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Abstract: This study addresses the difficulties associated with parameter estimation in the generalized
power unit half-logistic geometric distribution by employing a progressive Type-II censoring technique.
The study uses a variety of methods, including maximum likelihood, maximum product of spacing,
and Bayesian estimation. The work investigates Bayesian estimators taking into account a gamma
prior and a symmetric loss function while working with observed data produced by likelihood and
spacing functions. A full simulation experiment is carried out with varying sample sizes and censoring
mechanisms in order to thoroughly evaluate the various estimation approaches. The highest posterior
density approach is employed in the study to compute credible intervals for the parameters. Additionally,
based on three optimal criteria, the study chooses the best progressive censoring scheme from a variety
of rival methods. The study examines two real datasets in order to confirm the applicability of the
generalized power unit half-logistic geometric distribution and the efficacy of the suggested estimators.
The results show that in order to generate the necessary estimators, the maximum product of the spacing
approach is better than the maximum likelihood method. Furthermore, as compared to traditional
methods, the Bayesian strategy that makes use of probability and spacing functions produces estimates
that are more satisfactory.
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1. Introduction

Statistical analysis and the modeling of lifetime data are essential across various applied disciplines
such as insurance, finance, biomedical research, and engineering. Consequently, a multitude of lifetime
distributions have been introduced in these domains. Particularly, the modeling of datasets constrained
within the range of (0, 1) has gained significant prominence in recent times. This approach has found
widespread utility in addressing the survival and failure rates of products across diverse fields. As a result
of its adaptability in handling probabilistic models of this nature, a plethora of unit distributions that are
bounded within the interval (0, 1) have emerged. Furthermore, industries including medical, actuarial,
and finance sectors are increasingly recognizing the indispensable value of these types of distributions.

Extensive efforts from statisticians have been directed toward comprehending the failure of
components and units, particularly within the well-structured operating systems prevalent in industrial
and mechanical engineering. Their investigation revolves around the observation of operating units until
they encounter failure. Subsequently, the lifetimes of these units are recorded, followed by the
application of statistical inference techniques to the accumulated data. This process culminates in the
estimation of reliability and hazard functions for the entire system, leveraging the collected dataset.
Despite these endeavors, situations arise where certain experimental units possess both high reliability
and significant costs. In such cases, a practical necessity emerges to reduce the number of experimental
units utilized as well as the duration of the lifetime experiments involving these units. To address this
scenario, the progressive Type-II censoring (PT-IIC) scheme comes into play. This scheme offers a way
to achieve robust estimations through lifetime experiments while safeguarding some experimental units
from encountering failure. The progressive Type-II censoring scheme is frequently described as follows:
Initially, the experimenter places n independent and identical units into the life measurement process.
Upon the occurrence of the first failure, denoted as x(;), a random selection process removes R; units
from the remaining n — 1 surviving units. This process is reiterated for each subsequent failure event:
At the time of the second failure, x(,), R, units are randomly chosen for removal from the surviving
units, now numbering n — R; — 2. This pattern continues until the m-th failure transpires at time x,,,
resulting in the extraction of R,, = n —m — Z:’;‘ll R; surviving units from the test. The collective set of r
values, denoted as R = (Ry, R, ..., R,,), characterizes the PT-IIC scheme. In contrast, Progressive
Type-II right censoring involves a predefined censoring scheme R before the experiment’s
commencement. Interestingly, Type-1I censoring can often be viewed as a specific instance of PT-IIC,
where the scheme is represented as R =(0, O, ..., n — m), as documented in [1-3]. This experimental
setup concludes at the m™ failure, a predetermined event occurring at time t,,, and the value of R, is
computed as n —m — Y™ ;' R;, (Figure 1).
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Figure 1. Schematic representation of the PT-IIC.
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Let x(1), X2)5 --» Xam)» 1 £ m < n, be a PT-IIC sample observed from a lifetime test involving n units
and R, R,, ..., R,, be the censoring scheme. The joint probability density function(PDF) of a PT-1IC
sample is given by

L, 0.0) = C[ | f (.00 - Fx, DI, (1.1)
i=1
where C may be a constant defined as
m—1
C=nn-R —-1)---(n= 3 (R +1)).
i=1

See [1,3,4] for more details.

The attention has been on the development of PT-IIC over the last two to three decades. One can
consult sources such as [2,5-7] and others for insightful findings regarding this censoring scheme.

A substitute for the maximum likelihood estimation (MLE) approach for deducing the parameters of
continuous uni-variate distributions was introduced by [8], termed the maximum product of spacing
(MPS) method. This approach was put forth as a means to retain many of the properties inherent in
maximum likelihood by substituting the likelihood function with a product of spacing. This technique
was subsequently extended to parameter estimation using censored samples by various researchers.
For complete samples, sources like [9-11] delve into this method. When dealing with Type-I and
Type-II censored samples, the works of [12, 13] offer insights. The progressive Type-II censoring
scheme (PT-1IC) is explored in studies such as [14, 15], while the adaptive progressive Type-II scheme
is examined in sources like [16—18]. The organization of this paper is as follows: In Section 2, the
generalized power unit half-logistic geometric distribution will be presented. Section 3 introduces the
classical estimation methods. Bayesian estimates for the unknown parameters are obtained in Section 4.
In Section 5, the numerical computations are analyzed. In Section 6, we present an optimal progressive
censoring scheme and compare it with various alternative censoring schemes. The conclusions drawn
from the findings are summarized in Section 7.

2. Generalized power unit half-logistic geometric distribution
Nasiru et al. [19] introduced a new generalized power unit half-logistic geometric

(GPUHLG)distribution. The random variable X is said to follow a GPUHLG distribution if its
probability density function (pdf) is expressed as:

2a0x!
fo=—""— 6a>0,0<x<]l, @2.1)
((0-2)x*—-0)
and the cumulative distribution function (cdf)
6(1 —x%)
Fx)=1—-————, 6,a>0,0<x<1. 2.2
) C-orx+e * 22)

Figure 2 shows the cdf and the pdf of the GPUHLG distribution at different values of 6 and «.
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Figure 2. The cdf and pdf of the GPUHLG distribution at different values of 6 and «.
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Also, the survival and the hazard failure rate functions of the GPUHLG distribution are given

respectively as

and

I D!
SW=1-FW=F"gw+o
a—1
H(x) = Sx) 2ax

S(x)  (x@=-1D(H-2)x"-0)

0,a>0,0<x<1,

O,a>0, 0<x<1.

(2.3)

2.4)

Figure 3 shows the survival and the hazard rate functions of the GPUHLG distribution at different

values of 6 and «.

Figure 3. The survival and hazard rate functions of the GPUHLG distribution at different

values of 8 and «.

3. C(lassical estimation

In this section, the techniques of maximum likelihood estimation (MLEs) and maximum product
of spacing estimation (MPSs) are employed to derive both point and interval estimators for the model
parameter. The construction of interval estimators leverages the asymptotic characteristics of the MLEs

and MPSs.
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3.1. Maximum likelihood estimation technique

Consider a PT-IIC sample of size m, denoted by x = x;, where i = 1,...,m. This sample is acquired
using the progressive censoring scheme §; from the GPUHLG distribution, which is defined by the
probability density function (pdf) and cumulative distribution function (cdf) shown in Eqgs (2) and (3),
respectively. By excluding the constant factor, the likelihood function of the GPUHLG distribution,
accounting for the existence of PT-IIC, can be derived from Eqgs (2), (3), and (1) as demonstrated below:

m X! 1 - x5 a
L« (206?) ]—[ )2[ 9) . 3.1

i (@ - 6 (2 = ), +

The log-likelihood function is given by

[ =log(L) o mlog(2a) + 2mlog(6) + Z log(xy ) =2 )" log((2 = O)xg, + )
. i=1 i=1 (32)
+ > Ri(log(1 - xiy) —1og(2 = )x{, +6)).

i=1

The derivatives of the log-likelihood function with respect to the parameters 6 and « are presented as
follows:

(z) & Rl - ?o)
g (3.3)
2- 9)% + 0 (2 H)x" +6
m (2 Q)X(,) lOg(X(,'))
— = 1 2) =2
—+ Z 0g (X)) — Z a0 10
(3.4)

= ,-log(xi) (2 = 0)x;, log(x(i)
_ZRI‘( () @ + (i) () )

1- x(l 2-6)x

i=1 ) (t)

Equations (3.3) and (3.4) do not possess a readily available closed-form solution when equated to
zero. Consequently, numerical methods using the Newton-Raphson algorithm implemented in the R
programming language are employed to obtain solutions.

