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1. Introduction

Statistical analysis and the modeling of lifetime data are essential across various applied disciplines
such as insurance, finance, biomedical research, and engineering. Consequently, a multitude of lifetime
distributions have been introduced in these domains. Particularly, the modeling of datasets constrained
within the range of (0, 1) has gained significant prominence in recent times. This approach has found
widespread utility in addressing the survival and failure rates of products across diverse fields. As a result
of its adaptability in handling probabilistic models of this nature, a plethora of unit distributions that are
bounded within the interval (0, 1) have emerged. Furthermore, industries including medical, actuarial,
and finance sectors are increasingly recognizing the indispensable value of these types of distributions.

Extensive efforts from statisticians have been directed toward comprehending the failure of
components and units, particularly within the well-structured operating systems prevalent in industrial
and mechanical engineering. Their investigation revolves around the observation of operating units until
they encounter failure. Subsequently, the lifetimes of these units are recorded, followed by the
application of statistical inference techniques to the accumulated data. This process culminates in the
estimation of reliability and hazard functions for the entire system, leveraging the collected dataset.
Despite these endeavors, situations arise where certain experimental units possess both high reliability
and significant costs. In such cases, a practical necessity emerges to reduce the number of experimental
units utilized as well as the duration of the lifetime experiments involving these units. To address this
scenario, the progressive Type-II censoring (PT-IIC) scheme comes into play. This scheme offers a way
to achieve robust estimations through lifetime experiments while safeguarding some experimental units
from encountering failure. The progressive Type-II censoring scheme is frequently described as follows:
Initially, the experimenter places n independent and identical units into the life measurement process.
Upon the occurrence of the first failure, denoted as x(1), a random selection process removes R1 units
from the remaining n − 1 surviving units. This process is reiterated for each subsequent failure event:
At the time of the second failure, x(2), R2 units are randomly chosen for removal from the surviving
units, now numbering n − R1 − 2. This pattern continues until the m-th failure transpires at time xm,
resulting in the extraction of Rm = n − m −

∑m−1
i=1 Ri surviving units from the test. The collective set of r

values, denoted as R = (R1, R2, ..., Rm), characterizes the PT-IIC scheme. In contrast, Progressive
Type-II right censoring involves a predefined censoring scheme R before the experiment’s
commencement. Interestingly, Type-II censoring can often be viewed as a specific instance of PT-IIC,
where the scheme is represented as R =(0, 0, ..., n − m), as documented in [1–3]. This experimental
setup concludes at the mth failure, a predetermined event occurring at time tm, and the value of Rm is
computed as n − m −

∑m−1
i=1 Ri, (Figure 1).

Figure 1. Schematic representation of the PT-IIC.
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Let x(1), x(2), ..., x(m), 1 ≤ m ≤ n, be a PT-IIC sample observed from a lifetime test involving n units
and R1,R2, ...,Rm be the censoring scheme. The joint probability density function(PDF) of a PT-IIC
sample is given by

L(xi:m:n; θ, α) = C
m∏

i=1

f (xi:m:n))
[
(1 − F(xi:m:n))

]Ri , (1.1)

where C may be a constant defined as

C = n (n − R1 − 1) · · · (n −
m−1∑
i=1

(Ri + 1)).

See [1, 3, 4] for more details.
The attention has been on the development of PT-IIC over the last two to three decades. One can

consult sources such as [2, 5–7] and others for insightful findings regarding this censoring scheme.
A substitute for the maximum likelihood estimation (MLE) approach for deducing the parameters of

continuous uni-variate distributions was introduced by [8], termed the maximum product of spacing
(MPS) method. This approach was put forth as a means to retain many of the properties inherent in
maximum likelihood by substituting the likelihood function with a product of spacing. This technique
was subsequently extended to parameter estimation using censored samples by various researchers.
For complete samples, sources like [9–11] delve into this method. When dealing with Type-I and
Type-II censored samples, the works of [12, 13] offer insights. The progressive Type-II censoring
scheme (PT-IIC) is explored in studies such as [14, 15], while the adaptive progressive Type-II scheme
is examined in sources like [16–18]. The organization of this paper is as follows: In Section 2, the
generalized power unit half-logistic geometric distribution will be presented. Section 3 introduces the
classical estimation methods. Bayesian estimates for the unknown parameters are obtained in Section 4.
In Section 5, the numerical computations are analyzed. In Section 6, we present an optimal progressive
censoring scheme and compare it with various alternative censoring schemes. The conclusions drawn
from the findings are summarized in Section 7.

2. Generalized power unit half-logistic geometric distribution

Nasiru et al. [19] introduced a new generalized power unit half-logistic geometric
(GPUHLG)distribution. The random variable X is said to follow a GPUHLG distribution if its
probability density function (pdf) is expressed as:

f (x) =
2αθxα−1

((θ − 2) xα − θ)2 , θ, α > 0, 0 < x < 1, (2.1)

and the cumulative distribution function (cdf)

F(x) = 1 −
θ (1 − xα)

(2 − θ) xα + θ
, θ, α > 0, 0 < x < 1. (2.2)

Figure 2 shows the cdf and the pdf of the GPUHLG distribution at different values of θ and α.
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Figure 2. The cdf and pdf of the GPUHLG distribution at different values of θ and α.

Also, the survival and the hazard failure rate functions of the GPUHLG distribution are given
respectively as

S (x) = 1 − F(x) =
θ (1 − xα)

(2 − θ) xα + θ
, θ, α > 0, 0 < x < 1, (2.3)

and

H(x) =
f (x)
S (x)

=
2αxα−1

(xα − 1) ((θ − 2) xα − θ)
, θ, α > 0, 0 < x < 1. (2.4)

Figure 3 shows the survival and the hazard rate functions of the GPUHLG distribution at different
values of θ and α.

Figure 3. The survival and hazard rate functions of the GPUHLG distribution at different
values of θ and α.

3. Classical estimation

In this section, the techniques of maximum likelihood estimation (MLEs) and maximum product
of spacing estimation (MPSs) are employed to derive both point and interval estimators for the model
parameter. The construction of interval estimators leverages the asymptotic characteristics of the MLEs
and MPSs.
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3.1. Maximum likelihood estimation technique

Consider a PT-IIC sample of size m, denoted by x = x(i), where i = 1, . . . ,m. This sample is acquired
using the progressive censoring scheme S i from the GPUHLG distribution, which is defined by the
probability density function (pdf) and cumulative distribution function (cdf) shown in Eqs (2) and (3),
respectively. By excluding the constant factor, the likelihood function of the GPUHLG distribution,
accounting for the existence of PT-IIC, can be derived from Eqs (2), (3), and (1) as demonstrated below:

L ∝
(
2αθ2

)m
m∏

i=1

xα−1
(i)(

(2 − θ)xα(i) + θ
)2

 1 − xα(i)
(2 − θ)xα(i) + θ

Ri

. (3.1)

The log-likelihood function is given by

l = log(L) ∝ m log(2α) + 2m log(θ) +
m∑

i=1

log(xα−1
(i) ) − 2

m∑
i=1

log((2 − θ)xα(i) + θ)

+

m∑
i=1

Ri

(
log(1 − xα(i)) − log((2 − θ)xα(i) + θ)

)
.

(3.2)

The derivatives of the log-likelihood function with respect to the parameters θ and α are presented as
follows:

∂l
∂θ
=

2m
θ
− 2

m∑
i=1

1 − xα(i)
(2 − θ)xα(i) + θ

+

m∑
i=1

Ri(1 − xα(i))

(2 − θ)xα(i) + θ
, (3.3)

∂l
∂α
=

m
α
+

m∑
i=1

log(x(i)) − 2
m∑

i=1

(2 − θ)xα(i) log(x(i))

(2 − θ)xα(i) + θ

−

m∑
i=1

Ri

 xα(i) log(x(i))

1 − xα(i)
+

(2 − θ)xα(i) log(x(i))

(2 − θ)xα(i) + θ

 . (3.4)

Equations (3.3) and (3.4) do not possess a readily available closed-form solution when equated to
zero. Consequently, numerical methods using the Newton-Raphson algorithm implemented in the R
programming language are employed to obtain solutions.

The Fisher information matrix, which is required for obtaining the MLE and the corresponding
asymptotic confidence intervals of the parameters, requires the second partial derivatives of the log-
likelihood function with respect to the parameters. The Fisher matrix F is given by

F =

 ∂2L
∂θ2

∂2L
∂θ∂α

∂2L
∂α∂θ

∂2L
∂α2 .

 , (3.5)

These matrices should be positive definite at the MLE estimates of the parameters. The 2nd partial
derivatives of the log-likelihood function, which are needed for the Fisher information matrix, are
given by

∂2l
∂θ2 =

−2m
θ2 + 2

m∑
i=1

(
1 − xα(i)

)2(
(2 − θ)xα(i) + θ

)2 +

m∑
i=1

(
Ri(1 − xα(i)

)2(
(2 − θ)xα(i) + θ

)2 , (3.6)
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∂2l
∂α2 = −

m
α2 −

m∑
i=1

 (2 − θ)
(
log(x(i))

)2 xα(i)
(2 − θ)xα(i) + θ

−
(2 − θ)2 (

log(x(i))
)2 x2α

(i)(
(2 − θ)xα(i) + θ

)2


+

m∑
i=1

Ri

−2 log(x(i))x2α
(i)(

1 − xα(i)
)2 −

2 log(x(i))xα(i)
1 − xα(i)

−
2(2 − θ) log(x(i))xα(i)

(2 − θ)xα(i) + θ
+
α(2 − θ)2 (

log(x(i))
)2 x2α

(i)(
(2 − θ)xα(i) + θ

)2

 ,
(3.7)

∂2l
∂θ∂α

=
2m
θ
− 2

m∑
i=1

1 − xα(i)
(2 − θ)xα(i) + θ

−

m∑
i=1

Ri(1 − xα(i))

(2 − θ)xα(i) + θ
, (3.8)

∂2l
∂α∂θ

=
m
α
+

m∑
i=1

log(x(i)) − 2
m∑

i=1

(2 − θ) log(x(i))xα(i)
(2 − θ)xα(i) + θ

−

m∑
i=1

Ri

 log(x(i))xα(i)
1 − xα(i)

+
(2 − θ) log(x(i))xα(i)

(2 − θ)xα(i) + θ

 . (3.9)

As was discussed above, the MLEs of the unknown parameters θ and α are not derived in closed forms.
Therefore, the sampling distributions of the MLEs cannot be obtained analytically. Alternatively, we
can compute the asymptotic confidence intervals of these parameters using one of the properties of the
MLEs, which states that

(θ̂, α̂) ∼ N2

(
(θ, α), F̂ −1

)
as n→ ∞,

where F̂ −1 is the inverse of F evaluated at the MLEs of the parameters, respectively.

