
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(12): 30683–30703.
DOI: 10.3934/math.20231568
Received: 23 June 2023
Revised: 31 October 2023
Accepted: 03 November 2023
Published: 13 November 2023

Research article

The step-wise construction of solitary solutions to Riccati equations with
diffusive coupling

Romas Marcinkevicius1, Inga Telksniene2,*, Tadas Telksnys2, Zenonas Navickas2 and Minvydas
Ragulskis2

1 Department of Software Engineering, Kaunas University of Technology, Studentu 50-415, Kaunas
LT-51368, Lithuania

2 Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-147, Kaunas
LT-51368, Lithuania

* Correspondence: Email: inga.telksniene@ktu.lt; Tel: +37063081477.

Abstract: A novel scheme based on the generalized differential operator and computer algebra was
used to construct solitary solutions to a system of Riccati differential equations with diffusive coupling.
The presented approach yields necessary and sufficient existence conditions of solitary solutions with
respect to the system parameters. The proposed stepwise approach enabled the derivation of the explicit
analytic solution, which could not be derived using direct balancing techniques due to the complexity of
algebraic relationships. Computational experiments were used to demonstrate the efficacy of proposed
scheme.

Keywords: operator calculus; solitary solution; Riccati equation; computer algebra
Mathematics Subject Classification: 35C08, 34A25, 68W30

1. Introduction

Solitary solutions (or solitons) have been a mainstay in the field of nonlinear dynamics since their
rediscovery in the Fermi-Pasta-Ulam-Tsingou experiment after almost a century of obscurity [1].
While the roots of solitary solutions are in physics, the analysis of such phenomena has branched
out into numerous other disciplines including (but not limited to) engineering [2], biology [3, 4] and
neuroscience [5].

Some examples of recent publications on solitary solutions in various research fields are given
below. Symbolic computation is used in conjunction with the modified rational expansion method to
construct several types of solitary solutions to the Jimo-Miwa equation [6]. A soliton potential of Bose-
Einstein condensates loaded into a one-dimensional four color lattice is constructed using analytical
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techniques in [7]. Four types of solitary to the Camassa–Holm equation, which are used to model
shallow water dynamics, are constructed in [8]. The existence of polariton-type solitons in microcavity
wires is investigated in [9].

Bifurcation and traveling wave solutions to the Manakov model (an extension of Schrödinger’s
equation) are derived in [10]. A fractional time-coupled Schrödinger’s model and its exact traveling
wave solutions are considered in [11]. Stationary optical solitons and exact solutions to a generalized
Shcrödinger system important in the optical fiber theory are derived in [12], while such solutions to
another optical system are considered in [13]. Exact solutions to a stochastic fractional long-short wave
interaction system are first obtained in [14].

A deep-learning based method for the construction of solitary solutions to higher-order Korteweg-
de-Vries (KdV) and Boussinesq equations is presented in [15]. The wave breaking of solitary wave
solutions to the Novikov equation, a higher dimension generalization of the KdV model, is considered
in [16]. Soliton solutions for the nonlinear sine-Gordon equation with Neumann boundary conditions
are constructed using a meshless collocation method in [17]. Bright and dark solitary solutions to a
heat transport with relaxational effects at a nanoscale are shown to exist in [18].

A class of ansatz methods have been successfully applied to various types of Schrödinger’s
equations [19, 20] and other models of quantum physics [21]. More recently, ansatz techniques
have been used to construct Gaussian solutions for a class of Schrödinger equations with logarithmic
nonlinearity [22] and analytical traveling-wave solutions to a generalized Gross-Pitaevskii equation
[23].

The main objective of this paper is to construct kink solitary solutions to the following system of
Riccati equations with diffusive coupling via the generalized differential operator technique:

x′t = a0 + a1x + a2x2 + γ1y; x(c) = u;
y′t = b0 + b1y + b2y2 + γ2x; y(c) = v,

(1.1)

where x = x(t; c, u, v), y = y(t; c, u, v), c, u, v, ak, bk, γ1, γ2 ∈ R and k = 0, 1, 2.
The construction of solitary solutions to Riccati-type systems similar to (1.1) have been the subject

of intensive research during the last decades. A variety of approaches based on the generalized
differential operator have been developed [24]. Such techniques are superior to direct balancing (or
ansatz) methods, as they can be used not only to construct solitary solutions, but also the necessary and
sufficient existence conditions for the existence of such solutions. Bright and dark solitary solutions
and their necessary and sufficient existence conditions in a Riccati-type with multiplicative coupling
are constructed in [25].