The Fisher information matrix, which is required for obtaining the MLE and the corresponding
asymptotic confidence intervals of the parameters, requires the second partial derivatives of the log-

likelihood function with respect to the parameters. The Fisher matrix ¥ is given by

PL PL
7’2[% ﬁ“], 3.5
0add  0a? "

These matrices should be positive definite at the MLE estimates of the parameters. The 2nd partial
derivatives of the log-likelihood function, which are needed for the Fisher information matrix, are
given by

2
(R:(1 =)

2Zm1 ) 2 7 -, (3.6)

=1 (-0 + ) 2-6)x2, )
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Plom N[220 (log<x<l>>) xg  (2-6) (loglxp))” 1y
rol R

(2 = O)x + (@-0)2 +6)
i IR EX)
i —2 log(x(l))x(l) 210g(x(z))x(,) 22-0) IOg(X(,))X(l) + a2 -0) (IOg(X(i))) x(i()l
2 _ b
= U (1- z>) SR (@ -0, +6)
l mR(1 - x)
Z o 07 (3.8)
898a 0 2- e)xg) 16 L2-0x+0
Fl m = (2 9)10g(x(,>)x(l)
== log(x) — 2
9add ~ @ Z‘ °800) Z‘ 2= 0t +0
- ’ (3.9)

Z’":R log(x))x(;, .\ 2-6 log(x(,))x(l)
1= (2 - O)x + '

As was discussed above, the MLEs of the unknown parameters 6 and « are not derived in closed forms.
Therefore, the sampling distributions of the MLEs cannot be obtained analytically. Alternatively, we
can compute the asymptotic confidence intervals of these parameters using one of the properties of the
MLE:s, which states that

@.8) ~ N2 ((0.0). ') asn — o,

where ! is the inverse of ¥ evaluated at the MLEs of the parameters, respectively.

3.2. Bootstrap confidence intervals

The preceding section underscored the challenges associated with calculating second-order
derivatives for constructing asymptotic confidence intervals (ACIs) for the model’s unknown
parameters. Consequently, we turn our attention to employing bootstrapping techniques. Specifically,
we consider the percentile bootstrap approach (Boot-p), as well as the bootstrap-t approach proposed by
Efron [7], and the bootstrap-t method outlined by Hall [20].

3.2.1. Parametric Boot-p

(1) Utilizing the original data x = x(), X2), ..., X(m), Mmaximize Eqs (8) and (9) to obtain 6 and &,
respectively.

(2) Generate the PT-IIC sample x* = x’(*l),xa), ...,xz‘m) based on the pre-specified PT-IIC scheme
(R, Ry, ...,R,,) from the GPUHLG distribution with parameters 0 and &, using the algorithm
detailed in Balakrishnan and Sandhu [4] and [3].

(3) Obtain the maximum likelihood estimates based on the bootstrap sample, denoting this estimate as
*, where in our case i could be 6 and a.

(4) Repeat Steps (2) and (3) for a total of N bootstrap iterations, obtaining /%, 5, ..., % ,.,.,» Where
Jr = (0;.a7) and i = 1,2,3, ..., N boot.

(5) Arrange i in ascending order to obtain {7, ¥ty . oo Wiy poon-

Consider G(z) = P(tZ/* < z) to represent the cumulative distribution function of @* Introduce
'Z/boot—p = Gl_l(z) for a given value of z. The estimated bootstrap-p 100(1 — ¥)% confidence interval of i
is then expressed as:
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[%om_p (%) Wboor—p (1 - %)] : (3.10)

3.2.2. Parametric Boot-t

(1) The same as the parametric Boot-p.

(2) The same as the parametric Boot-p.

(3) The same as the parametric Boot-p.

(4) Utilizing the asymptotic variance-covariance matrix, calculate the matrix /~!* (
(5) Calculate the statistic 7%, defined as follows:

ot %)
99’ da ]*

TY = M
var (1}*)
(6) Repeat Steps 2 — 5, N-Boot times and obtain T, v T;‘/’, oy T;wboot.
(7) Arrange the values T v, T;‘/’ wos TNl/’ho ., in ascending order to derive the ordered sequences
T T, .., T

1)? 7 (2)° > 7 (N boot)*

Let G,(z) = P(T* < z) be the cumulative distribution function of 7" for given z. Define &b(m,_, =
1@ + Gl‘l(z) \/var (1,7/*)
Then, the approximate bootstrap-t 100(1 — y)% CI of i = (9, &), is given by

s (2) -2

3.3. Maximum product spacing estimation technique

A reliable alternative to the maximum likelihood approach is the maximum product spacing (MPS)
method, which provides an approximation to the Kullback-Leibler information measure.

Examine a PT-IIC sample of size m, denoted as x = x(;, where i ranges from 1 to m. This sample
is gathered using the progressive censoring scheme S; from the GPUHLG population, described by
the probability density function (pdf) and cumulative distribution function (cdf) outlined in Eqs (2)
and (3) respectively. The probability spacing (PS) function, excluding the constant component, can be
formulated within this framework by utilizing Eqs (2) and (3) as demonstrated below:

m+1

Gs(6, aldata) = n (F(x@) — F(x4-1))) l_[(l — F(xg)f

i=1
m

m+1 a
- lil( 01 — xG_1) = XG) )
L 2- 9)x( ot 0 2 - G)x" +6 L

(3.12)

(1 — x7;) Ri
((2 0)x, +9) ’

AIMS Mathematics Volume 8, Issue 12, 30846-30874.



30853

and g(60, aldata) = log(Gs(0, a|data)) can be obtained as

m+1

(6, aldata) = Z log (6(1 = x_,))((2 = O)x%) — 6(1 = x5)(2 - O)xL._,))

i=1

m+1 m+1

= > log (2= 0)x{,, +6) - > log (2 - O)x; +6) (3.13)
i=1 i=1
m+1 m+1

+ > Rilog(®(1 - x)) - Z R;1og((2 - 6)x2, +6).
i=1

Upon deriving the first derivative of the function g(6, @|data) with respect to 6 and a, we obtain:

0g(0, aldata) Z Ii B mz“ 1- (z 1 mZH (z) i Ri(1 - Z))
00 2- O)xi_, +0 2- H)x(l) 2- H)x" + 6

e (1= X8 )(2 - e)x(,.) +6) = (1-x2_ )2~ O)x(l. L +O)
4 (1= x7_ (2 = 0)x% +6) — (1 = 382 = O)x_ +6)’

(3.14)

dg(8, aldata) _ ’”Z“ 6(2 — O)x(;, (1 — x(_y)) log(xq) + 6x(; log(x)((2 — O)x(;_;, + 6)
da L4 0(1 - X2, (2= O)xt, +6) — (1 — X2 )(2 = O)x_, +6)
02 = O)x(_ (1 = x¢)) log(x-1)) + 0x(_;, log(x-1)(2 — O)x,) + 6)
L (- X (2 = 0)x% +0) — (1 — x2)(2 - 05, +6)
mil (2 — 0)x(;_ 1)log(x(, ) R; x()log(x(,)) mil (2 — 0)x{;, log(x)
L 2-ox |+ Z (A L (2-0)x +0

(2 9)R X(l) lOg(X(,‘))

- Z Q2 - 0)x,) +

Equations (3.14) and (3.15) lack closed-form analytical solutions when equated to zero. Consequently,
numerical methods are employed to obtain solutions.

(3.15)

4. Bayesian estimation

Within this section, the Bayesian estimation (BE) technique is employed for the estimation of the
parameters 6 and a. These parameters are presumed to be independent and adhere to a gamma prior
distribution characterized by parameters a and b.

The gamma prior density function takes the following shape:

a

b
au) = —u"'e™, wu,a,b>0. 4.1)

I'(a)
Subsequently, the joint prior density of 8 and a can be expressed as follows:

n

70, @) = ]—[ 1(O)n(@) o (Bar)* e+, 4.2)

i=1
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The joint posterior distribution function according to the Bayesian procedure is given by
(6, @)L (x)
fooo fooo (0, o) L(x)dOda

(0, alx) = oc (0, @) L(x). 4.3)

Substituting from Eqgs (3.1) and (4.2) into Eq (4.3), we get

- X L-xg "
(0, Q|£) o 9a+2m—laa+m—le—(0+a)b) l—[ > — . (4.4)
i-1 ((2 - 0)x7, + 9) 2 -0)x + 6

4.1. Loss functions

The Bayesian estimator for a given function, denoted as /(¢), with respect to the squared error (SE)
loss function, is defined as:

¢se = E[Ug)x] = f [(@)m(plx)d¢. 4.5)
¢

The squared error (SE) loss function is a type of asymmetric loss function that assigns equal
importance to both underestimation and overestimation. However, in various real-world scenarios, the
gravity of underestimation might differ from that of overestimation, and the opposite could also be true.
When dealing with such circumstances, a possible substitute for the SE loss function is the LINEX loss,
characterized by:

(). l(@)) = @10} —y (i(g) - () - 1.

In this context, when v > 0, it signifies a greater significance of overestimation compared to
underestimation, whereas for v < 0, the opposite holds true. As v approaches zero, the loss function
aligns with the standard squared error (SE) form. For a deeper understanding of this concept, additional
information can be found in [21,22]. The Bayesian estimator (BE) for /(¢) under this loss function can
be determined as follows:

bin = E [e{_v’(@}lx] = —% log [fe{_”("’)}ﬂ(qblx)d¢]. (4.6)
¢

Observing Eqgs (4.5) and (4.6), it becomes apparent that the resulting estimates cannot be transformed
into concise analytical forms. To manage this, the Markov chain Monte CarloMMCMC)method, as
outlined in [23], is employed to numerically summarize the posterior distribution. This approach
avoids the need for calculating the normalization constant and is executed using the R programming
language, as described in [7]. Hence, our next step involves implementing the MCMC methodology
and generating posterior samples via the Metropolis-Hastings algorithm. This enables us to acquire the
desired Bayesian estimators (BEs).

4.2. Markov chain method

Markov chain Monte Carlo (MCMC)methods constitute a versatile simulation approach for obtaining
samples from posterior distributions and calculating relevant posterior values. In fact, the MCMC
samples can effectively encapsulate the full range of uncertainty regarding the parameter ¢. By utilizing a
kernel estimation technique on the posterior distribution, a comprehensive understanding can be obtained.
For a more comprehensive exploration of MCMC principles, refer to sources such as [5,23-27].
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Numerous methods exist for introducing random noise to create proposals, and a variety of
approaches are available for the acceptance and rejection process. Techniques like Gibbs sampling and
the Metropolis-Hastings algorithm are among the options for this purpose.