3.2. Bootstrap confidence intervals

The preceding section underscored the challenges associated with calculating second-order
derivatives for constructing asymptotic confidence intervals (ACIs) for the model’s unknown
parameters. Consequently, we turn our attention to employing bootstrapping techniques. Specifically,
we consider the percentile bootstrap approach (Boot-p), as well as the bootstrap-t approach proposed by
Efron [7], and the bootstrap-t method outlined by Hall [20].

3.2.1. Parametric Boot-p

(1) Utilizing the original data x = x(1), x(2), ..., x(m), maximize Eqs (8) and (9) to obtain θ̂ and α̂,
respectively.

(2) Generate the PT-IIC sample x∗ = x∗(1), x
∗
(2), ..., x

∗
(m) based on the pre-specified PT-IIC scheme

(R1,R2, ...,Rm) from the GPUHLG distribution with parameters θ̂ and α̂, using the algorithm
detailed in Balakrishnan and Sandhu [4] and [3].

(3) Obtain the maximum likelihood estimates based on the bootstrap sample, denoting this estimate as
ψ̂∗, where in our case ψ could be θ and α.

(4) Repeat Steps (2) and (3) for a total of N bootstrap iterations, obtaining ψ̂∗1, ψ̂
∗
2, ..., ψ̂

∗
N boot, where

ψ̂∗i =
(
θ̂∗i , α̂

∗
i

)
and i = 1, 2, 3, ...,N boot.

(5) Arrange ψ̂∗i in ascending order to obtain ψ̂∗(1), ψ̂
∗
(2), ..., ψ̂

∗
(N boot).

Consider G1(z) = P(ψ̂∗ ≤ z) to represent the cumulative distribution function of ψ̂∗. Introduce
ψ̂boot−p = G−1

1 (z) for a given value of z. The estimated bootstrap-p 100(1 − γ)% confidence interval of ψ̂
is then expressed as:
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[
ψ̂boot−p

(
γ

2

)
, ψ̂boot−p

(
1 −

γ

2

)]
. (3.10)

3.2.2. Parametric Boot-t

(1) The same as the parametric Boot-p.
(2) The same as the parametric Boot-p.
(3) The same as the parametric Boot-p.
(4) Utilizing the asymptotic variance-covariance matrix, calculate the matrix I−1∗

(
∂ℓ
∂θ
, ∂ℓ
∂α

)
.

(5) Calculate the statistic T ∗ψ, defined as follows:

T ∗ψ =

(
ψ̂∗ − ψ̂

)
√
̂var

(
ψ̂∗

) .

(6) Repeat Steps 2 − 5, N-Boot times and obtain T ∗ψ1 ,T ∗ψ2 , ...,T ∗ψN boot.

(7) Arrange the values T ∗ψ1 ,T ∗ψ2 , ...,T ∗ψN boot in ascending order to derive the ordered sequences
T ∗ψ(1),T

∗ψ
(2), ...,T

∗ψ
(N boot).

Let G2(z) = P(T ∗ ≤ z) be the cumulative distribution function of T ∗ for given z. Define ψ̂boot−t =

ψ̂ +G−1
1 (z)

√
̂var

(
ψ̂∗

)
.

Then, the approximate bootstrap-t 100(1 − γ)% CI of ψ̂ =
(
θ̂, α̂

)
, is given by

[
ψ̂boot−t

(
γ

2

)
, ψ̂boot−p

(
1 −

γ

2

)]
. (3.11)

3.3. Maximum product spacing estimation technique

A reliable alternative to the maximum likelihood approach is the maximum product spacing (MPS)
method, which provides an approximation to the Kullback-Leibler information measure.

Examine a PT-IIC sample of size m, denoted as x = x(i), where i ranges from 1 to m. This sample
is gathered using the progressive censoring scheme S i from the GPUHLG population, described by
the probability density function (pdf) and cumulative distribution function (cdf) outlined in Eqs (2)
and (3) respectively. The probability spacing (PS) function, excluding the constant component, can be
formulated within this framework by utilizing Eqs (2) and (3) as demonstrated below:

Gs(θ, α|data) =
m+1∏
i=1

(
F(x(i)) − F(x(i−1))

) m∏
i=1

(1 − F(x(i)))Ri

=

m+1∏
i=1

 θ(1 − xα(i−1))

(2 − θ)xα(i−1) + θ
−

θ(1 − xα(i))

(2 − θ)xα(i) + θ

 m∏
i=1

 θ(1 − xα(i))

(2 − θ)xα(i) + θ

Ri

,

(3.12)
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and g(θ, α|data) = log(Gs(θ, α|data)) can be obtained as

g(θ, α|data) =
m+1∑
i=1

log
(
θ(1 − xα(i−1))((2 − θ)xα(i)) − θ(1 − xα(i))((2 − θ)xα(i−1)))

)
−

m+1∑
i=1

log
(
(2 − θ)xα(i−1) + θ

)
−

m+1∑
i=1

log
(
(2 − θ)xα(i) + θ

)
+

m+1∑
i=1

Ri log(θ(1 − xα(i))) −
m+1∑
i=1

Ri log((2 − θ)xα(i) + θ).

(3.13)

Upon deriving the first derivative of the function g(θ, α|data) with respect to θ and α, we obtain:

∂g(θ, α|data)
∂θ

=

m∑
i=1

Ri

θ
−

m+1∑
i=1

1 − xα(i−1)

(2 − θ)xα(i−1) + θ
−

m+1∑
i=1

1 − xα(i)
(2 − θ)xα(i) + θ

−

m∑
i=1

Ri(1 − xα(i))

(2 − θ)xα(i) + θ

+

m+1∑
i=1

(1 − xα(i−1))((2 − θ)xα(i) + θ) − (1 − xα(i−1))((2 − θ)xα(i−1) + θ)

θ(1 − xα(i−1))((2 − θ)xα(i) + θ) − θ(1 − xα(i))((2 − θ)xα(i−1) + θ)
,

(3.14)

∂g(θ, α|data)
∂α

=

m+1∑
i=1

θ(2 − θ)xα(i)(1 − xα(i−1)) log(x(i)) + θxα(i) log(x(i))((2 − θ)xα(i−1) + θ)

θ(1 − xα(i−1))((2 − θ)xα(i) + θ) − θ(1 − xα(i))((2 − θ)xα(i−1) + θ)

−

m+1∑
i=1

θ(2 − θ)xα(i−1)(1 − xα(i)) log(x(i−1)) + θxα(i−1) log(x(i−1))((2 − θ)xα(i) + θ)

θ(1 − xα(i−1))((2 − θ)xα(i) + θ) − θ(1 − xα(i))((2 − θ)xα(i−1) + θ)

−

m+1∑
i=1

(2 − θ)xα(i−1) log(x(i−1))

(2 − θ)xα(i−1) + θ
−

m∑
i=1

Rixα(i) log(x(i))

1 − xα(i)
−

m+1∑
i=1

(2 − θ)xα(i) log(x(i))

(2 − θ)xα(i) + θ

−

m∑
i=1

(2 − θ)Rixα(i) log(x(i))

(2 − θ)xα(i) + θ
.

(3.15)

Equations (3.14) and (3.15) lack closed-form analytical solutions when equated to zero. Consequently,
numerical methods are employed to obtain solutions.

4. Bayesian estimation

Within this section, the Bayesian estimation (BE) technique is employed for the estimation of the
parameters θ and α. These parameters are presumed to be independent and adhere to a gamma prior
distribution characterized by parameters a and b.

The gamma prior density function takes the following shape:

π(u) =
ba

Γ(a)
ua−1e−ub, u, a, b > 0. (4.1)

Subsequently, the joint prior density of θ and α can be expressed as follows:

π(θ, α) =
n∏

i=1

π(θ)π(α) ∝ (θα)a−1e−(θ+α)b. (4.2)
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The joint posterior distribution function according to the Bayesian procedure is given by

π(θ, α|x) =
π(θ, α)L(x)∫ ∞

0

∫ ∞
0
π(θ, α)L(x)dθdα

∝ π(θ, α)L(x). (4.3)

Substituting from Eqs (3.1) and (4.2) into Eq (4.3), we get

π(θ, α|x) ∝ θa+2m−1αa+m−1e−(θ+α)b)
m∏

i=1

xα−1
(i)(

(2 − θ)xα(i) + θ
)2

 1 − xα(i)
(2 − θ)xα(i) + θ

Ri

. (4.4)

4.1. Loss functions

The Bayesian estimator for a given function, denoted as l(ϕ), with respect to the squared error (SE)
loss function, is defined as:

ϕ̂S E = E
[
l(ϕ)|x

]
=

∫
ϕ

l(ϕ)π(ϕ|x)dϕ. (4.5)

The squared error (SE) loss function is a type of asymmetric loss function that assigns equal
importance to both underestimation and overestimation. However, in various real-world scenarios, the
gravity of underestimation might differ from that of overestimation, and the opposite could also be true.
When dealing with such circumstances, a possible substitute for the SE loss function is the LINEX loss,
characterized by: (

l(ϕ), l̂(ϕ)
)
= e{l̂(ϕ)−l(ϕ)} − v

(
l̂(ϕ) − l(ϕ)

)
− 1.