Note that (1.1) has only diffusive coupling terms. Due to this absence of interaction between
diffusive and multiplicative coupling, (1.1) possesses unique dynamics and properties with respect
to its solitary solutions. Multiplicative coupling of the same system (terms γxy in both equations) has
already been considered in [25]. An important property of multiplicative coupling is that the coupling
term can only become equal to zero if one of the solutions becomes zero. This is not the case for
diffusive coupling – the coupling term becomes zero if the functions x and y coincide. Due to this
effect, it can be expected that diffusive coupling would yield a larger nomenclature of solitary solutions
compared to the multiplicative case.

Furthermore, the generalized differential operator scheme presented in this paper discusses a novel
way of applying such operators in conjunction with computer algebra for the stepwise construction of
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kink solitary solutions. Moreover, the techniques outlined in detail in this paper can be applied to any
system of differential equations and further extended to construct higher-order (such as bright/dark)
solitary solutions.

2. Preliminaries

2.1. Solitary solutions

Solitary solutions considered in this paper have the following form [26, 24]:

x(t; c, u, v) = σ1

n∏
k=1

(exp(η(t − c)) − xk)

n∏
k=1

(exp(η(t − c)) − tk)
; (2.1)

y(t; c, u, v) = σ2

n∏
k=1

(exp(η(t − c)) − yk)

n∏
k=1

(exp(η(t − c)) − tk)
, (2.2)

where σ1, σ2, η ∈ R, xk, yk, tk ∈ C, k = 1, . . . , n and n defines the order of the solitary solution. Note that
n = 1 and n = 2 correspond to kink and dark/bright solitary solutions [26]. Typical waveforms of kink
and dark/bright solitary solutions are depicted in Figure 1. Note that kink solutions are monotonous,
while higher-order solitary solutions can have local extrema: In general, an n-th order solitary solution
(2.1) can have at most n − 1 minima or maxima [27].
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Figure 1. Kink soliton (n = 1, σ1 = 1, x1 = 7, t1 = −5) and dark soliton (n = 2, σ1 = 1,
x1 = 7, x2 = 9, t1 = −5, t2 = −3) are depicted in the parts (a) and (b), respectively.

Expressions (2.1) and (2.2) can be simplified by introducing the following substitutions:

t̂ = exp(ηt); ĉ = exp(ηc); (2.3)
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which transform (2.1) and (2.2) into the simplified form:

x̂ = x̂
(̂
t; ĉ, u, v

)
= x

 ln t̂
η

;
ln ĉ
η
, u, v

 = σ1

n∏
j=1

(̂
t − x̂k

)
n∏

k=1

(̂
t − t̂k

) ; (2.4)

ŷ = ŷ
(̂
t; ĉ, u, v

)
= y

 ln t̂
η

;
ln ĉ
η
, u, v

 = σ2

n∏
j=1

(̂
t − ŷk

)
n∏

k=1

(̂
t − t̂k

) , (2.5)

where x̂k = ĉxk; ŷk = ĉyk and t̂k = ĉtk. Note that expressions (2.4) and (2.5) can be rearranged in the
following way:

x̂ = σ1 +

n∑
j=1

λ j

1 − ρ j

(̂
t − ĉ

) ; (2.6)

ŷ = σ2 +

n∑
j=1

µ j

1 − ν j

(̂
t − ĉ

) , (2.7)

where λ j = λ j

(̂
c, u, v

)
, ρ j = ρ j

(̂
c, u, v

)
, µ j = µ j

(̂
c, u, v

)
and ν j = ν j

(̂
c, u, v

)
( j = 1, . . . n).

2.2. The inverse balancing technique

The inverse balancing technique is applied before the construction of solitary solutions in order to
determine the necessary existence conditions of such solutions in (1.1). Note that inverse balancing
is distinct from direct balancing (also referred to as ansatz methods) in the sense that the goal of the
procedure is not to construct solutions to differential equations, but to determine the necessary existence
conditions for solutions of some fixed analytical form.

The first step of this procedure is to insert a solitary solution as an ansatz into the given system
of differential equations, thus, obtaining a system of linear equations with respect to the parameters
of the differential equations. If the resulting system is solvable with some conditions imposed on the
parameters of the solitary solutions, then those conditions correspond to the existence criteria for the
respective solitary solution. However, if the obtained linear system is degenerate, then the solitary
solution of respective order cannot exist in the analyzed model. A broader discussion and examples of
this technique are given in [25].