4.3. Metropolis-Hasting algorithm

To implement the Metropolis-Hastings (MH) algorithm for the GPUHLG distribution, certain
elements must be established: a proposal distribution and initial values for the unknown parameters 6 and
. For the proposal distribution, we opt for a bivariate normal distribution, denoted as g((¢’, @')|(0, @)) =
N> ((6, @), S ¢..), wherein Sy, signifies the variance-covariance matrix. It is important to note that we must
avoid generating negative observations, which are considered unacceptable. Regarding initial values,
we employ the Maximum Likelihood Estimators (MLE) for 6 and a, yielding (8, «?) = (6, &). The
selection of S ¢, is based on the asymptotic variance-covariance matrix F~'(8, &), with F(.) representing
the Fisher information matrix. It is worth noting that the choice of S, holds significance in the MH
algorithm, impacting the acceptance rate.

In this context, the sequential stages of the MH algorithm for drawing a sample from the posterior
density, as indicated in Eq (22), unfold in the following manner:

Step 1. Initialize the value of  as ¥ = (8, &).
Step 2. Fori =1,2,..., M, iterate through the following process:

(1) Setn =ntb,

(2) Generate a fresh candidate parameter value ¢ from the bivariate normal distribution
No( 19:‘:{ 17,5 0.0)-

(3) Setn = exp(9).

(4) Compute S using the formula 8 =
in Eq (22).

(5) Generate a sample u from the uniform U(O0, 1); distribution.

(6) Accept or reject the new candidate 7

(%)

() where 7(-) represents the posterior density as defined

If u<p set n@=gn
otherwise set 7 =n.

Ultimately, after obtaining a set of random samples of size M from the posterior density, it is common
practice to discard a portion of the initial samples (burn-in), retaining the remaining samples for further
analysis. Specifically, the Bayesian estimators (BEs) of the parameters 8 and « using the squared
error (SE) loss function, as outlined in Eq (4.5), can be computed as

=l (4.7)

AIMS Mathematics Volume 8, Issue 12, 30846-30874.
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Moreover, the Bayesian estimators (BEs) for the parameters 8 and @, employing the LINEX loss
function, as provided in Eq (4.6), can be expressed as follows:

M

~ 1 1 0)
0 :——l {—VG }
LN N Og[M—lBZe ]

i=lp

(4.8)

M

.1 1 {-va®)
Qin = Vlog[M_lBZe }

i=lp

Here, /3 denotes the count of burn-in samples.

4.4. Elicitation of hyper-parameters

The elicitation of the hyper-parameters will depend on informative priors. These informative priors
are derived from the MLEs for (6, @) by equating the mean and variance of (67, &) with those of the
specified priors (Gamma priors). Here, j = 1,2,...,k, and k corresponds to the number of available
samples from the GPUHLG distribution (Dey et al. [28]). By equating the moments of (#/, &/) with the
moments of the gamma priors, the following equations are derived:

S I vy eV a
XPeh o a2 =
kAj_az d 1 £ Aj 1kAj2_612
;Q—b—z an mZ(a’—%Za’)—ﬁ

By solving the aforementioned equations, the estimated hyper-parameters can be expressed as
follows:

I —

1

Lok A2 Lok
(z X5=1 67 TONRL
“e 1 k Ni 1 k '\'2’ bl: 1 k Ni 1 k ’\'2
ijzl(Hf—;ZFlﬁj) mzjzl(gj‘z j=19]) “o)
k AT k ~ .
(% Zj:la’j)z %Z} &
“@= 1 k i 1 k '2, b2_ 1 k i 1 k '2
o1 = (“’ ~ % Zj=i “’) o1 =1 (‘” ~ % 2= “’)

4.5. Highest posterior density

We construct the highest posterior density (HPD) intervals for the unobservable parameters a and
0 of the GPUHLG distribution within the context of the PT-IIC. These intervals are established using
the samples acquired through the aforementioned MH approach from the previous section [29]. In the
subsequent case study, let @® and 8 represent the 5-th quantiles of @ and 6, respectively. In other

words,
(@9, 09) = inf{(a, 0) : I1((a, 6)|z) > 5}.

Here, 0 < 6 < 1, and II(-) represents the posterior distribution of @ and 6. Importantly, it is worth
noting that for a specific set of @ and 6, an effective estimator derived from simulating 7((«, 6)|z) can be
computed as:

AIMS Mathematics Volume 8, Issue 12, 30846-30874.
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1 M
((,0)lz) = W1 Z Lo p)<@o-
— LB

i=lp

Here, 1, 9)<o-0 1s the indicator function. The proper estimate is then determined as

0 if (@, 0) < (@), b))
H((e, 0)lz) = Xy, wj i (@, 6) < (@,0) < (@isn), Oiisn))
1 if (@, ) > (@), Omry)
where w; = M+13 and (e, 0)) are the ordered values of (@}, 8;). Now, fori = I, ..., M, (@'?,6°) may

be estimated by

_ (@y), 00-p) i 6=0
@, 59 =

. i1 i
(@), Oiy) if Y, wj <0<, w)

Furthermore, let us determine a 100(1 — §)% HPD credible interval for a and 6:

HPDY = @, @"%™) &  HPD!=(@w.,d""")
for j =Ip,...,[0M], where [a] represents indicates the largest integer < a. We need to choose HPD ;-
from one of many H PD'js with the narrowest width.

5. Numerical computations and real data

The aim of this section is to assess and compare the efficiencies of the different estimation approaches
discussed in the previous sections. To achieve this, a simulation study is conducted to observe the
performances of the proposed methods and to gauge the statistical prowesses of the estimators within the
framework of a PT-IIC scheme. Furthermore, a flood dataset is analyzed to offer a practical illustration.
All calculations were executed using the R programming language.

5.1. Simulation study

In this subsection, a Monte Carlo simulation study is carried out to evaluate the performance of
distinct estimation methods — namely, MLE, MPS, and BE — within the framework of the PT-IIC
scheme applied to the GPUHLG distribution. We generate 1000 sets of random data from the GPUHLG
distribution under the PT-IIC, employing parameters 6 = 0.5 and @ = 1.5. The configuration of the
PT-IIC scheme is established through predetermined values of n and m, alongside various patterns for
censoring items R;, where i = 1,2, ...,m, as detailed in Table 1. These patterns can be classified into
four distinct cases.

e In the first pattern, the removal of items (n — m) takes place during life testing, coinciding
with the occurrence of the first failure item. This scenario is represented by patterns such as
Ry, Kss - - s K.

AIMS Mathematics Volume 8, Issue 12, 30846-30874.



30858

e Conversely, the second pattern involves the removal of items occurring with the last m failure
items, and this is exemplified by patterns like %5, %, . . . , %x.

e Moving to the third pattern, the removal of items happens at the median of the m items, as
demonstrated by patterns %5, %7, . . ., %5,.

e Lastly, the final pattern arises when equal items are removed, whenever possible, at each m stage.
This pattern is characterized by representations such as %y, %, .. ., %,.

Steps of the Monte Carlo simulation:

Step 1: Generate m sets of PT-IIC random data points from the GPUHLG(6, ) distribution using the
algorithm proposed by [3]. Use the removal pattern of items from Table 1.

Table 1. Patterns of item removal for varying values of n and m.

n m Censoring Scheme (R, R», ..., R;,) Scheme
20 10 (10,0%) X
(0, 10) R
(0**,5,5,0%) 7%
(1*10) %4
15 (5,014 K5
(0*]4’ 5) f@ﬁ
(077,2,3,0°7) %
(1*5’ 0*10) %8
30 20 (10,0%1%) Ko
(01, 10) X0
(0%,5,5,0%%) 4%
(1710, 0410 7
25 (5,0 PR3
(0"24,5) R4
(012, 5,0%12) Rs
(]*5’0*20) %16
40 20 (20, 0*1%) K17
(0*19,20) k74T
(0,10, 10,0*%) K19
(1729 T
30 (10, 0%2%) K743\
(0%, 10) K>
(0°14,5,5,0°14) Ry
(1¥10, 020 7
60 40 (20, 0%3%) PKrs
(0%, 20) D6
(0*19, 10, 10, 0*19) Ry
(1:20,(*20) P
50 (10,09 Do
(04, 10) &0
(0°24,5, 5,024 Ry
(1*10’ 0*30) %32

As an example, the scheme (0¥, 10) signifies the utilization of the censoring scheme (0, 0, 0, 0, 10).
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Step 2: Obtain MLE and MPS estimates for the parameters 6 and @. Additionally, calculate the
variance-covariance matrix of MLEs.

Step 3: Compute confidence interval estimates: Asy-CI, Boot-p, and Boot-¢ .
Step 4: Compute BEs using the MH algorithm as follows:

(1) Consider two scenarios for prior distributions. The first scenario involves an informative
prior (INF), wherein hyper-parameter values are computed using Eq (4.9). Specifically,
we generate 1000 complete samples, each consisting of 60 data points, from a GPUHLG(8 =
0.5, = 1.5) distribution as past samples and compute their MLEs (, &). Subsequently,
by utilizing Eq (4.9), we can determine the hyper-parameter values as follows: a; = 6.52,
by = 18.22, a, = 49.67, and b, = 27.50.