In this context, when v > 0, it signifies a greater significance of overestimation compared to
underestimation, whereas for v < 0, the opposite holds true. As v approaches zero, the loss function
aligns with the standard squared error (SE) form. For a deeper understanding of this concept, additional
information can be found in [21, 22]. The Bayesian estimator (BE) for l(ϕ) under this loss function can
be determined as follows:

ϕ̂LN = E
[
e{−vl(ϕ)}|x

]
= −

1
v

log
[∫

ϕ

e{−vl(ϕ)}π(ϕ|x)dϕ
]
. (4.6)

Observing Eqs (4.5) and (4.6), it becomes apparent that the resulting estimates cannot be transformed
into concise analytical forms. To manage this, the Markov chain Monte Carlo(MCMC)method, as
outlined in [23], is employed to numerically summarize the posterior distribution. This approach
avoids the need for calculating the normalization constant and is executed using the R programming
language, as described in [7]. Hence, our next step involves implementing the MCMC methodology
and generating posterior samples via the Metropolis-Hastings algorithm. This enables us to acquire the
desired Bayesian estimators (BEs).

4.2. Markov chain method

Markov chain Monte Carlo (MCMC)methods constitute a versatile simulation approach for obtaining
samples from posterior distributions and calculating relevant posterior values. In fact, the MCMC
samples can effectively encapsulate the full range of uncertainty regarding the parameter ϕ. By utilizing a
kernel estimation technique on the posterior distribution, a comprehensive understanding can be obtained.
For a more comprehensive exploration of MCMC principles, refer to sources such as [5, 23–27].
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Numerous methods exist for introducing random noise to create proposals, and a variety of
approaches are available for the acceptance and rejection process. Techniques like Gibbs sampling and
the Metropolis-Hastings algorithm are among the options for this purpose.

4.3. Metropolis-Hasting algorithm

To implement the Metropolis-Hastings (MH) algorithm for the GPUHLG distribution, certain
elements must be established: a proposal distribution and initial values for the unknown parameters θ and
α. For the proposal distribution, we opt for a bivariate normal distribution, denoted as q

(
(θ′, α′)|(θ, α)

)
≡

N2
(
(θ, α), S θ,α

)
, wherein S θ,α signifies the variance-covariance matrix. It is important to note that we must

avoid generating negative observations, which are considered unacceptable. Regarding initial values,
we employ the Maximum Likelihood Estimators (MLE) for θ and α, yielding (θ(0), α(0)) = (θ̂, α̂). The
selection of S θ,α is based on the asymptotic variance-covariance matrix F−1(θ̂, α̂), with F(.) representing
the Fisher information matrix. It is worth noting that the choice of S θ,α holds significance in the MH
algorithm, impacting the acceptance rate.

In this context, the sequential stages of the MH algorithm for drawing a sample from the posterior
density, as indicated in Eq (22), unfold in the following manner:

Step 1. Initialize the value of η as η(0) =
(
θ̂, α̂

)
.

Step 2. For i = 1, 2, . . . ,M, iterate through the following process:

(1) Set η = η(i−1).
(2) Generate a fresh candidate parameter value δ from the bivariate normal distribution

N2
(

log η, S θ,α

)
.

(3) Set η
′

= exp(δ).
(4) Compute β using the formula β = π(η

′
|x)

π(η|x) , where π(·) represents the posterior density as defined
in Eq (22).

(5) Generate a sample u from the uniform U(0, 1); distribution.
(6) Accept or reject the new candidate η

′


If u ≤ β set η(i) = η

′

otherwise set η(i) = η.

Ultimately, after obtaining a set of random samples of size M from the posterior density, it is common
practice to discard a portion of the initial samples (burn-in), retaining the remaining samples for further
analysis. Specifically, the Bayesian estimators (BEs) of the parameters θ and α using the squared
error (SE) loss function, as outlined in Eq (4.5), can be computed as

θ̂S E =
1

M − lB

M∑
l=lB

θ(l),

α̂S E =
1

M − lB

M∑
l=lB

α(l).

(4.7)
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Moreover, the Bayesian estimators (BEs) for the parameters θ and α, employing the LINEX loss
function, as provided in Eq (4.6), can be expressed as follows:

θ̂LN = −
1
v

log

 1
M − lB

M∑
i=lB

e{−vθ(i)}


α̂LN = −

1
v

log

 1
M − lB

M∑
i=lB

e{−vα(i)}

 .
(4.8)

Here, lB denotes the count of burn-in samples.

4.4. Elicitation of hyper-parameters

The elicitation of the hyper-parameters will depend on informative priors. These informative priors
are derived from the MLEs for (θ, α) by equating the mean and variance of (θ̂ j, α̂ j) with those of the
specified priors (Gamma priors). Here, j = 1, 2, . . . , k, and k corresponds to the number of available
samples from the GPUHLG distribution (Dey et al. [28]). By equating the moments of (θ̂ j, α̂ j) with the
moments of the gamma priors, the following equations are derived:

1
k

k∑
j=1

θ̂ j =
a1

b1
,

1
k − 1

k∑
j=1

(
θ̂ j −

1
k

k∑
j=1

θ̂ j
)2

=
a1

b2
1

,

1
k

k∑
j=1

α̂ j =
a2

b2
and

1
k − 1

k∑
j=1

(
α̂ j −

1
k

k∑
j=1

α̂ j
)2

=
a2

b2
2

.

By solving the aforementioned equations, the estimated hyper-parameters can be expressed as
follows:

a1 =

(1
k

∑k
j=1 θ̂

j)2

1
k−1

∑k
j=1

(
θ̂ j − 1

k

∑k
j=1 θ̂

j
)2 , b1 =

1
k

∑k
j=1 θ̂

j

1
k−1

∑k
j=1

(
θ̂ j − 1

k

∑k
j=1 θ̂

j
)2

a2 =

(1
k

∑k
j=1 α̂

j)2

1
k−1

∑k
j=1

(
α̂ j − 1

k

∑k
j=1 α̂

j
)2 , b2 =

1
k

∑k
j=1 α̂

j

1
k−1

∑k
j=1

(
α̂ j − 1

k

∑k
j=1 α̂

j
)2 .

(4.9)

4.5. Highest posterior density

We construct the highest posterior density (HPD) intervals for the unobservable parameters α and
θ of the GPUHLG distribution within the context of the PT-IIC. These intervals are established using
the samples acquired through the aforementioned MH approach from the previous section [29]. In the
subsequent case study, let α(δ) and θ(δ) represent the δ-th quantiles of α and θ, respectively. In other
words, (

α(δ), θ(δ)) = inf{
(
α, θ

)
: Π

(
(α, θ)|z

)
≥ δ}.

Here, 0 < δ < 1, and Π(·) represents the posterior distribution of α and θ. Importantly, it is worth
noting that for a specific set of α and θ, an effective estimator derived from simulating π

(
(α, θ)|z

)
can be

computed as:
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Π
(
(α, θ)|z

)
=

1
M − lB

M∑
i=lB

I(α,θ)≤(α,θ) .

Here, I(α,θ)≤(α,θ) is the indicator function. The proper estimate is then determined as

Π̂
(
(α, θ)|z

)
=


0 if (α, θ) < (α(lB), θ(lB))∑i

j=lB
ω j if (α(i), θ(i)) < (α, θ) < (α(i+1), θ(i+1))

1 if (α, θ) > (α(M), θ(M))

where ω j =
1

M−lB
and (α( j), θ( j)) are the ordered values of (α j, θ j). Now, for i = lB, . . . ,M, (α(δ), θ(δ)) may

be estimated by

(
α̃(δ), θ̃(δ)) =


(α(lB), θ(l−B)) if δ = 0

(α(i), θ(i)) if
∑i−1

j=lB
ω j < δ <

∑i
j=lB

ω j.

Furthermore, let us determine a 100(1 − δ)% HPD credible interval for α and θ:

HPDα
j =

(
α̃( j

M ), α̃( j+(1−δ)M
M )) & HPDλ

j =
(̃
θ( j

M ), θ̃( j+(1−δ)M
M ))

for j = lB, . . . , [δM], where [a] represents indicates the largest integer ≤ a. We need to choose HPD j∗

from one of many HPD
′

js with the narrowest width.

5. Numerical computations and real data

The aim of this section is to assess and compare the efficiencies of the different estimation approaches
discussed in the previous sections. To achieve this, a simulation study is conducted to observe the
performances of the proposed methods and to gauge the statistical prowesses of the estimators within the
framework of a PT-IIC scheme. Furthermore, a flood dataset is analyzed to offer a practical illustration.
All calculations were executed using the R programming language.

5.1. Simulation study

In this subsection, a Monte Carlo simulation study is carried out to evaluate the performance of
distinct estimation methods – namely, MLE, MPS, and BE – within the framework of the PT-IIC
scheme applied to the GPUHLG distribution. We generate 1000 sets of random data from the GPUHLG
distribution under the PT-IIC, employing parameters θ = 0.5 and α = 1.5. The configuration of the
PT-IIC scheme is established through predetermined values of n and m, alongside various patterns for
censoring items Ri, where i = 1, 2, . . . ,m, as detailed in Table 1. These patterns can be classified into
four distinct cases.

• In the first pattern, the removal of items (n − m) takes place during life testing, coinciding
with the occurrence of the first failure item. This scenario is represented by patterns such as
R1,R5, . . . ,R29.
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• Conversely, the second pattern involves the removal of items occurring with the last m failure
items, and this is exemplified by patterns like R2,R6, . . . ,R30.
• Moving to the third pattern, the removal of items happens at the median of the m items, as

demonstrated by patterns R3,R7, . . . ,R31.
• Lastly, the final pattern arises when equal items are removed, whenever possible, at each m stage.

This pattern is characterized by representations such as R4,R8, . . . ,R32.

Steps of the Monte Carlo simulation:

Step 1: Generate m sets of PT-IIC random data points from the GPUHLG(θ, α) distribution using the
algorithm proposed by [3]. Use the removal pattern of items from Table 1.