2.3. The generalized differential operator technique

Let us consider the following system of ordinary differential equations:

x̂ ′t̂ = P
(̂
t, x̂, ŷ

)
; x̂

(̂
c
)
= u;

ŷ ′t̂ = Q
(̂
t, x̂, ŷ

)
; ŷ

(̂
c
)
= v,

(2.8)

where P and Q are analytic functions.
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Let Dα denote the partial differentiation operator with respect to the variable α. The generalized
differential operator Dĉuv corresponding to system (2.8) is defined as follows [24]:

Dĉuv = Dĉ + P
(̂
c, u, v

)
Du + Q

(̂
c, u, v

)
Dv. (2.9)

The solution to system (2.8) can be expressed using (2.9) in the following form [24]:

x̂
(̂
t
)
=

+∞∑
j=0

(̂
t − ĉ

) j

j!
D j

ĉuvu; ŷ
(̂
t
)
=

+∞∑
j=0

(̂
t − ĉ

) j

j!
D j

ĉuvv. (2.10)

2.4. The construction of closed-form solitary solutions

2.4.1. Linear recurring sequences for the construction of solitary solutions

Properties of linear recurring sequences exploited for the determination of the existence of closed-
form solitary solutions are discussed in this section.

Let:

p j =
D j

ĉuvu

j!
; q j =

D j
ĉuvv

j!
; j = 0, 1, . . . (2.11)

and
H(m)

p = det
[
p j+k−2

]
1≤ j,k≤m+1

, (2.12)

where H(m)
p denotes the m-th order Hankel determinant with respect to the sequence

(
p j; j = 0, 1, . . .

)
.

The sequence
(
p j; j = 0, 1, . . .

)
is called an m-th order linear recurring sequence if there exists such

m ∈ N that satisfies the following condition:

H(m)
p , 0; H(m+k)

p = 0, k = 1, 2, . . . (2.13)

The elements of the sequence
(
p j; j = 0, 1, . . .

)
can then be expressed as follows [28]:

p j =

m∑
k=1

λkρ
j
k; j = 0, 1, . . . , (2.14)

where λ1, . . . , λm are constant coefficients and ρ1, . . . , ρm are roots of the following characteristic
polynomial: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p0 p1 . . . pm

p1 p2 . . . pm+1
...

...
. . .

...

pm−1 pm . . . p2m−1

1 ρ . . . ρm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.15)

Note that (2.14) holds true only if equation (2.15) has distinct roots ρ1, . . . , ρm.
Analogously, if

H(m)
q , 0; H(m+k)

q = 0, k = 1, 2, . . . , (2.16)
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then
(
q j; j = 0, 1, . . .

)
is a linear recurring sequence of order m and can be expressed as:

q j =

m∑
k=1

µkν
j
k; j = 0, 1, . . . , (2.17)

where µ, . . . , µm are constant coefficients and ν1, . . . , νm are roots of the characteristic polynomial
analogous to (2.15).

2.4.2. Application of linear recurring sequences in (2.10)

It has been shown in [24] that if the following conditions hold true for all ĉ, u, v:

Dĉuvλk = λkρk; Dĉuvµk = µkνk; (2.18)
Dĉuvρk = ρ

2
k; Dĉuvνk = ν

2
k , (2.19)

then series solutions (2.10) can be expressed in the closed-form:

x̂
(̂
t
)
=

+∞∑
j=0

(̂
t − ĉ

) j
p j =

+∞∑
j=0

(̂
t − ĉ

) j
m∑

k=1

λkρ
j
k

=

m∑
k=1

λk

+∞∑
j=0

(
ρk

(̂
t − ĉ

)) j
=

m∑
k=1

λk

1 − ρk

(̂
t − ĉ

) ;

ŷ
(̂
t
)
=

m∑
k=1

µk

1 − νk

(̂
t − ĉ

) .
(2.20)

Note that if both sets of characteristic roots ρk, νk (k = 1, . . . ,m) each have at least one zero, then
expressions (2.20) correspond to the solitary solutions (2.6)-(2.7). In relation to this, the following
property of linear recurrence sequences is presented. Let

(
w j; j = 0, 1, . . .

)
be an m-th order linear

recurring sequence with one zero characteristic root. Then, the truncated sequence
(
w j; j = 1, 2, . . .

)
is

(m − 1)-th order linear recurring sequence [25]. In other words, when constructing solitary solutions
(2.6)-(2.7), one may consider the sequences starting with the elements p1 and q1, respectively.

The procedure used for the construction of solitary solutions is summarized in Figure 2.
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Figure 2. A schematic diagram of the procedure used for the construction of solitary
solutions described in Sections 2.1–2.4.