(2) The second scenario involves a non-informative prior (Non-INF), where hyper-parameter
values are set to a; = by = a, = b, = 0. This leads to the prior distributions n(6) = é and
m(a) = (ll

(3) Generate 10,000 samples of @ and 6 for both INF and Non-INF prior cases from the posterior
density using MCMC and utilizing the MH algorithm. Use the initial MLEs and their variance-
covariance matrix, along with the given PT-IIC data x = (xq), x2), . - ., X(m))-

(4) The initial 2,000 samples are discarded as burn-in from the overall set of 10,000 samples
generated from the posterior density.

(5) Compute BEs of @ and 6 using various loss functions: SE and LINEX (with v = —0.5(LN;)
and v = 0.5(LN,)), as defined by Eqs (4.7) and (4.8).

(6) Finally, calculate the HPD interval using the posterior samples.

Step 5: Repeat Steps 1-4 a total of 1,000 times and save all the estimates.

Step 6: Calculate statistical metrics for point estimates: mean (Avg.) estimate and root mean square
error (RMSE) estimate. These calculations can be carried out using the following formulas:

1000

1 n
Avg.(¢) = 1000 121: él,

1000

RMS E($) = J = (i)
=1

In this context, ¢ represents the parameter, while ¢ denotes the estimated value of that parameter.

Step 7: Compute statistical performance measures for interval estimates: average interval length (AIL)
and coverage probability (CP) in percentage.

To provide point estimations, we present the results of Avg. and RMSE estimates for various
PT-1IC schemes in Tables 2 and 3, corresponding to 6 = 0.5 and @ = 1.5, respectively. In terms of
interval estimation, Tables 4.a and 4.b display the outcomes for AILs and CPs for 6 = 0.5 and @ = 1.5,
respectively.

From the results obtained for point estimation of distribution parameters, it is generally observed
that an increase in both n and m leads to an improvement in Avg. estimates and its convergence towards
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the true parameter values. Additionally, we notice a decrease in the RMSEs as well. Regarding interval
estimation, as n and m increase, we observe a reduction in the AILs for all interval estimation methods.
Additionally, it is worth mentioning that the CP ranges from 90% to 99%. The confidence intervals can
be ranked in terms of the efficiency of AlLs as follows:

HPD: INF > Boot-t > Asy-CI > Boot-p > HPD: Non-INF.

In terms of the efficiency of proposed estimation methods, by comparing classical point estimation
methods, we observe that the efficiency of the MLE method for the parameter 6 is superior to that of the
MPS estimations; and for the parameter a, we observe the opposite. Concerning the BEs methods using
assumed loss functions, it is evident that the BEs using LN loss function at v = 0.5 exhibits the highest
efficiency, followed by the estimation using the SE loss function, and then the LN, loss function at
v = —0.5. Moreover, when comparing the BEs using MCMC under INF and Non-INF approaches, there
is a very clear indication that the INF prior case significantly outperforms the Non-INF prior one. In a
broader sense, it can be concluded that the BEs using MCMC under INF case efficiency are superior
among the assumed methods of classical and Bayes estimation.

Furthermore, it is worth noting that these conclusions pertain to a specific set of distribution
parameters (6 = 0.5, = 1.5). We recommend conducting further research on alternative parameter
combinations and comparing the results obtained with those from our study.

Table 2. Average estimate values and MSE under different PT-IIC schemes at 8 = 0.5.

n m  Scheme Classical BE: Non-INF BE: INF
MLE MPS SE LN1 LN2 SE LN1 LN2
20 10 %, Avg. 0.4765 0.2380 0.9846 0.9935 0.4801 0.4454 0.4502 0.4407
RMSE 04441 0.3613 2.0388 2.4955 0.5909 0.1304 0.1298 0.1311
R Avg. 0.4091 0.3442 0.7972 0.8928 0.4799 0.4641 0.4686 0.4597
RMSE 0.3798 0.3491 1.6437 22714 0.6062 0.1487 0.1493 0.1483
K3 Avg. 0.4332  0.2202 0.9129 0.7361 0.4940 0.4576 0.4622 0.4531
RMSE 04277 0.3734 1.8939 2.0204 0.6852 0.1508 0.1512 0.1505
R Avg. 0.4361 0.2869 0.8717 1.0763 0.4961 0.4662 04709 0.4617
RMSE 0.4019 0.3500 1.7581 2.5829 0.7831 0.1327 0.1331 0.1325
15 %5 Avg. 0.4591 0.2873 0.7439 1.1386 0.5258 04764 04813 04717
RMSE 0.3731 0.3332 1.3680 2.5534 0.6915 0.1004 0.1006 0.1005
e Avg. 0.4389 0.3453 0.6972 1.0921 0.4856 0.4886 0.4933 0.4840
RMSE 0.3344 0.3099 1.1001 2.4799 0.4603 0.1070 0.1078 0.1063
K4 Avg. 0.4426 0.2826 0.7559 1.2912 0.4837 0.4850 0.4897 0.4803
RMSE 0.3620 0.3343 1.3448 2.8913 0.4890 0.1117 0.1124 0.1111
Ky Avg. 0.4538 0.2880 0.8059 1.1692 0.4735 0.4824 0.4873 0.4778
RMSE 0.3740 0.3347 1.5222  2.6285 0.4553 0.1016  0.1021 0.1014
30 20 Avg. 0.4485 0.3078 0.5471 09019 0.4331 0.5034 0.5082 0.4986
RMSE 0.2936 0.2849 0.6704 1.7669 0.2984 0.0824 0.0838 0.0814
K740 Avg. 0.4323  0.3668 0.5274 0.8331 0.4448 0.5238 0.5285 0.5193
RMSE 0.2648 0.2602 0.6618 1.7338 0.3150 0.0926 0.0948 0.0906
K740 Avg. 0.4362 0.3034 0.5479 09766 0.4466 0.5200 0.5248 0.5154
RMSE 0.2899 0.2892 0.6457 2.0462 0.4408 0.0969 0.0991 0.0949
K1 Avg. 0.4412 0.3081 0.5295 1.0421 0.4448 0.5151 0.5200 0.5104
RMSE 0.2929 0.2870 0.6151 2.1183 0.4526 0.0904 0.0923 0.0887
25 %3 Avg. 0.4434 0.3232 0.5299 0.8705 0.4386 0.5121 0.5167 0.5077

Continued on next page
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n m  Scheme Classical BE: Non-INF BE: INF
MLE MPS SE LN1 LN2 SE LN1 LN2
RMSE 0.2865 0.2784 0.6843 1.6652 0.2974 0.0737 0.0755 0.0722
R4 Avg. 0.4369 0.3555 0.4885 0.7234 0.4391 0.5210 0.5255 0.5167
RMSE 0.2657 0.2574 0.3718 1.3427 0.2772 0.0770 0.0792 0.0751
K15 Avg. 0.4385 0.3222 0.5079 09652 0.4424 0.5209 0.5255 0.5165
RMSE 0.2847 0.2789 0.4529 2.0063 0.3065 0.0795 0.0817 0.0775
K16 Avg. 0.4422 0.3250 0.5143 0.8986 0.4416 0.5145 0.5190 0.5100
RMSE 0.2873 0.2784 0.5201 1.7517 0.3040 0.0754 0.0772 0.0738
40 20 iy Avg. 0.4543  0.3089 0.4947 0.7791 04277 0.4994 0.5041 0.4948
RMSE 0.2894 0.2816 0.4169 1.4385 0.2869 0.0782 0.0793 0.0775
X3 Avg. 0.4285 0.3771 0.4773 0.7596 0.4307 0.5296 0.5340 0.5252
RMSE 0.2650 0.2618 0.3458 1.4479 0.2763 0.1024 0.1047 0.1002
K19 Avg. 0.4374 0.3010 0.4890 0.8803 0.4314 0.5250 0.5297 0.5205
RMSE 0.2922 0.2920 0.4109 1.7176  0.3209 0.1014 0.1037 0.0994
PR Avg. 0.4375 0.3392 0.4915 0.6960 0.4331 0.5245 0.5291 0.5200
RMSE 0.2719 0.2687 0.5183 1.1427 0.3153 0.0941 0.0963 0.0921
30 %o Avg. 0.4398 0.3361 0.4652 0.5819 0.4318 0.5220 0.5264 0.5177
RMSE 0.2580 0.2581 0.3050 0.6697 0.2642 0.0755 0.0778 0.0735
Ry Avg. 0.4334 0.3748 0.4622 0.5112 0.4345 0.5368 0.5411 0.5326
RMSE 0.2388 0.2363 0.2776  0.3785 0.2462 0.0816 0.0844 0.0791
K% Avg. 0.4348 0.3350 0.4699 0.6156 0.4344 0.5354 0.5398 0.5310
RMSE 0.2577 0.2597 0.3094 1.0343 0.2655 0.0852 0.0879 0.0826
D4 Avg. 0.4376 0.3377 0.4631 0.5999 0.4298 0.5294 0.5339 0.5251
RMSE 0.2596 0.2588 0.3035 0.8299 0.2660 0.0793 0.0819 0.0769
60 40 A»s Avg. 0.4405 0.3549 0.4486 0.4854 0.4293 0.5313 0.5355 0.5272
RMSE 0.2210 0.2267 0.2443 03704 0.2267 0.0717 0.0743  0.0693
D6 Avg. 0.4368 0.3943 0.4521 04731 0.4369 0.5492 0.5532 0.5452
RMSE 0.2004 0.2023 0.2185 0.2436 0.2081 0.0818 0.0849 0.0790
Ry Avg. 0.4372 0.3552 0.4514 0.4806 0.4321 0.5487 0.5529 0.5446
RMSE 0.2200 0.2282 0.2433 0.2829 0.2281 0.0827 0.0859 0.0797
Dy Avg. 0.4383 0.3572 0.4509 0.4824 0.4314 0.5426 0.5469 0.5384
RMSE 0.2205 0.2268 0.2436  0.3004 0.2270 0.0782 0.0813 0.0754
50 Do Avg. 0.4323 0.3614 0.4420 0.4608 0.4274 0.5402 0.5442 0.5363
RMSE 0.1918 0.2080 0.2080 0.2308 0.1989 0.0768 0.0796 0.0742
R0 Avg. 0.4316 0.3832 0.4419 0.4564 0.4298 0.5460 0.5498 0.5422
RMSE 0.1816 0.1913 0.1930 0.2031 0.1871 0.0800 0.0828 0.0773
K31 Avg. 0.4312 0.3624 0.4432 04611 0.4290 0.5475 0.5516 0.5436
RMSE 0.1908 0.2071 0.2063 0.2214 0.1984 0.0814 0.0844 0.0786
K3 Avg. 0.4321 0.3635 0.4414 0.4617 0.4269 0.5419 0.5460 0.5379