Table 1. Patterns of item removal for varying values of n and m.
n m Censoring Scheme (R1,R2, . . . ,Rm) Scheme
20 10 (10, 0∗9) R1

(0∗9, 10) R2

(0∗4, 5, 5, 0∗4) R3

(1∗10) R4

15 (5, 0∗14) R5

(0∗14, 5) R6

(0∗7, 2, 3, 0∗7) R7

(1∗5, 0∗10) R8

30 20 (10, 0∗19) R9

(0∗19, 10) R10

(0∗9, 5, 5, 0∗9) R11

(1∗10, 0∗10) R12

25 (5, 0∗24) R13

(0∗24, 5) R14

(0∗12, 5, 0∗12) R15

(1∗5, 0∗20) R16

40 20 (20, 0∗19) R17

(0∗19, 20) R18

(0∗9, 10, 10, 0∗9) R19

(1∗20) R20

30 (10, 0∗29) R21

(0∗29, 10) R22

(0∗14, 5, 5, 0∗14) R23

(1∗10, 0∗20) R24

60 40 (20, 0∗39) R25

(0∗39, 20) R26

(0∗19, 10, 10, 0∗19) R27

(1∗20, 0∗20) R28

50 (10, 0∗49) R29

(0∗49, 10) R30

(0∗24, 5, 5, 0∗24) R31

(1∗10, 0∗30) R32

As an example, the scheme (0(4), 10) signifies the utilization of the censoring scheme (0, 0, 0, 0, 10).
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Step 2: Obtain MLE and MPS estimates for the parameters θ and α. Additionally, calculate the
variance-covariance matrix of MLEs.

Step 3: Compute confidence interval estimates: Asy-CI, Boot-p, and Boot-t .

Step 4: Compute BEs using the MH algorithm as follows:

(1) Consider two scenarios for prior distributions. The first scenario involves an informative
prior (INF), wherein hyper-parameter values are computed using Eq (4.9). Specifically,
we generate 1000 complete samples, each consisting of 60 data points, from a GPUHLG(θ =
0.5, α = 1.5) distribution as past samples and compute their MLEs (θ̂, α̂). Subsequently,
by utilizing Eq (4.9), we can determine the hyper-parameter values as follows: a1 = 6.52,
b1 = 18.22, a2 = 49.67, and b2 = 27.50.

(2) The second scenario involves a non-informative prior (Non-INF), where hyper-parameter
values are set to a1 = b1 = a2 = b2 = 0. This leads to the prior distributions π(θ) = 1

θ
and

π(α) = 1
α
.

(3) Generate 10,000 samples of α and θ for both INF and Non-INF prior cases from the posterior
density using MCMC and utilizing the MH algorithm. Use the initial MLEs and their variance-
covariance matrix, along with the given PT-IIC data x = (x(1), x(2), . . . , x(m)).

(4) The initial 2,000 samples are discarded as burn-in from the overall set of 10,000 samples
generated from the posterior density.

(5) Compute BEs of α and θ using various loss functions: SE and LINEX (with v = −0.5(LN1)
and v = 0.5(LN2)), as defined by Eqs (4.7) and (4.8).

(6) Finally, calculate the HPD interval using the posterior samples.

Step 5: Repeat Steps 1–4 a total of 1,000 times and save all the estimates.

Step 6: Calculate statistical metrics for point estimates: mean (Avg.) estimate and root mean square
error (RMSE) estimate. These calculations can be carried out using the following formulas:

Avg.(ϕ) =
1

1000

1000∑
l=1

ϕ̂l,

RMS E(ϕ) =

√√
1

1000

1000∑
l=1

(
ϕ̂l − ϕ

)2
.

In this context, ϕ represents the parameter, while ϕ̂ denotes the estimated value of that parameter.

Step 7: Compute statistical performance measures for interval estimates: average interval length (AIL)
and coverage probability (CP) in percentage.

To provide point estimations, we present the results of Avg. and RMSE estimates for various
PT-IIC schemes in Tables 2 and 3, corresponding to θ = 0.5 and α = 1.5, respectively. In terms of
interval estimation, Tables 4.a and 4.b display the outcomes for AILs and CPs for θ = 0.5 and α = 1.5,
respectively.

From the results obtained for point estimation of distribution parameters, it is generally observed
that an increase in both n and m leads to an improvement in Avg. estimates and its convergence towards
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the true parameter values. Additionally, we notice a decrease in the RMSEs as well. Regarding interval
estimation, as n and m increase, we observe a reduction in the AILs for all interval estimation methods.
Additionally, it is worth mentioning that the CP ranges from 90% to 99%. The confidence intervals can
be ranked in terms of the efficiency of AILs as follows:

HPD: INF ≥ Boot-t ≥ Asy-CI ≥ Boot-p ≥ HPD: Non-INF.

In terms of the efficiency of proposed estimation methods, by comparing classical point estimation
methods, we observe that the efficiency of the MLE method for the parameter θ is superior to that of the
MPS estimations; and for the parameter α, we observe the opposite. Concerning the BEs methods using
assumed loss functions, it is evident that the BEs using LN1 loss function at v = 0.5 exhibits the highest
efficiency, followed by the estimation using the SE loss function, and then the LN2 loss function at
v = −0.5. Moreover, when comparing the BEs using MCMC under INF and Non-INF approaches, there
is a very clear indication that the INF prior case significantly outperforms the Non-INF prior one. In a
broader sense, it can be concluded that the BEs using MCMC under INF case efficiency are superior
among the assumed methods of classical and Bayes estimation.

Furthermore, it is worth noting that these conclusions pertain to a specific set of distribution
parameters (θ = 0.5, α = 1.5). We recommend conducting further research on alternative parameter
combinations and comparing the results obtained with those from our study.

Table 2. Average estimate values and MSE under different PT-IIC schemes at θ = 0.5.
n m Scheme Classical BE: Non-INF BE: INF

MLE MPS SE LN1 LN2 SE LN1 LN2
20 10 R1 Avg. 0.4765 0.2380 0.9846 0.9935 0.4801 0.4454 0.4502 0.4407

RMSE 0.4441 0.3613 2.0388 2.4955 0.5909 0.1304 0.1298 0.1311
R2 Avg. 0.4091 0.3442 0.7972 0.8928 0.4799 0.4641 0.4686 0.4597

RMSE 0.3798 0.3491 1.6437 2.2714 0.6062 0.1487 0.1493 0.1483
R3 Avg. 0.4332 0.2202 0.9129 0.7361 0.4940 0.4576 0.4622 0.4531

RMSE 0.4277 0.3734 1.8939 2.0204 0.6852 0.1508 0.1512 0.1505
R4 Avg. 0.4361 0.2869 0.8717 1.0763 0.4961 0.4662 0.4709 0.4617

RMSE 0.4019 0.3500 1.7581 2.5829 0.7831 0.1327 0.1331 0.1325
15 R5 Avg. 0.4591 0.2873 0.7439 1.1386 0.5258 0.4764 0.4813 0.4717

RMSE 0.3731 0.3332 1.3680 2.5534 0.6915 0.1004 0.1006 0.1005
R6 Avg. 0.4389 0.3453 0.6972 1.0921 0.4856 0.4886 0.4933 0.4840

RMSE 0.3344 0.3099 1.1001 2.4799 0.4603 0.1070 0.1078 0.1063
R7 Avg. 0.4426 0.2826 0.7559 1.2912 0.4837 0.4850 0.4897 0.4803

RMSE 0.3620 0.3343 1.3448 2.8913 0.4890 0.1117 0.1124 0.1111
R8 Avg. 0.4538 0.2880 0.8059 1.1692 0.4735 0.4824 0.4873 0.4778

RMSE 0.3740 0.3347 1.5222 2.6285 0.4553 0.1016 0.1021 0.1014
30 20 R9 Avg. 0.4485 0.3078 0.5471 0.9019 0.4331 0.5034 0.5082 0.4986

RMSE 0.2936 0.2849 0.6704 1.7669 0.2984 0.0824 0.0838 0.0814
R10 Avg. 0.4323 0.3668 0.5274 0.8331 0.4448 0.5238 0.5285 0.5193

RMSE 0.2648 0.2602 0.6618 1.7338 0.3150 0.0926 0.0948 0.0906
R11 Avg. 0.4362 0.3034 0.5479 0.9766 0.4466 0.5200 0.5248 0.5154

RMSE 0.2899 0.2892 0.6457 2.0462 0.4408 0.0969 0.0991 0.0949
R12 Avg. 0.4412 0.3081 0.5295 1.0421 0.4448 0.5151 0.5200 0.5104

RMSE 0.2929 0.2870 0.6151 2.1183 0.4526 0.0904 0.0923 0.0887
25 R13 Avg. 0.4434 0.3232 0.5299 0.8705 0.4386 0.5121 0.5167 0.5077

Continued on next page
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n m Scheme Classical BE: Non-INF BE: INF
MLE MPS SE LN1 LN2 SE LN1 LN2

RMSE 0.2865 0.2784 0.6843 1.6652 0.2974 0.0737 0.0755 0.0722
R14 Avg. 0.4369 0.3555 0.4885 0.7234 0.4391 0.5210 0.5255 0.5167

RMSE 0.2657 0.2574 0.3718 1.3427 0.2772 0.0770 0.0792 0.0751
R15 Avg. 0.4385 0.3222 0.5079 0.9652 0.4424 0.5209 0.5255 0.5165

RMSE 0.2847 0.2789 0.4529 2.0063 0.3065 0.0795 0.0817 0.0775
R16 Avg. 0.4422 0.3250 0.5143 0.8986 0.4416 0.5145 0.5190 0.5100

RMSE 0.2873 0.2784 0.5201 1.7517 0.3040 0.0754 0.0772 0.0738
40 20 R17 Avg. 0.4543 0.3089 0.4947 0.7791 0.4277 0.4994 0.5041 0.4948

RMSE 0.2894 0.2816 0.4169 1.4385 0.2869 0.0782 0.0793 0.0775
R18 Avg. 0.4285 0.3771 0.4773 0.7596 0.4307 0.5296 0.5340 0.5252

RMSE 0.2650 0.2618 0.3458 1.4479 0.2763 0.1024 0.1047 0.1002
R19 Avg. 0.4374 0.3010 0.4890 0.8803 0.4314 0.5250 0.5297 0.5205