3. The determination of the maximum possible order of solitary solutions to (1.1)

In this section, the maximum order of the solitary solutions (2.4)–(2.5) to (1.1) is determined by
applying the inverse balancing technique outlined in the Section 2.2.

First, the system of differential equations (1.1) is transformed via the substitutions (2.3) as follows:

η̂t x̂ ′t̂ = a0 + a1 x̂ + a2 x̂ 2 + γ1̂y; x̂ ( ĉ ) = u;

η̂t ŷ ′t̂ = b0 + b1̂y + b2̂y 2 + γ2 x̂; ŷ ( ĉ ) = v.
(3.1)

Note that substitution (2.3) is necessary - since the sequence of coefficients (2.15) does not form a
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linear recurring sequence for the untransformed system (1.1).
Let the order of the solitary solutions be n = 2 (dark/bright solitons):

x̂ = x̂
(̂
t; ĉ, u, v

)
= σ1

(̂
t − x̂1

) (̂
t − x̂2

)(̂
t − t̂1

) (̂
t − t̂2

) ; (3.2)

ŷ = ŷ
(̂
t; ĉ, u, v

)
= σ2

(̂
t − ŷ1

) (̂
t − ŷ2

)(̂
t − t̂1

) (̂
t − t̂2

) . (3.3)

Inserting (3.2)–(3.3) into (3.1) and taking t̂ = t̂1, t̂2, x̂1, x̂2, ŷ1, ŷ2, 0 yields the following system of linear
equations with respect to the parameters γ1, γ2, ak, bk (k = 0, 1, 2):

η̂t1

(̂
t2 − t̂1

)
= a2σ1

(
x̂1 − t̂1

) (
x̂2 − t̂1

)
;

η̂t1

(̂
t2 − t̂1

)
= b2σ2

(̂
y1 − t̂1

) (̂
y2 − t̂1

)
;

− η̂t2

(̂
t2 − t̂1

)
= a2σ1

(
x̂1 − t̂2

) (
x̂2 − t̂2

)
;

− η̂t2

(̂
t2 − t̂1

)
= b2σ2

(̂
y1 − t̂2

) (̂
y2 − t̂2

)
;

a0

(
x̂1 − t̂1

) (
x̂1 − t̂2

)
+ γ1σ2

(
x̂1 − ŷ1

) (
x̂1 − ŷ2

)
= ηx̂1σ1

(
x̂1 − x̂2

)
;

a0

(
x̂2 − t̂1

) (
x̂2 − t̂2

)
+ γ1σ2

(
x̂2 − ŷ1

) (
x̂2 − ŷ2

)
= ηx̂2σ1

(
x̂2 − x̂1

)
;

b0

(̂
y1 − t̂1

) (̂
y1 − t̂2

)
+ γ2σ1

(̂
y1 − x̂1

) (̂
y1 − x̂2

)
= η̂y1σ2

(̂
y1 − ŷ2

)
;

b0

(̂
y2 − t̂1

) (̂
y2 − t̂2

)
+ γ2σ1

(̂
y2 − x̂1

) (̂
y2 − x̂2

)
= η̂y2σ2

(̂
y2 − ŷ1

)
;

a0

(̂
t1

)2 (̂
t2

)2
+ t̂1 t̂2

(
a1σ1 x̂1 x̂2 + γ1σ2̂y1̂y2

)
+ a2σ

2
1

(
x̂1

)2 (
x̂2

)2
= 0;

b0

(̂
t1

)2 (̂
t2

)2
+ t̂1 t̂2

(
b1σ2̂y1̂y2 + γ2σ1 x̂1 x̂2

)
+ b2σ

2
2

(̂
y1

)2 (̂
y2

)2
= 0.

(3.4)

The solutions to the obtained linear system (3.4) exist only if one or both of the following conditions
hold true:

1. t̂k = x̂l for some k, l = 1, 2. In this case, solutions (3.2)–(3.3) are kink solitary solutions;
2. b2 = a2 = 0.

The first case - corresponding to n = 1 - will be considered in the further sections, while the second
condition is trivial since it leads to a linear system of differential equations (1.1). Therefore, the
maximal order of solitary solutions to (1.1) is n = 1, and bright/dark or higher order solitary solutions
do not exist in the analyzed system.