RMSE 0.1920 0.2073 0.2087 0.2512 0.1997 0.0776  0.0805 0.0749

Table 3. Average estimate values and MSE under different PT-IIC schemes at @ = 1.5.

n m  Scheme Classical BE: Non-INF BE: INF
MLE MPS SE LN1 LN2 SE LN1 LN2
20 10 % Avg. 1.7721 2.3772 1.9696 2.0637 1.8813 1.1786 1.1833 1.1741
RMSE 0.6475 1.1949 0.8568 09146 0.8111 0.3598 0.3559 0.3636
R Avg. 1.8662 2.0620 1.9848 2.0582 1.9140 1.2272 1.2320 1.2225
RMSE 0.7424 0.8617 0.8921 09282 0.8637 0.4044 0.4015 0.4073
K5 Avg. 1.8394  2.3798 1.9934 2.0731 1.9169 1.2184 1.2232 1.2136

Continued on next page
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n m  Scheme Classical BE: Non-INF BE: INF
MLE MPS SE LN1 LN2 SE LNI1 LN2

RMSE 0.7082 1.2040 0.8852 0.9245 0.8546 0.3489 0.3456 0.3521
R Avg. 1.8076  2.1490 1.9565 2.0315 1.8842 1.1983 1.2030 1.1936
RMSE 0.6521 0.9279 0.8278 0.8680 0.7953 0.3423 0.3385 0.3461
15 %s Avg. 1.7452  2.1438 1.8621 1.9333 1.7937 1.1700 1.1747 1.1655
RMSE 0.5699 0.9062 0.7314 0.7689 0.7015 0.3429 0.3386 0.3472
e Avg. 1.7552 1.9731 1.8415 1.9030 1.7818 1.1819 1.1866 1.1773
RMSE 0.5667 0.7302 0.6866 0.7179 0.6613 0.3337 0.3295 0.3380
% Avg. 17670 2.1367 1.8801 1.9459 1.8164 1.1849 1.1896 1.1803
RMSE 0.5879 0.8991 0.7258 0.7592 0.6988 0.3332 0.3290 0.3374
K743 Avg. 1.7505 2.1170 1.8693 19356 1.8046 1.1769 1.1815 1.1723
RMSE 0.5712 0.8722 0.7035 0.7389 0.6750 0.3377 0.3334 0.3420
30 20 % Avg. 1.6654 1.9584 1.7773  1.8248 1.7310 1.1903 1.1947 1.1860
RMSE 0.4334 0.6564 0.5360 0.5649 0.5110 0.3170 0.3128 0.3211
X0 Avg. 1.6761 1.8228 1.7498 1.7903 1.7102 1.2080 1.2123 1.2037
RMSE 0.4335 0.5349 0.5112 0.5334 0.4921 0.3042 0.3001 0.3082
K740 Avg. 1.6814 1.9459 1.7806 1.8243 1.7377 1.2106 1.2150 1.2063
RMSE 0.4442 0.6433 0.5415 0.5649 0.5217 0.3022 0.2982 0.3063
X1 Avg. 1.6722 19322 1.7805 1.8245 1.7373 1.2053 1.2097 1.2010
RMSE 0.4343 0.6262 0.5381 0.5625 0.5173 0.3051 0.3010 0.3092
30 25 %3 Avg. 1.6717 19147 1.7567 1.7981 1.7161 1.1986 1.2029 1.1943
RMSE 04221 0.5972 0.5087 0.5337 0.4871 0.3065 0.3023 0.3106
R4 Avg. 1.6674 1.8303 1.7325 1.7695 1.6961 1.2062 1.2105 1.2019
RMSE 04060 0.5111 0.4729 0.4943 0.4542 0.2997 0.2956 0.3038
K15 Avg. 1.6760 1.9057 17580 1.7979 1.7188 1.2070 1.2113 1.2027
RMSE 04222 0.5868 0.5152 0.5376 0.4955 0.2990 0.2949 0.3031
K16 Avg. 1.6708 1.9006 1.7512 17917 1.7115 1.2036 1.2080 1.1993
RMSE 04174 0.5804 0.5006 0.5241 0.4802 0.3018 0.2976  0.3059
40 20 %y Avg. 1.6423  1.9368 1.7615 1.8045 1.7198 1.2053 1.2095 1.2011
RMSE 0.4002 0.6245 0.5011 0.5285 0.4772 0.3026  0.2986 0.3066
X3 Avg. 1.6707 1.7935 1.7531 1.7878 1.7191 1.2422 1.2464 1.2380
RMSE 0.4195 0.5051 0.4935 0.5120 04775 0.2803 0.2766  0.2840
K19 Avg. 1.6661 1.9161 1.7755 1.8133 1.7383 1.2417 1.2459 1.2375
RMSE 0.4163 0.6018 0.5165 0.5354 0.5006 0.2777 0.2740 0.2815
R0 Avg. 1.6556  1.8383 1.7492 17841 1.7149 1.2351 1.2393 1.2310
RMSE 0.4008 0.5261 0.4867 0.5055 0.4703 0.2806 0.2768 0.2844
30 %5 Avg. 1.6506 1.8522 1.7232  1.7565 1.6905 1.2214 1.2256 1.2173
RMSE 0.3815 0.5203 0.4436 0.4639 0.4255 0.2849 0.2809 0.2888
Ry Avg. 1.6472  1.7643 1.7021 1.7306 1.6740 1.2325 1.2367 1.2284
RMSE 0.3663 0.4364 0.4206 0.4370 0.4059 0.2737 0.2697 0.2776
K3 Avg. 1.6552 1.8408 1.7213  1.7521 1.6909 1.2344 1.2386 1.2303
RMSE 0.3830 0.5095 0.4434 04611 04277 0.2731 0.2692 0.2771
D4 Avg. 1.6502 1.8340 1.7250 1.7561 1.6944 1.2308 1.2350 1.2267
RMSE 0.3765 0.5002 0.4431 0.4613 0.4270 0.2757 02717 0.2796
60 40 s Avg. 1.6030 1.7586 1.6638 1.6874 1.6405 1.2544 1.2584 1.2504
RMSE 0.2937 0.3927 0.3486 0.3630 0.3357 0.2522 0.2483 0.2560
D Avg. 1.5999 1.6826 1.6436 1.6634 1.6239 1.2714  1.2753 1.2675
RMSE 0.2813 0.3275 0.3297 0.3404 0.3200 0.2355 0.2318 0.2392
K7 Avg. 1.6060 1.7448 1.6650 1.6865 1.6437 1.2727 1.2766 1.2688
RMSE 0.2925 0.3799 0.3512  0.3628 0.3407 0.2343  0.2306 0.2380
D Avg. 1.6029 1.7395 1.6603 1.6818 1.6391 1.2704 1.2744 1.2665
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n m  Scheme Classical BE: Non-INF BE: INF
MLE MPS SE LN1 LN2 SE LNI1 LN2

RMSE 0.2875 0.3722 0.3404 0.3524 0.3296 0.2364 0.2327 0.2401

50 Do Avg. 1.6029 1.7340 1.6472 1.6676 1.6270 1.2656 1.2696 1.2617
RMSE 0.2684 0.3534 0.3059 0.3182 0.2947 0.2406 0.2368 0.2444