RMSE 0.2922 0.2920 0.4109 1.7176 0.3209 0.1014 0.1037 0.0994
R20 Avg. 0.4375 0.3392 0.4915 0.6960 0.4331 0.5245 0.5291 0.5200

RMSE 0.2719 0.2687 0.5183 1.1427 0.3153 0.0941 0.0963 0.0921
30 R21 Avg. 0.4398 0.3361 0.4652 0.5819 0.4318 0.5220 0.5264 0.5177

RMSE 0.2580 0.2581 0.3050 0.6697 0.2642 0.0755 0.0778 0.0735
R22 Avg. 0.4334 0.3748 0.4622 0.5112 0.4345 0.5368 0.5411 0.5326

RMSE 0.2388 0.2363 0.2776 0.3785 0.2462 0.0816 0.0844 0.0791
R23 Avg. 0.4348 0.3350 0.4699 0.6156 0.4344 0.5354 0.5398 0.5310

RMSE 0.2577 0.2597 0.3094 1.0343 0.2655 0.0852 0.0879 0.0826
R24 Avg. 0.4376 0.3377 0.4631 0.5999 0.4298 0.5294 0.5339 0.5251

RMSE 0.2596 0.2588 0.3035 0.8299 0.2660 0.0793 0.0819 0.0769
60 40 R25 Avg. 0.4405 0.3549 0.4486 0.4854 0.4293 0.5313 0.5355 0.5272

RMSE 0.2210 0.2267 0.2443 0.3704 0.2267 0.0717 0.0743 0.0693
R26 Avg. 0.4368 0.3943 0.4521 0.4731 0.4369 0.5492 0.5532 0.5452

RMSE 0.2004 0.2023 0.2185 0.2436 0.2081 0.0818 0.0849 0.0790
R27 Avg. 0.4372 0.3552 0.4514 0.4806 0.4321 0.5487 0.5529 0.5446

RMSE 0.2200 0.2282 0.2433 0.2829 0.2281 0.0827 0.0859 0.0797
R28 Avg. 0.4383 0.3572 0.4509 0.4824 0.4314 0.5426 0.5469 0.5384

RMSE 0.2205 0.2268 0.2436 0.3004 0.2270 0.0782 0.0813 0.0754
50 R29 Avg. 0.4323 0.3614 0.4420 0.4608 0.4274 0.5402 0.5442 0.5363

RMSE 0.1918 0.2080 0.2080 0.2308 0.1989 0.0768 0.0796 0.0742
R30 Avg. 0.4316 0.3832 0.4419 0.4564 0.4298 0.5460 0.5498 0.5422

RMSE 0.1816 0.1913 0.1930 0.2031 0.1871 0.0800 0.0828 0.0773
R31 Avg. 0.4312 0.3624 0.4432 0.4611 0.4290 0.5475 0.5516 0.5436

RMSE 0.1908 0.2071 0.2063 0.2214 0.1984 0.0814 0.0844 0.0786
R32 Avg. 0.4321 0.3635 0.4414 0.4617 0.4269 0.5419 0.5460 0.5379

RMSE 0.1920 0.2073 0.2087 0.2512 0.1997 0.0776 0.0805 0.0749

Table 3. Average estimate values and MSE under different PT-IIC schemes at α = 1.5.
n m Scheme Classical BE: Non-INF BE: INF

MLE MPS SE LN1 LN2 SE LN1 LN2
20 10 R1 Avg. 1.7721 2.3772 1.9696 2.0637 1.8813 1.1786 1.1833 1.1741

RMSE 0.6475 1.1949 0.8568 0.9146 0.8111 0.3598 0.3559 0.3636
R2 Avg. 1.8662 2.0620 1.9848 2.0582 1.9140 1.2272 1.2320 1.2225

RMSE 0.7424 0.8617 0.8921 0.9282 0.8637 0.4044 0.4015 0.4073
R3 Avg. 1.8394 2.3798 1.9934 2.0731 1.9169 1.2184 1.2232 1.2136

Continued on next page
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n m Scheme Classical BE: Non-INF BE: INF
MLE MPS SE LN1 LN2 SE LN1 LN2

RMSE 0.7082 1.2040 0.8852 0.9245 0.8546 0.3489 0.3456 0.3521
R4 Avg. 1.8076 2.1490 1.9565 2.0315 1.8842 1.1983 1.2030 1.1936

RMSE 0.6521 0.9279 0.8278 0.8680 0.7953 0.3423 0.3385 0.3461
15 R5 Avg. 1.7452 2.1438 1.8621 1.9333 1.7937 1.1700 1.1747 1.1655

RMSE 0.5699 0.9062 0.7314 0.7689 0.7015 0.3429 0.3386 0.3472
R6 Avg. 1.7552 1.9731 1.8415 1.9030 1.7818 1.1819 1.1866 1.1773

RMSE 0.5667 0.7302 0.6866 0.7179 0.6613 0.3337 0.3295 0.3380
R7 Avg. 1.7670 2.1367 1.8801 1.9459 1.8164 1.1849 1.1896 1.1803

RMSE 0.5879 0.8991 0.7258 0.7592 0.6988 0.3332 0.3290 0.3374
R8 Avg. 1.7505 2.1170 1.8693 1.9356 1.8046 1.1769 1.1815 1.1723

RMSE 0.5712 0.8722 0.7035 0.7389 0.6750 0.3377 0.3334 0.3420
30 20 R9 Avg. 1.6654 1.9584 1.7773 1.8248 1.7310 1.1903 1.1947 1.1860

RMSE 0.4334 0.6564 0.5360 0.5649 0.5110 0.3170 0.3128 0.3211
R10 Avg. 1.6761 1.8228 1.7498 1.7903 1.7102 1.2080 1.2123 1.2037

RMSE 0.4335 0.5349 0.5112 0.5334 0.4921 0.3042 0.3001 0.3082
R11 Avg. 1.6814 1.9459 1.7806 1.8243 1.7377 1.2106 1.2150 1.2063

RMSE 0.4442 0.6433 0.5415 0.5649 0.5217 0.3022 0.2982 0.3063
R12 Avg. 1.6722 1.9322 1.7805 1.8245 1.7373 1.2053 1.2097 1.2010

RMSE 0.4343 0.6262 0.5381 0.5625 0.5173 0.3051 0.3010 0.3092
30 25 R13 Avg. 1.6717 1.9147 1.7567 1.7981 1.7161 1.1986 1.2029 1.1943

RMSE 0.4221 0.5972 0.5087 0.5337 0.4871 0.3065 0.3023 0.3106
R14 Avg. 1.6674 1.8303 1.7325 1.7695 1.6961 1.2062 1.2105 1.2019

RMSE 0.4060 0.5111 0.4729 0.4943 0.4542 0.2997 0.2956 0.3038
R15 Avg. 1.6760 1.9057 1.7580 1.7979 1.7188 1.2070 1.2113 1.2027

RMSE 0.4222 0.5868 0.5152 0.5376 0.4955 0.2990 0.2949 0.3031
R16 Avg. 1.6708 1.9006 1.7512 1.7917 1.7115 1.2036 1.2080 1.1993

RMSE 0.4174 0.5804 0.5006 0.5241 0.4802 0.3018 0.2976 0.3059
40 20 R17 Avg. 1.6423 1.9368 1.7615 1.8045 1.7198 1.2053 1.2095 1.2011

RMSE 0.4002 0.6245 0.5011 0.5285 0.4772 0.3026 0.2986 0.3066
R18 Avg. 1.6707 1.7935 1.7531 1.7878 1.7191 1.2422 1.2464 1.2380

RMSE 0.4195 0.5051 0.4935 0.5120 0.4775 0.2803 0.2766 0.2840
R19 Avg. 1.6661 1.9161 1.7755 1.8133 1.7383 1.2417 1.2459 1.2375

RMSE 0.4163 0.6018 0.5165 0.5354 0.5006 0.2777 0.2740 0.2815
R20 Avg. 1.6556 1.8383 1.7492 1.7841 1.7149 1.2351 1.2393 1.2310

RMSE 0.4008 0.5261 0.4867 0.5055 0.4703 0.2806 0.2768 0.2844
30 R21 Avg. 1.6506 1.8522 1.7232 1.7565 1.6905 1.2214 1.2256 1.2173

RMSE 0.3815 0.5203 0.4436 0.4639 0.4255 0.2849 0.2809 0.2888
R22 Avg. 1.6472 1.7643 1.7021 1.7306 1.6740 1.2325 1.2367 1.2284

RMSE 0.3663 0.4364 0.4206 0.4370 0.4059 0.2737 0.2697 0.2776
R23 Avg. 1.6552 1.8408 1.7213 1.7521 1.6909 1.2344 1.2386 1.2303

RMSE 0.3830 0.5095 0.4434 0.4611 0.4277 0.2731 0.2692 0.2771
R24 Avg. 1.6502 1.8340 1.7250 1.7561 1.6944 1.2308 1.2350 1.2267

RMSE 0.3765 0.5002 0.4431 0.4613 0.4270 0.2757 0.2717 0.2796
60 40 R25 Avg. 1.6030 1.7586 1.6638 1.6874 1.6405 1.2544 1.2584 1.2504

RMSE 0.2937 0.3927 0.3486 0.3630 0.3357 0.2522 0.2483 0.2560
R26 Avg. 1.5999 1.6826 1.6436 1.6634 1.6239 1.2714 1.2753 1.2675

RMSE 0.2813 0.3275 0.3297 0.3404 0.3200 0.2355 0.2318 0.2392
R27 Avg. 1.6060 1.7448 1.6650 1.6865 1.6437 1.2727 1.2766 1.2688

RMSE 0.2925 0.3799 0.3512 0.3628 0.3407 0.2343 0.2306 0.2380
R28 Avg. 1.6029 1.7395 1.6603 1.6818 1.6391 1.2704 1.2744 1.2665

Continued on next page
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n m Scheme Classical BE: Non-INF BE: INF
MLE MPS SE LN1 LN2 SE LN1 LN2

RMSE 0.2875 0.3722 0.3404 0.3524 0.3296 0.2364 0.2327 0.2401
50 R29 Avg. 1.6029 1.7340 1.6472 1.6676 1.6270 1.2656 1.2696 1.2617