4. The construction of solitary solutions to (1.1)

4.1. The derivation of necessary existence conditions of kink solitary solutions to (1.1)

Inverse balancing technique (see Section 2.2) is applied in this section in order to derive the
necessary existence conditions of kink solitary solutions to (1.1).
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Let the order of the solitary solutions be n = 1:

x̂ = x̂
(̂
t; ĉ, u, v

)
= σ1

t̂ − x̂1

t̂ − t̂1
; (4.1)

ŷ = ŷ
(̂
t; ĉ, u, v

)
= σ2

t̂ − ŷ1

t̂ − t̂1
. (4.2)

Inserting (4.1)–(4.2) as an ansatz into (3.1) and taking t̂ = t̂1, x̂1, ŷ1, 0 yields the following system of
linear equations with respect to the parameters γ1, γ2, ak, bk (k = 0, 1, 2):

σ1

(
x̂1 − t̂1

)
a2 = η̂t1; σ2

(̂
y1 − t̂1

)
b2 = η̂t1;(

x̂1 − t̂1

)
a0 + σ2

(
x̂1 − ŷ1

)
γ1 = ησ1 x̂1;(̂

y1 − t̂1

)
b0 + σ1

(̂
y1 − x̂1

)
γ2 = ησ2̂y1;

a0

(̂
t1

)2
+ a1σ1̂t1 x̂1 + a2σ

2
1

(
x̂1

)2
+ γ1σ2̂t1 ŷ1 = 0;

b0

(̂
t1

)2
+ b1σ2̂t1 ŷ1 + b2σ

2
2

(̂
y1

)2
+ γ2σ1̂t1 x̂1 = 0.

(4.3)

The solution to the obtained linear system (4.3) reads:

a0 =
ησ1 x̂1 − γ1σ2

(
x̂1 − ŷ1

)
x̂1 − t̂1

; b0 =
ησ2̂y1 − γ2σ1

(̂
y1 − x̂1

)
ŷ1 − t̂1

;

a1 =
ησ1

(̂
t1 + x̂1

)
− γ1σ2

(̂
t1 − ŷ1

)
σ1

(̂
t1 − x̂1

) ;

b1 =
ησ2

(̂
t1 + ŷ1

)
− γ2σ1

(̂
t1 − x̂1

)
σ2

(̂
t1 − ŷ1

) ;

a2 =
η̂t1

σ1

(
x̂1 − t̂1

) ; b2 =
η̂t1

σ2

(̂
y1 − t̂1

) ,

(4.4)

where γ1, γ2 ∈ R are chosen arbitrarily. Note that the linear system (4.3) can be solved without any
necessary existence conditions imposed on the parameters of the solitary solutions (4.1)–(4.2).

4.2. The determination of the parameter η of kink solitary solutions (4.1)–(4.2) to (1.1)

In this section, parameter η of kink solitary solutions (4.1)–(4.2) is determined by applying the
results presented in Sections 2.3 and 2.4.

First, a generalized differential operator Dĉuv corresponding to system (3.1) is defined in the
following way:

Dĉuv = Dĉ +
1
η̂c

((
a0 + a1u + a2u2 + γ1v

)
Du +

(
b0 + b1v + b2v2 + γ2u

)
Dv

)
. (4.5)

Next, coefficients p j and q j
(
j = 0, 1, 2, 3

)
are computed using (2.11). The expressions of

coefficients p j, q j, j = 1, 2, 3 read:
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p1 =
1
η̂c

(
a0 + a1u + a2u2 + γ1v

)
; (4.6)

q1 =
1
η̂c

(
b0 + b1v + b2v2 + γ2u

)
; (4.7)

p2 =
1

2η2
(̂
c
)2

(
2u3a2

2 − a2
(
η − 3a1

)
u2

+
((

2va2 + γ2
)
γx − ηa1 + 2a0a2 + a1

2
)

u

+
(
va1 + v2b2 +

(
−η + b1

)
v + b0

)
γ1 − a0

(
η − a1

) )
;

(4.8)

q2 =
1

2η2
(̂
c
)2

(
2v3b2

2
− b2

(
η − 3b1

)
v2

+
((

2vb2 + γ1
)
γ2 − ηb1 + 2b0b2 + b1

2
)

v

+
(
vb1 + u2a2 +

(
−η + a1

)
u + a0

)
γ2 − b0

(
η − b1

) )
;

(4.9)

p3 =
1

6η3
(̂
c
)3

v (
2va2 + γ2

)
γ1

2 +

((
8va2

2 + 3a2γ2

)
u2

+

(
2b2v2a2 +

((
2b1 − 6η + 8a1

)
a2 + 2b2γ2

)
v + 2b0a2

−3γ2

(
η −

2
3

a1 −
1
3

b1

) u + 2b2
2v3 − 3

(
η −

1
3

a1 − b1

)
b2v2

+
(
4a0a2 + a1

2 +
(
b1 − 3η

)
a1 + b1

2
− 3b1η + 2b2b0 + 2η2

)
v

+γ2a0 − 3b0η + b0a1 + b1b0
)
γ1 + 6

(
a2u2 + a1u + a0

)
×

u2a2
2 − a2

(
η − a1

)
u +

1
3

a0a2 +
1
3

(
η − a1

) (
η −

1
2

a1

) ;