R0 Avg. 1.5979 1.6890 1.6329 1.6511 1.6148 1.2744 1.2783 1.2705

RMSE 0.2559 0.3099 0.2854 0.2962 0.2754 0.2319 0.2282 0.2356

K31 Avg. 1.6025 1.7255 1.6466 1.6663 1.6271 1.2742 1.2782 1.2703

RMSE 0.2660 0.3449 0.3082 0.3200 0.2975 0.2321 0.2284 0.2358

Rz Avg. 1.6008 1.7235 1.6465 1.6662 1.6270 1.2721 1.2760 1.2682

RMSE 0.2633 0.3415 0.3039 0.3158 0.2931 0.2342 0.2305 0.2379

Table 4.a. AILs and CPs (in %) under different PT-IIC schemes at § = 0.5

n m  Scheme Asy-CI Boot-p Boot-¢ HPD: Non-INF HPD: INF
AIL CP AIL CPp AIL CP AIL CP AIL CP
20 10 % 1.4189 959 1.5415 959 0.7608 88.4 4.8626 950 0.5204 99.1
K> 1.1619  96.1 1.2247 982 0.6802 89.5 3.2465 95.1  0.6088 97.7
K 1.3180 96.5 14333 974 0.5603 913 39636 95.1  0.6048 99.5
N 1.2576 964 1.3209 955 0.8746 920 3.6755 950 05620 99.2
15 % 1.2277 95.6 1.2477 96.1 0.6493 92.6 26191 951 03386 99.5
He 1.1148 955 1.1275  96.5 0.5890 904 23954 950 03972 99.7
I 1.1773 952 1.1608 96.8 0.6258 89.5 2.8261 95.1 0.4248 99.7
Hs 1.2193 953 1.2128 959 0.5943 88.9 3.0876 95.1 03578 99.2
30 20 % 1.0927 96.7 1.0943 95.1 0.6490 91.3 1.3973  95.1 02841 99.5
Fio 0.9981 96.3 09243 9777 0.5944 93.0 1.1855 952  0.3108 98.7
748 1.0667 96.1 1.0269 982 0.5948 92.1 1.4141 950 03176 99.3
740 1.0805 96.1 1.0777 982 0.6145 899 1.3295 950 0.3026 98.3
25 %3 1.0243  95.1 09469 963 0.6274 95.1 1.2047 952  0.2698 99.1
K4 0.9742  96.0 0.8937 954 0.6363 923 1.0922 95.1  0.2675 98.0
s 1.0104 95.7 09589 973 0.6613 91.1 1.1901 952  0.2783 98.4
K6 1.0229 95.1 0.9508 96.1 0.6376 90.6 1.1745 95.0 0.2655 98.7
40 20 Py 1.0921 96.7 1.0707 952 0.6702 91.7 1.1492 95.1  0.2697 98.8
4T, 0.9883 96.7 09653 952 0.5982 932 1.0353  95.1 0.3432 999
Fh9 1.0724  96.3 1.0343 97.8 0.6204 93.0 1.1892 950  0.3265 999
Fo 1.0230 96.5 0.9883 95.0 0.6683 92.6 1.0704 95.1  0.3059 999
30 % 0.9616 96.3 0.8855 954 0.6230 944 09886 96.0 02726 99.6
4% 0.9058 96.0 0.7910 95.0 0.6209 94.7 0.9068 952  0.2673 98.8
% 0.9501 959 0.8675 98.0 0.5978 95.1 1.0082 95.1  0.2681 98.3
Kra 0.9603 959 0.8720 97.5 0.6431 949 09898 952  0.2638 99.1
60 40 Z»s 0.8883 95.7 0.7760 983 0.6047 934 0.8285 953 0.2492 979
K6 0.8094 96.8 0.6893 96.5 0.6022 96.0 0.7593 959  0.2528 97.7
Ry 0.8834 964 0.7516 98.1 0.6123 952 0.8392 952  0.2500 98.7
K 0.8865 96.3 0.7366 957 0.5882 95.6 0.8417 959 0.2486 969
50 P 0.8015 96.8 0.6950 95.0 0.6217 91.8 0.7084 963  0.2395 973
720 0.7498  96.7 0.6383 97.1 0.5683 94.6 0.6648 959 0.2446 979
K1 0.7953 96.9 0.6675 964 0.5653 95.0 0.7297 952 0.2433 973
%Y 0.8015 96.9 0.6834 942 0.5587 93.5 0.7211 953  0.2435 97.7
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Table 4.b. AlLs and CPs (in %) under different PT-IIC schemes at a = 1.5.

n m  Scheme Asy-CI Boot-p Boot-t HPD: Non-INF  HPD: INF
AIL CP AIL CP AIL CP AIL CP AIL CP
20 10 % 2.3107  96.1 2.1366 94.0 2.0951 93.1 27333 972 03973 95.1
K> 2.3761 95.6 23699 951 2.1587 964 277816 979  0.6140 95.1
K 24083 95.7 22643 96.0 23124 924 2.8226 975 05531 95.1
N 2.2859 96.3 2.1960 98.0 2.2039 934 26721 97.0 04768 95.0
15 % 2.0615 95.7 1.8408 952 1.8885 929 23849 977  0.2278 96.0
743 1.9783 959 1.8272 949 1.8646 91.8 22227 972 02610 95.2
Ky 2.0682 95.7 1.8650 95.0 1.9044 932 23365 97.6 03140 95.1
Hs 2.0407 955 1.8657 950 1.9896 929 22907 969  0.2497 955
30 20 1.7057 96.7 1.5668 97.3 1.6037 94.6 1.7739  96.0  0.2086 97.1
Fo 1.6217 959 14839 96.7 1.6509 94.0 1.6737 96.7  0.2075 96.5
748 1.6993 96.4 1.5414 97.0 1.6649 939 1.7660 96.7  0.2179 96.1
740 1.6768 96.3 1.5368 963 1.6548 964 1.7178 97.6  0.2140 96.4
25 % 1.5994 975 1.4491 97.1 1.5323 93.1 1.6573 96.8  0.1837 979
K4 1.5289 97.1 1.4021 983 14219 930 1.5820 96.0 0.1882 96.4
X5 1.5880 97.1 1.4487 98.0 1.4920 90.6 1.6958 969  0.1899 96.4
K6 1.5784 973 14300 97.5 1.5311 943 1.6675 96.5  0.1898 96.7
40 20 Ziy 1.6089 96.7 14261 932 14952 942 1.5914 96.8 02241 97.1
K3 1.5611 96.0 1.4436 942 1.5665 923 1.5812 972  0.2495 959
Fh9 1.6019 96.5 14577 92.0 1.5229 945 1.6767 97.1  0.2508 96.0
Fo 1.5287 96.3 14226 964 14079 956 1.5991 969  0.2252 96.1
30 % 1.4275 96.7 1.2919 98.0 1.3891 94.0 1.4599 96.1  0.2088 97.2
%% 1.3438 96.4 12161 973 1.2368 96.0 1.3826 955  0.2077 959
% 1.4091 96.0 1.2930 98.8 1.3777 94.6 1.4867 97.1  0.2088 96.3
Kra 1.3959 964 1.2764 974 1.2923 947 14635 955 0.2031 969
60 40 Z»s 1.1996 97.7 1.0889 954 1.1660 93.3 1.1783 957  0.2253 98.4
Fre 1.1140 973 1.0045 96.1 1.0582 94.7 1.0678 963  0.2103 96.9
K7 1.1718  97.7 1.0669 96.0 1.1131 94.8 1.1786 959  0.2103 96.4
K 1.1594 979 1.0421 96.7 1.0855 95.8 1.1774 96.1  0.2136 979
50 P 1.1143  98.0 1.0070 974 1.0414 94.0 1.0306 96.0 0.2038 98.0
7% 1.0557 98.1 0.9460 95.8 0.9877 98.1 09522 972  0.1999 97.6
73 1.0961 98.3 09732 96.1 1.0344 954 1.0251 972  0.2044 97.6
%% 1.0912  98.0 09802 95.6 1.0566 96.2 1.0332  96.7 0.2008 97.7

5.2. Hllustrative example

Suppose that one can generate a random sample following scheme number 30 (n = 60, m = 50, and
R = (0%, 10)), assuming the two parameters of the GPUHLG distribution as # = 0.5,a = 1.5. The
generated samples are provided in Table 5, and upon examining them, we find that they are ordered and
bounded from zero to one, as specified in the distribution range.

Table 5. Simulated random data for illustrative example.

0.0321 0.0591 0.0697 0.0880 0.1156 0.1383 0.1767 0.1867 0.1979 0.2214
0.2374 0.2408 0.2487 0.2709 0.2728 0.2921 0.3040 0.3068 0.3071 0.3481
0.3563 0.3599 0.3949 0.4030 0.4215 0.4298 0.4531 0.4627 0.4651 0.4741
0.4947 0.5421 0.5430 0.5535 0.5623 0.5656 0.5827 0.6006 0.6165 0.6260
0.6267 0.6358 0.6530 0.6821 0.7341 0.7648 0.7798 0.8341 0.9472 0.9705

Hence, we obtained the estimates of parameters (6, @), respectively, as follows:
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e (lassical estimation point: MLE: (0.4208, 1.9353) and MPS: (0.3471,2.1086).
e BE point: BE Non-INF: (0.4266, 1.9847) and BE Non-INF: (0.6496, 1.3310).

The convergence of MCMC estimates using the MH algorithm can be demonstrated in Figures 4
and 5. These figures include trace plots and histograms, respectively, for each estimated parameter, 6
and a, under two prior scenarios: Non-INF and INF. These graphs illustrate the normality of generated
posterior samples for INF priors for both parameters. Additionally, for parameter @ in the case of
Non-INF priors, the posterior samples also exhibit normal distribution. However, for parameter 6 under
Non-INF priors, the posterior samples do not follow a normal distribution.

Trace plot of ©: Non—INF Trace plot of ©: INF
o

5600 5600
Sample Sample

500 10600 S = 5600
Sample

5600
Sample

Figure 4. Trace plot of MCMC samples for simulated data.
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Figure 5. Histogram of MCMC samples for simulated data.

5.3. Real data analysis

A real dataset is analyzed to offer illustrative instances and to assess the statistical effectiveness of
MLE, MPS, and BEs for the GPUHLG distribution under various PT-IIC schemes.