RMSE 0.2684 0.3534 0.3059 0.3182 0.2947 0.2406 0.2368 0.2444
R30 Avg. 1.5979 1.6890 1.6329 1.6511 1.6148 1.2744 1.2783 1.2705

RMSE 0.2559 0.3099 0.2854 0.2962 0.2754 0.2319 0.2282 0.2356
R31 Avg. 1.6025 1.7255 1.6466 1.6663 1.6271 1.2742 1.2782 1.2703

RMSE 0.2660 0.3449 0.3082 0.3200 0.2975 0.2321 0.2284 0.2358
R32 Avg. 1.6008 1.7235 1.6465 1.6662 1.6270 1.2721 1.2760 1.2682

RMSE 0.2633 0.3415 0.3039 0.3158 0.2931 0.2342 0.2305 0.2379

Table 4.a. AILs and CPs (in %) under different PT-IIC schemes at θ = 0.5
n m Scheme Asy-CI Boot-p Boot-t HPD: Non-INF HPD: INF

AIL CP AIL CP AIL CP AIL CP AIL CP
20 10 R1 1.4189 95.9 1.5415 95.9 0.7608 88.4 4.8626 95.0 0.5204 99.1

R2 1.1619 96.1 1.2247 98.2 0.6802 89.5 3.2465 95.1 0.6088 97.7
R3 1.3180 96.5 1.4333 97.4 0.5603 91.3 3.9636 95.1 0.6048 99.5
R4 1.2576 96.4 1.3209 95.5 0.8746 92.0 3.6755 95.0 0.5620 99.2

15 R5 1.2277 95.6 1.2477 96.1 0.6493 92.6 2.6191 95.1 0.3386 99.5
R6 1.1148 95.5 1.1275 96.5 0.5890 90.4 2.3954 95.0 0.3972 99.7
R7 1.1773 95.2 1.1608 96.8 0.6258 89.5 2.8261 95.1 0.4248 99.7
R8 1.2193 95.3 1.2128 95.9 0.5943 88.9 3.0876 95.1 0.3578 99.2

30 20 R9 1.0927 96.7 1.0943 95.1 0.6490 91.3 1.3973 95.1 0.2841 99.5
R10 0.9981 96.3 0.9243 97.7 0.5944 93.0 1.1855 95.2 0.3108 98.7
R11 1.0667 96.1 1.0269 98.2 0.5948 92.1 1.4141 95.0 0.3176 99.3
R12 1.0805 96.1 1.0777 98.2 0.6145 89.9 1.3295 95.0 0.3026 98.3

25 R13 1.0243 95.1 0.9469 96.3 0.6274 95.1 1.2047 95.2 0.2698 99.1
R14 0.9742 96.0 0.8937 95.4 0.6363 92.3 1.0922 95.1 0.2675 98.0
R15 1.0104 95.7 0.9589 97.3 0.6613 91.1 1.1901 95.2 0.2783 98.4
R16 1.0229 95.1 0.9508 96.1 0.6376 90.6 1.1745 95.0 0.2655 98.7

40 20 R17 1.0921 96.7 1.0707 95.2 0.6702 91.7 1.1492 95.1 0.2697 98.8
R18 0.9883 96.7 0.9653 95.2 0.5982 93.2 1.0353 95.1 0.3432 99.9
R19 1.0724 96.3 1.0343 97.8 0.6204 93.0 1.1892 95.0 0.3265 99.9
R20 1.0230 96.5 0.9883 95.0 0.6683 92.6 1.0704 95.1 0.3059 99.9

30 R21 0.9616 96.3 0.8855 95.4 0.6230 94.4 0.9886 96.0 0.2726 99.6
R22 0.9058 96.0 0.7910 95.0 0.6209 94.7 0.9068 95.2 0.2673 98.8
R23 0.9501 95.9 0.8675 98.0 0.5978 95.1 1.0082 95.1 0.2681 98.3
R24 0.9603 95.9 0.8720 97.5 0.6431 94.9 0.9898 95.2 0.2638 99.1

60 40 R25 0.8883 95.7 0.7760 98.3 0.6047 93.4 0.8285 95.3 0.2492 97.9
R26 0.8094 96.8 0.6893 96.5 0.6022 96.0 0.7593 95.9 0.2528 97.7
R27 0.8834 96.4 0.7516 98.1 0.6123 95.2 0.8392 95.2 0.2500 98.7
R28 0.8865 96.3 0.7366 95.7 0.5882 95.6 0.8417 95.9 0.2486 96.9

50 R29 0.8015 96.8 0.6950 95.0 0.6217 91.8 0.7084 96.3 0.2395 97.3
R30 0.7498 96.7 0.6383 97.1 0.5683 94.6 0.6648 95.9 0.2446 97.9
R31 0.7953 96.9 0.6675 96.4 0.5653 95.0 0.7297 95.2 0.2433 97.3
R32 0.8015 96.9 0.6834 94.2 0.5587 93.5 0.7211 95.3 0.2435 97.7
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Table 4.b. AILs and CPs (in %) under different PT-IIC schemes at α = 1.5.
n m Scheme Asy-CI Boot-p Boot-t HPD: Non-INF HPD: INF

AIL CP AIL CP AIL CP AIL CP AIL CP
20 10 R1 2.3107 96.1 2.1366 94.0 2.0951 93.1 2.7333 97.2 0.3973 95.1

R2 2.3761 95.6 2.3699 95.1 2.1587 96.4 2.7816 97.9 0.6140 95.1
R3 2.4083 95.7 2.2643 96.0 2.3124 92.4 2.8226 97.5 0.5531 95.1
R4 2.2859 96.3 2.1960 98.0 2.2039 93.4 2.6721 97.0 0.4768 95.0

15 R5 2.0615 95.7 1.8408 95.2 1.8885 92.9 2.3849 97.7 0.2278 96.0
R6 1.9783 95.9 1.8272 94.9 1.8646 91.8 2.2227 97.2 0.2610 95.2
R7 2.0682 95.7 1.8650 95.0 1.9044 93.2 2.3365 97.6 0.3140 95.1
R8 2.0407 95.5 1.8657 95.0 1.9896 92.9 2.2907 96.9 0.2497 95.5

30 20 R9 1.7057 96.7 1.5668 97.3 1.6037 94.6 1.7739 96.0 0.2086 97.1
R10 1.6217 95.9 1.4839 96.7 1.6509 94.0 1.6737 96.7 0.2075 96.5
R11 1.6993 96.4 1.5414 97.0 1.6649 93.9 1.7660 96.7 0.2179 96.1
R12 1.6768 96.3 1.5368 96.3 1.6548 96.4 1.7178 97.6 0.2140 96.4

25 R13 1.5994 97.5 1.4491 97.1 1.5323 93.1 1.6573 96.8 0.1837 97.9
R14 1.5289 97.1 1.4021 98.3 1.4219 93.0 1.5820 96.0 0.1882 96.4
R15 1.5880 97.1 1.4487 98.0 1.4920 90.6 1.6958 96.9 0.1899 96.4
R16 1.5784 97.3 1.4300 97.5 1.5311 94.3 1.6675 96.5 0.1898 96.7

40 20 R17 1.6089 96.7 1.4261 93.2 1.4952 94.2 1.5914 96.8 0.2241 97.1
R18 1.5611 96.0 1.4436 94.2 1.5665 92.3 1.5812 97.2 0.2495 95.9
R19 1.6019 96.5 1.4577 92.0 1.5229 94.5 1.6767 97.1 0.2508 96.0
R20 1.5287 96.3 1.4226 96.4 1.4079 95.6 1.5991 96.9 0.2252 96.1

30 R21 1.4275 96.7 1.2919 98.0 1.3891 94.0 1.4599 96.1 0.2088 97.2
R22 1.3438 96.4 1.2161 97.3 1.2368 96.0 1.3826 95.5 0.2077 95.9
R23 1.4091 96.0 1.2930 98.8 1.3777 94.6 1.4867 97.1 0.2088 96.3
R24 1.3959 96.4 1.2764 97.4 1.2923 94.7 1.4635 95.5 0.2031 96.9

60 40 R25 1.1996 97.7 1.0889 95.4 1.1660 93.3 1.1783 95.7 0.2253 98.4
R26 1.1140 97.3 1.0045 96.1 1.0582 94.7 1.0678 96.3 0.2103 96.9
R27 1.1718 97.7 1.0669 96.0 1.1131 94.8 1.1786 95.9 0.2103 96.4
R28 1.1594 97.9 1.0421 96.7 1.0855 95.8 1.1774 96.1 0.2136 97.9

50 R29 1.1143 98.0 1.0070 97.4 1.0414 94.0 1.0306 96.0 0.2038 98.0
R30 1.0557 98.1 0.9460 95.8 0.9877 98.1 0.9522 97.2 0.1999 97.6
R31 1.0961 98.3 0.9732 96.1 1.0344 95.4 1.0251 97.2 0.2044 97.6
R32 1.0912 98.0 0.9802 95.6 1.0566 96.2 1.0332 96.7 0.2008 97.7

5.2. Illustrative example

Suppose that one can generate a random sample following scheme number 30 (n = 60,m = 50, and
R30 = (0∗49, 10)), assuming the two parameters of the GPUHLG distribution as θ = 0.5, α = 1.5. The
generated samples are provided in Table 5, and upon examining them, we find that they are ordered and
bounded from zero to one, as specified in the distribution range.

Table 5. Simulated random data for illustrative example.
0.0321 0.0591 0.0697 0.0880 0.1156 0.1383 0.1767 0.1867 0.1979 0.2214
0.2374 0.2408 0.2487 0.2709 0.2728 0.2921 0.3040 0.3068 0.3071 0.3481
0.3563 0.3599 0.3949 0.4030 0.4215 0.4298 0.4531 0.4627 0.4651 0.4741
0.4947 0.5421 0.5430 0.5535 0.5623 0.5656 0.5827 0.6006 0.6165 0.6260
0.6267 0.6358 0.6530 0.6821 0.7341 0.7648 0.7798 0.8341 0.9472 0.9705

Hence, we obtained the estimates of parameters (θ, α), respectively, as follows:
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• Classical estimation point: MLE: (0.4208, 1.9353) and MPS: (0.3471, 2.1086).
• BE point: BE Non-INF: (0.4266, 1.9847) and BE Non-INF: (0.6496, 1.3310).

