used in the proofs. Frankl and Füredi [15] showed the
result for an intersecting family F , and we gave a cross t-intersecting version of the reduction lemma
in [14].

Lemma 3.1. (reduction lemma [14, 15]) Suppose that F ,G ⊂ H(n, k, r) are cross t-intersecting and
both initial, thenA(F ) andA(G) are cross t-intersecting.

When r = s, we may obtain the maximum value of w(A) + w(B) from Theorem 1.4 by some
calculations.

Proposition 3.2. Let k, r and t be positive integers with k ≥ r ≥ t, and A,B ⊂
(

[k]
≤r

)
be nonempty and

cross t-intersecting. Let w: [k]→ R>0 be nonincreasing, then

w(A) + w(B) ≤ w(K(r, r, t)) + w(S(r, r)),

where

S(r, r) = {[r]}, K(r, r, t) =
{

F ∈
(
[k]
≤ r

)
: |F ∩ [r]| ≥ t

}
.
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Proof. We will prove the result by showing that for t ≤ m < r, the following inequality holds:

w(K(m, r, t)) + w(S(m, r)) ≤ w(K(m + 1, r, t)) + w(S(m + 1, r)).

By the definition of S(m, r) for j + m ≤ r, the subfamily of S(m, r) consisting of the elements of
S(m, r) with size j + m is

S(m, r)( j+m) =

{
[m] ∪ R : R ∈

(
[k] \ [m]

j

)}
.

We obtain that

w(S(m, r)) − w(S(m + 1, r)) =
r−m∑
j=0

w( j + m)
(
k − m

j

)
−

r−m−1∑
j=0

w( j + m + 1)
(
k − m − 1

j

)

=

r−m∑
j=0

w( j + m)
((

k − m − 1
j

)
+

(
k − m − 1

j − 1

))
−

r−m∑
j=1

w( j + m)
(
k − m − 1

j − 1

)

=

r−m∑
j=0

w( j + m)
(
k − m − 1

j

)
. (3.1)

Recall the definition of K(m, r, t). It is easy to see that K(m, r, t) ⊂ K(m + 1, r, t), and

K(m + 1, r, t) \ K(m, r, t) =
{

F ∈
(
[k]
≤ r

)
: |F ∩ [m]| = t − 1 and m + 1 ∈ F

}
.

Thus we have

w(K(m + 1, r, t)) − w(K(m, r, t)) =
r−t∑
j=0

w( j + t)
(

m
t − 1

)(
k − m − 1

j

)
. (3.2)

By r − t ≥ r − m and w( j + t) ≥ w( j + m), it follows that

r−t∑
j=0

w( j + t)
(

m
t − 1

)(
k − m − 1

j

)
≥

r−m∑
j=0

w( j + m)
(
k − m − 1

j

)
. (3.3)

By (3.1)–(3.3), we obtain that

w(K(m, r, t)) + w(S(m, r)) ≤ w(K(m + 1, r, t)) + w(S(m + 1, r)).

Therefore,
max
t≤m≤r

w(K(m, r, t)) + w(S(m, r)) = w(K(r, r, t)) + w(S(r, r)).

By Theorem 1.4, the proposition holds. □

Using the reduction lemma and assigning specific measures in Proposition 3.2, we may obtain the
maximum of |F | + |G| for cross t-intersecting separated families F ,G ⊂ H(n, k, r).
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Proof of Theorem 1.5. Let F ,G ⊂ H(n, k, r) be cross t-intersecting families with maximal |F | + |G|.
Since the shifting operating preserves the cross t-intersecting property, we may assume that both F and
G are initial. By the Reduction lemma,A = A(F ) and B = A(G) are cross t-intersecting. Moreover,

A,B ⊂

(
[k]
≤ r

)
.

By the maximality of |F |+ |G|, we further assume that F and G form a saturated pair; that is, adding
further sets would destroy the cross t-intersecting property, then

|F | =
∑
0≤i≤r

|A(i)|

(
k − i
r − i

)
(n − 1)r−i, |G| =

∑
0≤i≤r

|B(i)|

(
k − i
r − i

)
(n − 1)r−i.

To put it another way, if cross t-intersecting pairsA,B ⊂
(

[k]
≤r

)
are given, then we can uniquely construct

cross t-intersecting and saturated pairs F ,G ⊂ H(n, k, r).
Thus,

|F | + |G| =
∑
0≤i≤r

|A(i)|

(
k − i
r − i

)
(n − 1)r−i +

∑
0≤i≤r

|B(i)|

(
k − i
r − i

)
(n − 1)r−i.

Let

w(i) =
(
k − i
r − i

)
(n − 1)r−i, i ∈ [k],

then it is easy to see that
|F | + |G| = w(A) + w(B).

Since n ≥ 2 and k ≥ r, we have w(i) > 0. By

w(i) =
(
k − i
r − i

)
(n − 1)r−i ≥

(
k − i − 1
r − i − 1

)
(n − 1)r−i−1 = w(i + 1),

then w(i) is nonincreasing. Applying Proposition 3.2 with

w(i) =
(
k − i
r − i

)
(n − 1)r−i, i ∈ [k],

we obtain that

|F | + |G| ≤ max
{

w(A) + w(B) : A,B ⊂
(
[k]
≤ r

)
are cross t-intersecting

}
≤ w(K(r, r, t)) + w(S(r, r))

= |F0| + |G0|,

where
F0 = {F ∈ H(n, k, r) : |F ∩ {v1, v2, . . . , vr}| ≥ t}

and
G0 = {{v1, v2, . . . , vr}}.

Thus, the theorem holds. □
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4. Conclusions

In this paper, we discussed the measures of cross t-intersecting families. By applying the main result
with a specific weight function w, we obtained the maximum sum of the sizes of cross t-intersecting
separated families.
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