(4.10)

q3 =
1

6η3
(̂
c
)3

u (
2vb2 + γ1

)
γ2

2 +

((
8vb2

2 + 3b2γ1

)
v2

+

(
2a2u2b2 +

((
2a1 − 6η + 8b1

)
b2 + 2a2γ1

)
u + 2a0b2

−3γ1

(
η −

2
3

b1 −
1
3

a1

) v + 2a2
2u3 − 3

(
η −

1
3

b1 − a1

)
a2u2

+
(
4b0b2 + b1

2 +
(
a1 − 3η

)
b1 + a1

2 − 3a1η + 2a2a0 + 2η2
)

u

+γ1b0 − 3a0η + a0b1 + a1a0
)
γ2 + 6

(
b2v2 + b1v + b0

)
×

v2b2
2
− b2

(
η − b1

)
v +

1
3

b0b2 +
1
3

(
η − b1

) (
η −

1
2

b1

) .

(4.11)
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As demonstrated in the Section 2.4, parameter η must satisfy the conditions below:

H(2)
p = 0; (4.12)

H(2)
q = 0, (4.13)

where H(2)
p and H(2)

q are the following Hankel determinants:

H(2)
p =

∣∣∣∣∣∣p1 p2

p2 p3

∣∣∣∣∣∣ = p1 p3 − p2
2;

H(2)
q =

∣∣∣∣∣∣q1 q2

q2 q3

∣∣∣∣∣∣ = q1q3 − q2
2.

(4.14)

Then, the value of the parameter η for which the conditions (4.12)–(4.13) hold true is determined using
the procedure outlined below:

1. Since kink solitary solutions (4.1), (4.2) form straight lines in the phase, the initial condition
parameters u, v corresponding to a particular solution do satisfy a linear relationship. Thus, the
following substitution is introduced

v = αu + β, (4.15)

which transforms (4.12) into a fifth order polynomial with respect to u:

H(2)
p =

5∑
k=0

H(2,k)
p uk. (4.16)

Naturally, condition (4.12) is satisfied if H(2,k)
p = 0 for all

(
k = 0, . . . , 5

)
.

2. Parameter α is computed from the equation H(2,5)
p = 0, yielding:

α =
a2

b2
, (4.17)

and the obtained expression is inserted into equations H(2,k)
p = 0

(k = 0, . . . , 4).
3. Parameter η is computed from the equation H(2,4)

p = 0, yielding:

η = ±

√(
−4 a0a2 + a2

1 + 2 γ1γ2

)
b2

2 + 2 a2b1b2γ1 − a2
2γ

2
1

b2
, (4.18)

and the obtained expression is inserted into equations H(2,k)
p = 0

(k = 0, . . . , 3). Note that this value of η depends only on the parameters of the considered
system of differential equations. Therefore, for a given system, η remains constant.

4. Parameter β is computed from the equation H(2,3)
p = 0, yielding:

β =±

√
b4
2γ

2
2+(−2 a1a2γ2+4 a2

2b0)b3
2+

(
−4 a3

2a0+(a2
1−b2

1)a2
2

)
b2

2+2 a3
2γ1b1b2−a4

2γ
2
1

2a2b2
2

+
a2
2γ1+(a1−b1)b2a2−γ2b2

2
2a2b2

2
,

(4.19)

and the obtained expression is inserted into equations H(2,k)
p = 0

(k = 0, 1, 2).
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5. Equation H(2,2)
p = 0 is rearranged, resulting in the following equality:

b4
2γ

2
2 − a4

2γ
2
1 + 2b1b2γ1a3

2 − 2a1a2γ2b3
2 − 4b2

2a0a3
2 + 4a2

2b0b3
2

+ a2
1a2

2b2
2 − b2

1b2
2a2

2 = 0.
(4.20)

Note that condition (4.20) ensures that the two remaining equations H(2,k)
p = 0 (k = 0, 1) hold true.

Applying (4.20) to (4.17)–(4.19) yields:

α =
a2

b2
; (4.21)

η = ±

√
2 b2a1a2γ2 +

(
−4 b0b2 + b2

1 + 2 γ1γ2

)
a2

2 − γ
2
2b2

2

a2
; (4.22)

β =
a2

2γ1 + (a1 − b1) b2a2 − γ2b2
2

2b2
2a2

. (4.23)

Moreover, note that applying relations (4.15) and (4.20)–(4.23) to H(2)
q yields H(2)

q = 0.