The following dataset consists of 20 flood observations and was previously analyzed by [30]. The
dataset is provided below:

Table 6.a. Data set of flood data for 20 observations.

0.2650 0.2690 0.2970 0.3150 0.3235 0.3380 0.3790 0.3790 0.3920 0.4020
04120 0.4160 0.4180 0.4230 0.4490 0.4840 0.4940 0.6130 0.6540 0.7400
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To begin with, it is crucial to determine whether the GPUHLG distribution is a suitable choice
for analyzing the provided dataset. This involves calculating the MLEs for the parameters (6, @) and
evaluating various goodness-of-fit criteria, including the negative log-likelihood criterion (NLC), Akaike
information criterion (AIC), Bayesian information criterion (BIC), the Kolmogorov-Smirnov (K-S)
test statistic and its corresponding p-value. These criteria are then compared with those obtained from
alternative distributions, such as the Weibull (We), inverse gamma (IGa), beta, Kumaraswamy (Kum),
and generalized exponential (GEx) distributions. Lower values of these criteria, along with larger p-
values, indicate a better fit. The findings are presented in Table 6.b, which includes parameter estimates
and goodness-of-fit statistics. The results from Table 6.b indicate that, among the compared distributions,
the GPUHLG distribution serves as an appropriate model for the provided dataset. Consequently, the
dataset can be effectively analyzed using this distribution, with the MLEs calculated as § = 0.0054 and
a = 6.4977.

Table 6.b. Evaluation of the goodness of fit for the provided data set.

Pdf Estimate NLC AIC BIC K-S P-value
GPUHLG 0.0054 6.4977 -16.1649 -28.3298 -26.3384  0.1177 0.9447
GEx 57.5089 0.0908 -16.1383 -28.2766 -26.2852  0.1217 0.9285
IGa 14.5702  5.7347 -15.7329 -27.4659 -25.4744  0.1271 0.9032
We 3.5258 0.4688 -13.2640 -22.5280  -20.5365 0.1987 0.4084
beta 6.7564 9.1108 -14.0622 -24.1244  -22.1330  0.1987 0.4081
Kum 3.3633 11.7902 -12.8660 -21.0265 -19.7409  0.2109  0.3359

For a visual evaluation of the compatibility between the provided dataset and the chosen distribution,
graphical representations can be highly informative. One common approach is to juxtapose the empirical
cumulative distribution function (CDF) with the fitted CDFs for alternative distributions such as Weibull
(We), inverse gamma (IGa), beta, Kumaraswamy (Kum), and generalized exponential (GEx). Moreover,
a histogram can be illustrated alongside fitted probability density function (pdf) lines for the same
set of distributions. Figure 6 illustrates these plotted curves for the CDFs and pdfs of the provided
dataset in comparison with their respective distributions. These visualizations clearly underscore
that the GPUHLG distribution aligns more favorably with the data compared to the other considered
distributions, at least within the context of this particular dataset.

Histogram of data

sty

Figure 6. The density and empirical cdf for given real data set with corresponding distributions

Using the original dataset, we generate eight PT-1IC samples. These samples are created with two
distinct numbers of stages, specifically, m = 10 and m = 15, while following the item removal plan
detailed in Table 1. Furthermore, we examine a situation where complete sampling cases are considered,
wheren=m=20andR, =R, =...=R,, = 0.

AIMS Mathematics Volume 8, Issue 12, 30846-30874.



30867

In Table 7.a, we compute estimates (Est.) and standard errors (St.Er) through classical estimation
methods, specifically, MLEs and MPS. These estimations are carried out for the parameters 6 and «,
considering varying PT-IIC patterns based on the provided real data set. Furthermore, we calculate
BEs using the MH algorithm with the Non-INF prior. While generating samples from the posterior
distribution using MH, we initialize the values of (6, @) as (§?, @?) = (8, &), where 8 and & represent
the MLE:s of the parameters 6 and «, respectively. Subsequently, we discard the initial 2000 burn-in
samples from a total of 10,000 samples generated from the posterior density. BEs are then derived using
different loss functions, including SE, LN, with v = 0.5, and LN; with v = 0.5, as defined by Eqs (4.7)
and (4.8). Additionally, Table 7.b presents the lower and upper bounds of confidence intervals for the
parameters 6 and « using various interval estimation methods: Asy-CI, Boot.p, Boot.t, and HPD.

Table 7.a. Classical and BE point estimates and standard error for given real data set under
different PT-IIC schemes.

n m Scheme Classical BE: MCMC
MLE MPS SEL LNI1 LN2
20 10 X 0 Est. 0.0136 0.0045 0.0104 0.0106 0.0102
St.Er 0.0201 0.0048 0.0285 0.0302 0.0277
a Est. 6.0779 7.3007 9.3911 11.2794 7.4286
St.Er 1.5177 1.2496 2.9862 3.1285 2.9233
K% 0 Est. 0.0356 0.0315 0.0036 0.0037 0.0036
St.Er 0.0490 0.0462 0.0056 0.0059 0.0057
a Est. 5.4831 5.7276 8.9865 10.0021 8.2808
St.Er 1.5587 1.6848 1.8498 1.9445 1.8511
X5 6 Est. 0.0293 0.0130 0.0758 0.0792 0.0727
St.Er 0.0419 0.0201 0.1144 0.1057 0.1152
a Est. 5.6885 6.6484 5.7250 6.4814 5.0367
St.Er 1.5768 1.7430 1.7178 1.6895 1.7214
R 0 Est. 0.0166 0.0059 0.0297 0.0305 0.0289
St.Er 0.0256 0.0069 0.0554 0.0289 0.0551
a Est. 5.8469 6.9524 6.7183 7.6361 5.8656
St.Er 1.5669 1.2739 1.9392 1.8330 1.9531
15 K5 0 Est. 0.0049 0.0026 0.0018 0.0018 0.0018
St.Er 0.0068 0.0011 0.0027 0.0028 0.0026
a Est. 6.5072 7.1806 8.5326 9.2548 7.8853
St.Er 1.3548 0.6462 1.6942 1.5213 1.7025
e 0 Est. 0.0664 0.0554 0.0550 0.0559 0.0541
St.Er 0.0653 0.0580 0.0596 0.0622 0.0589
a Est. 4.4391 4.6638 5.0685 5.3604 4.7860
St.Er 1.0389 1.1172 1.0750 1.0973 1.1163
7% 0 Est. 0.0110 0.0049 0.0225 0.0229 0.0220
St.Er 0.0146 0.0044 0.0431 0.0458 0.0420
a Est. 5.9344 6.7844 6.0844 6.5910 5.6045
St.Er 1.3495 0.9911 1.4046 1.4709 1.3821
K743 0 Est. 0.0058 0.0020 0.0017 0.0017 0.0017
St.Er 0.0081 0.0003 0.0032 0.0033 0.0031
a Est. 6.6795 7.8283 8.7660 9.3073 8.2410
St.Er 1.4660 0.4950 1.4727 1.5300 1.4465
20 Complete 0 Est. 0.0054 0.0044 0.0053 0.0053 0.0053
St.Er 0.0067 0.0035 0.0001 0.0001 0.0001
a Est. 6.4977 6.1805 6.5046 6.5420 6.4684
St.Er 1.2688 0.9650 0.3838 0.3831 0.3871
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Table 7.b. Different interval estimates for given real data set under different PT-IIC schemes.

n m Scheme Asy-CI Boot-p Boot-t HPD: Non-INF
20 10 2% 6  (0.0000, 0.0530)  (0.0001, 0.1115) (0.0000, 1.9533) (0.0000, 0.0636)
a  (3.1032,9.0526) (4.3132,12.1106)  (0.0000, 13.3042) (4.1305, 14.3879)
K 6  (0.0000,0.1317)  (0.0000, 0.0937) (0.0000, 1.3141) (0.0000, 0.0117)
a  (2.4281,8.5380)  (4.1321, 15.1568)  (0.0000, 15.1879) (6.1364, 13.4784)
K% 6  (0.0000,0.1115)  (0.0001, 0.2209) (0.0000, 0.6662) (0.0004, 0.3388)
a (2.5981,8.7789)  (4.1054,10.9713)  (3.7289, 17.0075) (2.3982, 9.0098)
7 6  (0.0000, 0.0668)  (0.0000, 0.2016) (0.0000, 22.2738) (0.0001, 0.1472)
a  (2.77758,89180)  (3.7858, 13.4185)  (0.0000, 12.7341) (3.1100, 10.0225)
15 s 6  (0.0000,0.0182)  (0.0001, 0.0292) (0.0000, 0.2996) (0.0000, 0.0069)
a (3.8518,9.1627)  (4.9720, 10.2566)  (0.0000, 13.8741) (5.7423, 11.6252)
He 6  (0.0000, 0.1944)  (0.0004, 0.1331) (0.0000, 0.2994) (0.0031, 0.1831)
a (2.4029,6.4753) (3.6820,10.0842)  (3.5814, 9.6642) (2.9210, 7.0976)
4 6  (0.0000, 0.0396)  (0.0001, 0.0971) (0.0000, 1.7671) (0.0003, 0.0721)
a  (3.2894,8.5794)  (4.1532,10.3699)  (0.0000, 16.7183) (3.6938, 9.2988)
Hs 6  (0.0000,0.0217)  (0.0000, 0.0556) (0.0000, 0.8662) (0.0000, 0.0065)
a (3.8062,9.5529)  (4.6246,12.0765)  (0.0000, 12.2860) (5.9434, 11.6350)
20  Complete 6  (0.0000,0.0184)  (0.0001, 0.0387) (0.0000, 0.3996) (0.0051, 0.0054)
a (40108, 8.9845)  (4.6717,10.5509)  (0.0000, 13.0766) (5.7553, 7.2060)

6. Optimal progressive Type-II censoring scheme

In the preceding sections, we have deliberated upon the classical and BEs of unknown parameters
within the context of the GPUHLG distribution when samples are procured using the PT-IIC approach.
Consequently, to execute a life-testing experiment following the PT-IIC scheme, it becomes imperative
to possess foreknowledge of the values of n, m, and (R, R, ..., R,,). However, in various reliability and
life testing studies, practical considerations should select the optimum PT-IIC scheme from a class of
possible schemes. This problem was first discussed in detail by [6], which considered the problem of
determining the optimal censoring plan via various set-ups. The problem of comparing two different
censoring schemes has received a lot of interest from various researchers. See, for example, [31-36].