The convergence of MCMC estimates using the MH algorithm can be demonstrated in Figures 4
and 5. These figures include trace plots and histograms, respectively, for each estimated parameter, θ
and α, under two prior scenarios: Non-INF and INF. These graphs illustrate the normality of generated
posterior samples for INF priors for both parameters. Additionally, for parameter α in the case of
Non-INF priors, the posterior samples also exhibit normal distribution. However, for parameter θ under
Non-INF priors, the posterior samples do not follow a normal distribution.
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Figure 4. Trace plot of MCMC samples for simulated data.
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Figure 5. Histogram of MCMC samples for simulated data.

5.3. Real data analysis

A real dataset is analyzed to offer illustrative instances and to assess the statistical effectiveness of
MLE, MPS, and BEs for the GPUHLG distribution under various PT-IIC schemes.

The following dataset consists of 20 flood observations and was previously analyzed by [30]. The
dataset is provided below:

Table 6.a. Data set of flood data for 20 observations.

0.2650 0.2690 0.2970 0.3150 0.3235 0.3380 0.3790 0.3790 0.3920 0.4020
0.4120 0.4160 0.4180 0.4230 0.4490 0.4840 0.4940 0.6130 0.6540 0.7400
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To begin with, it is crucial to determine whether the GPUHLG distribution is a suitable choice
for analyzing the provided dataset. This involves calculating the MLEs for the parameters (θ, α) and
evaluating various goodness-of-fit criteria, including the negative log-likelihood criterion (NLC), Akaike
information criterion (AIC), Bayesian information criterion (BIC), the Kolmogorov-Smirnov (K-S)
test statistic and its corresponding p-value. These criteria are then compared with those obtained from
alternative distributions, such as the Weibull (We), inverse gamma (IGa), beta, Kumaraswamy (Kum),
and generalized exponential (GEx) distributions. Lower values of these criteria, along with larger p-
values, indicate a better fit. The findings are presented in Table 6.b, which includes parameter estimates
and goodness-of-fit statistics. The results from Table 6.b indicate that, among the compared distributions,
the GPUHLG distribution serves as an appropriate model for the provided dataset. Consequently, the
dataset can be effectively analyzed using this distribution, with the MLEs calculated as θ̂ = 0.0054 and
α̂ = 6.4977.

Table 6.b. Evaluation of the goodness of fit for the provided data set.
Pdf Estimate NLC AIC BIC K-S P-value
GPUHLG 0.0054 6.4977 -16.1649 -28.3298 -26.3384 0.1177 0.9447
GEx 57.5089 0.0908 -16.1383 -28.2766 -26.2852 0.1217 0.9285
IGa 14.5702 5.7347 -15.7329 -27.4659 -25.4744 0.1271 0.9032
We 3.5258 0.4688 -13.2640 -22.5280 -20.5365 0.1987 0.4084
beta 6.7564 9.1108 -14.0622 -24.1244 -22.1330 0.1987 0.4081
Kum 3.3633 11.7902 -12.8660 -21.0265 -19.7409 0.2109 0.3359

For a visual evaluation of the compatibility between the provided dataset and the chosen distribution,
graphical representations can be highly informative. One common approach is to juxtapose the empirical
cumulative distribution function (CDF) with the fitted CDFs for alternative distributions such as Weibull
(We), inverse gamma (IGa), beta, Kumaraswamy (Kum), and generalized exponential (GEx). Moreover,
a histogram can be illustrated alongside fitted probability density function (pdf) lines for the same
set of distributions. Figure 6 illustrates these plotted curves for the CDFs and pdfs of the provided
dataset in comparison with their respective distributions. These visualizations clearly underscore
that the GPUHLG distribution aligns more favorably with the data compared to the other considered
distributions, at least within the context of this particular dataset.
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Figure 6. The density and empirical cdf for given real data set with corresponding distributions

Using the original dataset, we generate eight PT-IIC samples. These samples are created with two
distinct numbers of stages, specifically, m = 10 and m = 15, while following the item removal plan
detailed in Table 1. Furthermore, we examine a situation where complete sampling cases are considered,
where n = m = 20 and R1 = R2 = . . . = Rm = 0.
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In Table 7.a, we compute estimates (Est.) and standard errors (St.Er) through classical estimation
methods, specifically, MLEs and MPS. These estimations are carried out for the parameters θ and α,
considering varying PT-IIC patterns based on the provided real data set. Furthermore, we calculate
BEs using the MH algorithm with the Non-INF prior. While generating samples from the posterior
distribution using MH, we initialize the values of (θ, α) as (θ(0), α(0)) = (θ̂, α̂), where θ̂ and α̂ represent
the MLEs of the parameters θ and α, respectively. Subsequently, we discard the initial 2000 burn-in
samples from a total of 10,000 samples generated from the posterior density. BEs are then derived using
different loss functions, including SE, LN1 with v = −0.5, and LN1 with v = 0.5, as defined by Eqs (4.7)
and (4.8). Additionally, Table 7.b presents the lower and upper bounds of confidence intervals for the
parameters θ and α using various interval estimation methods: Asy-CI, Boot.p, Boot.t, and HPD.

Table 7.a. Classical and BE point estimates and standard error for given real data set under
different PT-IIC schemes.

n m Scheme Classical BE: MCMC
MLE MPS SEL LN1 LN2

20 10 R1 θ Est. 0.0136 0.0045 0.0104 0.0106 0.0102
St.Er 0.0201 0.0048 0.0285 0.0302 0.0277

α Est. 6.0779 7.3007 9.3911 11.2794 7.4286
St.Er 1.5177 1.2496 2.9862 3.1285 2.9233

R2 θ Est. 0.0356 0.0315 0.0036 0.0037 0.0036
St.Er 0.0490 0.0462 0.0056 0.0059 0.0057

α Est. 5.4831 5.7276 8.9865 10.0021 8.2808
St.Er 1.5587 1.6848 1.8498 1.9445 1.8511

R3 θ Est. 0.0293 0.0130 0.0758 0.0792 0.0727
St.Er 0.0419 0.0201 0.1144 0.1057 0.1152

α Est. 5.6885 6.6484 5.7250 6.4814 5.0367
St.Er 1.5768 1.7430 1.7178 1.6895 1.7214

R4 θ Est. 0.0166 0.0059 0.0297 0.0305 0.0289
St.Er 0.0256 0.0069 0.0554 0.0289 0.0551

α Est. 5.8469 6.9524 6.7183 7.6361 5.8656
St.Er 1.5669 1.2739 1.9392 1.8330 1.9531

15 R5 θ Est. 0.0049 0.0026 0.0018 0.0018 0.0018
St.Er 0.0068 0.0011 0.0027 0.0028 0.0026

α Est. 6.5072 7.1806 8.5326 9.2548 7.8853
St.Er 1.3548 0.6462 1.6942 1.5213 1.7025

R6 θ Est. 0.0664 0.0554 0.0550 0.0559 0.0541
St.Er 0.0653 0.0580 0.0596 0.0622 0.0589

α Est. 4.4391 4.6638 5.0685 5.3604 4.7860
St.Er 1.0389 1.1172 1.0750 1.0973 1.1163

R7 θ Est. 0.0110 0.0049 0.0225 0.0229 0.0220
St.Er 0.0146 0.0044 0.0431 0.0458 0.0420

α Est. 5.9344 6.7844 6.0844 6.5910 5.6045
St.Er 1.3495 0.9911 1.4046 1.4709 1.3821

R8 θ Est. 0.0058 0.0020 0.0017 0.0017 0.0017
St.Er 0.0081 0.0003 0.0032 0.0033 0.0031

α Est. 6.6795 7.8283 8.7660 9.3073 8.2410
St.Er 1.4660 0.4950 1.4727 1.5300 1.4465

20 Complete θ Est. 0.0054 0.0044 0.0053 0.0053 0.0053
St.Er 0.0067 0.0035 0.0001 0.0001 0.0001

α Est. 6.4977 6.1805 6.5046 6.5420 6.4684
St.Er 1.2688 0.9650 0.3838 0.3831 0.3871
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Table 7.b. Different interval estimates for given real data set under different PT-IIC schemes.
n m Scheme Asy-CI Boot-p Boot-t HPD: Non-INF
20 10 R1 θ (0.0000, 0.0530) (0.0001, 0.1115) (0.0000, 1.9533) (0.0000, 0.0636)

α (3.1032, 9.0526) (4.3132, 12.1106) (0.0000, 13.3042) (4.1305, 14.3879)
R2 θ (0.0000, 0.1317) (0.0000, 0.0937) (0.0000, 1.3141) (0.0000, 0.0117)

α (2.4281, 8.5380) (4.1321, 15.1568) (0.0000, 15.1879) (6.1364, 13.4784)
R3 θ (0.0000, 0.1115) (0.0001, 0.2209) (0.0000, 0.6662) (0.0004, 0.3388)

α (2.5981, 8.7789) (4.1054, 10.9713) (3.7289, 17.0075) (2.3982, 9.0098)
R4 θ (0.0000, 0.0668) (0.0000, 0.2016) (0.0000, 22.2738) (0.0001, 0.1472)

α (2.7758, 8.9180) (3.7858, 13.4185) (0.0000, 12.7341) (3.1100, 10.0225)
15 R5 θ (0.0000, 0.0182) (0.0001, 0.0292) (0.0000, 0.2996) (0.0000, 0.0069)

α (3.8518, 9.1627) (4.9720, 10.2566) (0.0000, 13.8741) (5.7423, 11.6252)
R6 θ (0.0000, 0.1944) (0.0004, 0.1331) (0.0000, 0.2994) (0.0031, 0.1831)

α (2.4029, 6.4753) (3.6820, 10.0842) (3.5814, 9.6642) (2.9210, 7.0976)
R7 θ (0.0000, 0.0396) (0.0001, 0.0971) (0.0000, 1.7671) (0.0003, 0.0721)

α (3.2894, 8.5794) (4.1532, 10.3699) (0.0000, 16.7183) (3.6938, 9.2988)
R8 θ (0.0000, 0.0217) (0.0000, 0.0556) (0.0000, 0.8662) (0.0000, 0.0065)

α (3.8062, 9.5529) (4.6246, 12.0765) (0.0000, 12.2860) (5.9434, 11.6350)
20 Complete θ (0.0000, 0.0184) (0.0001, 0.0387) (0.0000, 0.3996) (0.0051, 0.0054)

α (4.0108, 8.9845) (4.6717, 10.5509) (0.0000, 13.0766) (5.7553, 7.2060)

6. Optimal progressive Type-II censoring scheme

In the preceding sections, we have deliberated upon the classical and BEs of unknown parameters
within the context of the GPUHLG distribution when samples are procured using the PT-IIC approach.
Consequently, to execute a life-testing experiment following the PT-IIC scheme, it becomes imperative
to possess foreknowledge of the values of n, m, and (R1,R2, . . . ,Rm). However, in various reliability and
life testing studies, practical considerations should select the optimum PT-IIC scheme from a class of
possible schemes. This problem was first discussed in detail by [6], which considered the problem of
determining the optimal censoring plan via various set-ups. The problem of comparing two different
censoring schemes has received a lot of interest from various researchers. See, for example, [31–36].