The procedure outlined above is depicted in the schematic diagram in Figure 3. Note that the
algorithm displayed in Figure 3 has to be initiated from the coefficient that corresponds to the highest
power of u, thus solving the equation H(2,5)

p = 0. Initiating the computations via H(2,k)
p = 0, k , 5 would

not yield the described result.

The Riccati system (1.1) and the generalized differential operator (4.5) are symmetrical with respect
to the coefficients ak, bk (k = 0, 1, 2) and γ1, γ2. Thus, the computations presented above can be repeated
for H(2)

q with results that are obtained by replacing ak with bk, γ1 with γ2 and vice versa in (4.20) and
(4.22).

All explicit analytical expressions obtained during the application of the procedure presented
above are given in the supplementary file one (accessed via the GitHub repository https://bit.
ly/3BuIIo3).

The results listed above are summarized in the following lemma.

Lemma 4.1. The system of differential equations (1.1) admits kink solitary solutions (4.1)–(4.2) if, and
only if, (4.15) and (4.20)–(4.23) do hold true.
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Figure 3. A schematic diagram of the stepwise computational scheme for the derivation of
solitary solutions.

4.3. The construction of kink solitary solutions (4.1)–(4.2) to (1.1)

Let the conditions (4.15) and (4.20)–(4.23) hold true, then the sequences
(
p j; j = 0, 1, . . .

)
and(

q j; j = 0, 1, . . .
)

have a single zero characteristic root each (see the last paragraph of the Section 2.4):

ρ1 = 0; ν1 = 0. (4.24)

The remaining characteristic roots ρ2 and ν2 are computed from the following characteristic equations:∣∣∣∣∣∣p1 p2

1 ρ2

∣∣∣∣∣∣ = 0;

∣∣∣∣∣∣q1 q2

1 ν2

∣∣∣∣∣∣ = 0. (4.25)

Solving (4.25) yields:

ρ2 = ν2 =
1

2ηb2̂c

(
b2

(
2ua2 − η + a1

)
+ a2γ1

)
. (4.26)

Relations (2.14) and (2.17) yield the following systems of linear equations with respect to λ1, λ2 and
µ1, µ2:

p0 = λ1ρ
0
1 + λ2ρ

0
2 = λ1 + λ2;

p1 = λ1ρ
1
1 + λ2ρ

1
2 = λ2ρ2;

(4.27)

q0 = µ1ν
0
1 + µ2ν

0
2 = µ1 + µ2;

q1 = µ1ν
1
1 + µ2ν

1
2 = µ2ν2.

(4.28)
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Note that 00 is taken to be equal to one [29]. Solutions to (4.27)–(4.28) read:

λ1 = −
a1b2 + a2γ1 + ηb2

2a2b2
; λ2 = u − λ1;

µ1 = −
γ2b2 + a2b1 + ηa2

2b2a2
; µ2 = v − µ1.

(4.29)

Thus, kink solitary solutions to (3.1) read:

x̂ = λ1 +
λ2

1 − ρ2

(̂
t − ĉ

) ; (4.30)

ŷ = µ1 +
µ2

1 − ν2

(̂
t − ĉ

) . (4.31)

Rearranging (4.30), (4.31) yields:

x̂ = σ1
t̂ − x̂1

t̂ − t̂1
; (4.32)

ŷ = σ2
t̂ − ŷ1

t̂ − t̂1
, (4.33)

where the parameters read:

σ1 = λ1; σ2 = µ1;

x̂1 =
1
ρ2

(
1 +
λ2

λ1

)
+ ĉ; ŷ1 =

1
ν2

(
1 +
µ2

µ1

)
+ ĉ;

t̂1 =
1
ρ2
+ ĉ.