In order to identify the most appropriate PT-IIC scheme, we assess an information measure through a
specific set of criteria. These criteria for optimal sampling are contingent upon the variance-covariance
matrix ¥ ! of the maximum likelihood estimators (MLEs), as formulated in Eq (3.5), and can be
articulated in a subsequent manner:

Criterion 1: Minimizing the determinant of '

det [7:_1] = var(f) var(&) — (cov(d, &))>.

Criterion 2: Minimizing the trace of (F !):
tr [77_1] = var(f) + var(@).

Criterion 3: This criterion relies on the choice of u# and aims to minimize the variance of the logarithm
of the MLE of the u-th quantile (denoted as log(Tu)), where 0 < u < 1. The u-th quantile of the
GPUHLG distribution is given by

T,

(2-20+uf\"
B uf )
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Consequently, the logarithm of 7, is expressed as:

- [log(2 — 26 + uf) — log(ub)] .

a

log(T,,) =
By utilizing the delta method, an approximation of the variance of log(7",) is derived as:
. AT .
Var(log(T,)) = |Vlog(T.)| F'|Viog(T.)|.

Here, [V log(TL,)]T represents the gradient of log(7,) concerning the parameters 6 and «, evaluated
at 0 = 6 and @ = &. The partial derivatives of log(T,) are:

oVlog(T,) -1 —24+u 1| oVlog(T,) 1
- e | —_— | —= = 1 2 -26 0) — 1 0)|.
00 a [2—26+u0 9]’ Oa a? [log ( + uf) — log(ud)]

This leads to the expression for the variance of log(f"u):

- o A7 [0V log(T,,
var(d)  cov(d, &) %
cov(@, ) var(@) % ’

Var(log(T,)) = [% 5Vlgi<Tu)] [

It is known that the optimal sampling scheme for PT-IIC is the one that attains the lowest value in any
of the criteria mentioned above. To assess the efficacy of the suggested optimal criteria across various
PT-TIC schemes, we will conduct a Monte Carlo simulation and also consider the provided real data set.

Monte-Carlo Simulation: The simulation method was utilized while considering the identical steps
performed in the simulation section. Specifically, the initial two steps were employed, involving the
estimation of MLEs for the GPUHLG distribution and obtaining the asymptotic variances of MLEs
(the Fisher information matrix), with parameters 6 = 0.5 and @ = 1.5, across various PT-IIC patterns as
outlined in Table 1.

We conducted simulations across 1000 iterations and subsequently computed the Avg. value for
each criterion, as outlined in Table 8.a. Generally, we observe that as the n or m increases, the criterion
value tends to decrease. Furthermore, we notice that the specific patterns: %,, %, . . ., %30, Where
items are removed towards the end of the m stages, yield lower values. This implies that these patterns
are particularly advantageous for the sampling of PT-IIC. Regarding the comparison between criteria
themselves, we believe that they differ in terms of calculation methodology. Therefore, the value of one
criterion does not hold significance in relation to another criterion. However, for the Criterion 3, it is
possible to compare results based on variations in u. We observe that as the value of u increases, the
value of the criterion decreases.

Real data application: Using the previous application “Real Data Analysis” section, we considered
the first eight PT-IIC schemes, as outlined in Table 1, utilizing the provided real data set. By utilizing
the variance-covariance matrix of the MLE:s, it is possible to compute the values of the three criteria for
all conceivable selections of n, m, and schemes Z1[, where [ = 1,2, ..., 8, as well as the comprehensive
sampling approach where m = n. The outcomes are presented in Table 8.b. Notably, we observe that the
optimal schemes are #2 and %.
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Table 8.a. Optimal censoring scheme under simulated data from GPUHLG distribution at
0, @) = (0.5,1.5).

n m Scheme Criterion 1 Criterion 2 Criterion 3
u=0.25 u=0.5 u=0.75
20 10 K4 0.03506 0.83682 0.11268 0.07976 0.05729
R 0.01217 0.64069 0.06442 0.04715 0.04140
K724 0.01998 0.79471 0.07253 0.06173 0.05435
Ry 0.01523 0.62961 0.07420 0.05620 0.04626
15 R 0.01297 0.49835 0.07986 0.05236 0.03773
Ko 0.00896 0.44197 0.06528 0.04037 0.02931
7% 0.01077 0.50202 0.06663 0.04458 0.03420
Ky 0.01328 0.52928 0.07711 0.05219 0.03785
30 20 Ry 0.00700 0.35165 0.06254 0.04127 0.02893
K740 0.00384 0.28795 0.04490 0.02887 0.02167
4% 0.00480 0.33571 0.04582 0.03353 0.02681
K240 0.00559 0.33819 0.05100 0.03700 0.02830
25 X3 0.00432 0.28031 0.05162 0.03272 0.02292
R4 0.00333 0.25036 0.04523 0.02778 0.01949
K15 0.00373 0.27659 0.04456 0.02914 0.02169
X6 0.00433 0.28334 0.04939 0.03218 0.02287
40 20 X7 0.00603 0.31757 0.05918 0.04126 0.02910
X3 0.00272 0.27014 0.03429 0.02544 0.02131
P9 0.00429 0.33148 0.03842 0.03314 0.02797
DR 0.00353 0.28271 0.03848 0.02951 0.02350
30 PR 0.00294 0.22649 0.04286 0.02747 0.01906
R 0.00188 0.19031 0.03415 0.02132 0.01522
K3 0.00223 0.21707 0.03406 0.02338 0.01786
DRy 0.00266 0.22059 0.03809 0.02631 0.01922
60 40 Rrs 0.00154 0.16089 0.03263 0.02116 0.01457
D6 0.00087 0.13226 0.02284 0.01473 0.01079
Ryr 0.00109 0.15160 0.02398 0.01768 0.01377
Dy 0.00120 0.15151 0.02599 0.01897 0.01425
50 D9 0.00104 0.13316 0.02634 0.01657 0.01144
R0 0.00077 0.11752 0.02294 0.01409 0.00969
K3 0.00085 0.12752 0.02335 0.01529 0.01111
R 0.00096 0.12957 0.02508 0.01646 0.01153

Table 8.b. Optimal censoring scheme for given real data set.

n m Scheme Criterion 1 Criterion 2 Criterion 3
u=0.25 u=0.>5 u=0.75
20 10 K73 5.44E-03 2.53956 0.00627 0.00688 0.01037
K7%3 5.41E-04 1.33875 0.02476 0.00472 0.00364
K7%) 1.87E-03 1.94060 0.00908 0.00952 0.01424
R 8.52E-03 2.40327 0.00616 0.00637 0.01045
15 s 3.10E-05 1.66920 0.00621 0.00561 0.00789
Lo 1.03E-05 1.07840 0.00936 0.00383 0.00284
HKq 1.31E-04 1.56659 0.00660 0.00573 0.00532
Ky 1.77E-05 2.09906 0.00476 0.00443 0.00667
20 Complete 4.46E-07 1.21885 0.00250 0.00199 0.00262
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7. Conclusions

In the field of distribution theory, a continuous effort is dedicated to generalizing existing distributions.
This pursuit aims to create more robust and adaptable models that can be applied to a wide array of
scenarios. To achieve this goal, a multitude of methods are explored, as evidenced by a wealth of
literature. The validity and practicality of the chosen distribution in fitting the given data significantly
impact the subsequent analysis and empirical findings. This paper centers on addressing the challenge
of estimating unknown parameters within the context of a GPUHLG distribution under a PT-1IC
scheme. Our approach encompasses both classical and Bayesian perspectives. We derived MLEs, MPS,
Asy-ClI estimates, and bootstrap confidence intervals for the unidentified parameters of the GPUHLG
distribution. Additionally, we employed MCMC by utilizing MH algorithm to calculate BE under both
symmetric and asymmetric loss functions, accompanied by their corresponding HPD interval estimates.
We explored methods for selecting hyper-parameter values for the INF prior case. The simulation
study revealed that BEs under the INF prior consistently outperform each of the classical estimates as
well as BEs under the Non-INF prior case. We also identified the optimal censoring scheme for life
testing experiments, considering three criteria measures, a crucial aspect for practitioners in the field
of reliability. The flood data set was employed for all estimations within our research study as a real
data application. Future research directions could involve delving into neurotrophic statistics applied
to the GPUHLG distribution. Furthermore, there is potential to model COVID-19 data using various
progressive censoring schemes, presenting an avenue for further investigation.
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