In order to identify the most appropriate PT-IIC scheme, we assess an information measure through a
specific set of criteria. These criteria for optimal sampling are contingent upon the variance-covariance
matrix F −1 of the maximum likelihood estimators (MLEs), as formulated in Eq (3.5), and can be
articulated in a subsequent manner:

Criterion 1: Minimizing the determinant of F −1:

det
[
F −1

]
= var(θ̂) var(α̂) − (cov(θ̂, α̂))2.

Criterion 2: Minimizing the trace of (F −1):

tr
[
F −1

]
= var(θ̂) + var(α̂).

Criterion 3: This criterion relies on the choice of u and aims to minimize the variance of the logarithm
of the MLE of the u-th quantile (denoted as log(T̂u)), where 0 < u < 1. The u-th quantile of the
GPUHLG distribution is given by

Tu =

(
2 − 2θ + uθ

uθ

) −1
α

.
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Consequently, the logarithm of Tu is expressed as:

log(Tu) =
−1
α

[
log(2 − 2θ + uθ) − log(uθ)

]
.

By utilizing the delta method, an approximation of the variance of log(T̂u) is derived as:

Var(log(T̂u)) =
[
∇ log(T̂u)

]T
F −1

[
∇ log(T̂u)

]
.

Here,
[
∇ log(T̂u)

]T
represents the gradient of log(Tu) concerning the parameters θ and α, evaluated

at θ = θ̂ and α = α̂. The partial derivatives of log(Tu) are:

∂∇ log (Tu)
∂θ

=
−1
α

[
−2 + u

2 − 2θ + uθ
−

1
θ

]
,
∂∇ log (Tu)

∂α
=

1
α2

[
log (2 − 2θ + uθ) − log(uθ)

]
.

This leads to the expression for the variance of log(T̂u):

Var(log(T̂u)) =
[
∂∇ log(Tu)

∂θ

∂∇ log(Tu)
∂α

] [ var(θ̂) cov(θ̂, α̂)
cov(α̂, θ̂) var(α̂)

] [∂∇ log(Tu)
∂θ

∂∇ log(Tu)
∂α

]
.

It is known that the optimal sampling scheme for PT-IIC is the one that attains the lowest value in any
of the criteria mentioned above. To assess the efficacy of the suggested optimal criteria across various
PT-IIC schemes, we will conduct a Monte Carlo simulation and also consider the provided real data set.

Monte-Carlo Simulation: The simulation method was utilized while considering the identical steps
performed in the simulation section. Specifically, the initial two steps were employed, involving the
estimation of MLEs for the GPUHLG distribution and obtaining the asymptotic variances of MLEs
(the Fisher information matrix), with parameters θ = 0.5 and α = 1.5, across various PT-IIC patterns as
outlined in Table 1.

We conducted simulations across 1000 iterations and subsequently computed the Avg. value for
each criterion, as outlined in Table 8.a. Generally, we observe that as the n or m increases, the criterion
value tends to decrease. Furthermore, we notice that the specific patterns: R2,R6, . . . ,R30, where
items are removed towards the end of the m stages, yield lower values. This implies that these patterns
are particularly advantageous for the sampling of PT-IIC. Regarding the comparison between criteria
themselves, we believe that they differ in terms of calculation methodology. Therefore, the value of one
criterion does not hold significance in relation to another criterion. However, for the Criterion 3, it is
possible to compare results based on variations in u. We observe that as the value of u increases, the
value of the criterion decreases.

Real data application: Using the previous application “Real Data Analysis” section, we considered
the first eight PT-IIC schemes, as outlined in Table 1, utilizing the provided real data set. By utilizing
the variance-covariance matrix of the MLEs, it is possible to compute the values of the three criteria for
all conceivable selections of n, m, and schemes Rl, where l = 1, 2, . . . , 8, as well as the comprehensive
sampling approach where m = n. The outcomes are presented in Table 8.b. Notably, we observe that the
optimal schemes are R2 and R6.
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Table 8.a. Optimal censoring scheme under simulated data from GPUHLG distribution at
(θ, α) = (0.5, 1.5).

n m Scheme Criterion 1 Criterion 2 Criterion 3
u = 0.25 u = 0.5 u = 0.75

20 10 R1 0.03506 0.83682 0.11268 0.07976 0.05729
R2 0.01217 0.64069 0.06442 0.04715 0.04140
R3 0.01998 0.79471 0.07253 0.06173 0.05435
R4 0.01523 0.62961 0.07420 0.05620 0.04626

15 R5 0.01297 0.49835 0.07986 0.05236 0.03773
R6 0.00896 0.44197 0.06528 0.04037 0.02931
R7 0.01077 0.50202 0.06663 0.04458 0.03420
R8 0.01328 0.52928 0.07711 0.05219 0.03785

30 20 R9 0.00700 0.35165 0.06254 0.04127 0.02893
R10 0.00384 0.28795 0.04490 0.02887 0.02167
R11 0.00480 0.33571 0.04582 0.03353 0.02681
R12 0.00559 0.33819 0.05100 0.03700 0.02830

25 R13 0.00432 0.28031 0.05162 0.03272 0.02292
R14 0.00333 0.25036 0.04523 0.02778 0.01949
R15 0.00373 0.27659 0.04456 0.02914 0.02169
R16 0.00433 0.28334 0.04939 0.03218 0.02287

40 20 R17 0.00603 0.31757 0.05918 0.04126 0.02910
R18 0.00272 0.27014 0.03429 0.02544 0.02131
R19 0.00429 0.33148 0.03842 0.03314 0.02797
R20 0.00353 0.28271 0.03848 0.02951 0.02350

30 R21 0.00294 0.22649 0.04286 0.02747 0.01906
R22 0.00188 0.19031 0.03415 0.02132 0.01522
R23 0.00223 0.21707 0.03406 0.02338 0.01786
R24 0.00266 0.22059 0.03809 0.02631 0.01922

60 40 R25 0.00154 0.16089 0.03263 0.02116 0.01457
R26 0.00087 0.13226 0.02284 0.01473 0.01079
R27 0.00109 0.15160 0.02398 0.01768 0.01377
R28 0.00120 0.15151 0.02599 0.01897 0.01425

50 R29 0.00104 0.13316 0.02634 0.01657 0.01144
R30 0.00077 0.11752 0.02294 0.01409 0.00969
R31 0.00085 0.12752 0.02335 0.01529 0.01111
R32 0.00096 0.12957 0.02508 0.01646 0.01153

Table 8.b. Optimal censoring scheme for given real data set.
n m Scheme Criterion 1 Criterion 2 Criterion 3

u = 0.25 u = 0.5 u = 0.75
20 10 R1 5.44E-03 2.53956 0.00627 0.00688 0.01037

R2 5.41E-04 1.33875 0.02476 0.00472 0.00364
R3 1.87E-03 1.94060 0.00908 0.00952 0.01424
R4 8.52E-03 2.40327 0.00616 0.00637 0.01045

15 R5 3.10E-05 1.66920 0.00621 0.00561 0.00789
R6 1.03E-05 1.07840 0.00936 0.00383 0.00284
R7 1.31E-04 1.56659 0.00660 0.00573 0.00532
R8 1.77E-05 2.09906 0.00476 0.00443 0.00667

20 Complete 4.46E-07 1.21885 0.00250 0.00199 0.00262
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7. Conclusions

In the field of distribution theory, a continuous effort is dedicated to generalizing existing distributions.
This pursuit aims to create more robust and adaptable models that can be applied to a wide array of
scenarios. To achieve this goal, a multitude of methods are explored, as evidenced by a wealth of
literature. The validity and practicality of the chosen distribution in fitting the given data significantly
impact the subsequent analysis and empirical findings. This paper centers on addressing the challenge
of estimating unknown parameters within the context of a GPUHLG distribution under a PT-IIC
scheme. Our approach encompasses both classical and Bayesian perspectives. We derived MLEs, MPS,
Asy-CI estimates, and bootstrap confidence intervals for the unidentified parameters of the GPUHLG
distribution. Additionally, we employed MCMC by utilizing MH algorithm to calculate BE under both
symmetric and asymmetric loss functions, accompanied by their corresponding HPD interval estimates.
We explored methods for selecting hyper-parameter values for the INF prior case. The simulation
study revealed that BEs under the INF prior consistently outperform each of the classical estimates as
well as BEs under the Non-INF prior case. We also identified the optimal censoring scheme for life
testing experiments, considering three criteria measures, a crucial aspect for practitioners in the field
of reliability. The flood data set was employed for all estimations within our research study as a real
data application. Future research directions could involve delving into neurotrophic statistics applied
to the GPUHLG distribution. Furthermore, there is potential to model COVID-19 data using various
progressive censoring schemes, presenting an avenue for further investigation.
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