(4.34)

Since x̂1 = ĉx1, ŷ1 = ĉy1, t̂1 = ĉt1, the parameters x1, y1, t1 of kink solutions x, y read:

x1 = L
(
1 +
λ2

λ1

)
+ 1;

y1 = L
(
1 +
µ2

µ1

)
+ 1;

t1 = L + 1,

(4.35)

where
L =

2ηb2

b2
(
2ua2 − η + a1

)
+ a2γ1

. (4.36)

Then, kink solitary solutions to the original system of differential equations (1.1) can be written as:

x = σ1
exp(η(t − c)) − x1

exp(η(t − c)) − t1
; (4.37)

y = σ2
exp(η(t − c)) − y1

exp(η(t − c)) − t1
. (4.38)
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4.4. Isomorphism between the parameters of kink solitary solutions (4.37)–(4.38) and the parameters
of the system (1.1)

Note that (4.20) and (4.22) lead to the following functional relations:

a0 = a0
(
ak, bk| γk, η

)
; b0 = b0

(
ak, bk| γk, η

)
, (4.39)

where k = 1, 2.
Analogously, equalities in (4.4) are written in the form representing functional relations between

parameters of the system and parameters of the solitary solutions:

a1 = a1
(
σ1, σ2, x1, y1| t1, γ1, η

)
;

b1 = b1
(
σ1, σ2, x1, y1| t1, γ2, η

)
;

a2 = a2
(
σ1, x1| t1, η

)
;

b2 = b2
(
σ2, y1| t1, η

)
.

(4.40)

Note that parameters x1, y1, t1 are related to x̂1, ŷ1, t̂1 through relationships x̂1 = ĉx1, ŷ1 = ĉy1, t̂1 = ĉt1.
Furthermore, solving (4.4) with respect to σ1, σ2, x1, y1 yields:

σ1 = σ1
(
a1, a2, b2| γ1, η

)
= −

a1b2 + a2γ1 + b2η

2a2b2
;

σ2 = σ2
(
a2, b1, b2| γ2, η

)
= −

a2b1 + b2γ2 + a2η

2b2a2
;

x1 = x1
(
a1, a2, b2| t1, γ1, η

)
=

t1
(
a1b2 + a2γ1 − b2η

)
a1b2 + a2γ1 + b2η

;

y1 = y1
(
a2, b1, b2| t1, γ2, η

)
=

t1
(
a2b1 + b2γ2 − a2η

)
a2b1 + b2γ2 + a2η

.

(4.41)

The parameters of (1.1) and the solitary solution can be grouped into two categories:

• Parameters of the system of differential equations (1.1): γ1, γ2, al, bl (l = 0, 1, 2).
• Parameters of the kink solitary solutions (4.37)–(4.38): η, c, σ1, σ2, x1, y1, t1.

Then, the following mappings between parameters in the two categories can be constructed:

τt1,γ1,γ2,η :
(
σ1, x1, σ2, y1

)
7→ (a1, a2, b1, b2) ;

τ−1
t1,γ1,γ2,η

: (a1, a2, b1, b2) 7→
(
σ1, x1, σ2, y1

)
.

(4.42)

The mapping τt1,γ1,γ2,η is defined by (4.41) and the mapping τ−1
t1,γ1,γ2,η

is given by (4.40).
Mappings τt1,γ1,γ2,η and τ−1

t1,γ1,γ2,η
define an isomorphism between the parameters of kink solitary

solutions σ1, x1, σ2, y1 and the parameters of the Riccati system a1, a2, b1, b2, where t1, γ1, γ2, η are
chosen arbitrarily and a0, b0 are computed from (4.39).

5. Numerical experiments

Consider the following system of Riccati equations with diffusive coupling:

x′t = −
43
8
− x + 2x2 − 2y; x(c) = u;

y′t = −3 − 3y + 4y2 + x; y(c) = v,
(5.1)
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where x = x(t; c, u, v), y = y(t; c, u, v), c, u, v ∈ R and the coefficients ak, bk (k = 0, 1, 2),γ1, γ2 in (1.1)
are as follows:

a0 = −
43
8

; a1 = −1; a2 = 2; γ1 = −2;

b0 = −3; b1 = −3; b2 = 4; γ2 = 1.
(5.2)

Note that condition (4.20) does hold true.
According to Lemma 4.1, system (5.1) admits kink solitary solutions if, and only if, the following

constraint holds true:

v = αu + β =
1
2

u −
1
8
, (5.3)

where α and β are computed using the stepwise computational scheme outlined in section three.
All explicit analytical expressions obtained during the application of this procedure are given in the
supplementary file two (accessed via the GitHub repository https://bit.ly/3BuIIo3).

The analytical expressions of kink solitary solutions to (5.1) are then obtained using the results
presented in Section 4.3 as follows:

x (t, c, u) =

(
−12 u

√
5 + 8 u + 41

)
exp

(
3
√

5 (t − c)
)
− 12 u

√
5 − 8 u − 41(

16 u − 12
√

5 − 8
)

exp
(
3
√

5 (t − c)
)
− 16 u − 12

√
5 + 8

; (5.4)

y (t, c, v) =

(
−6 v
√

5 + 2 v + 11
)

exp
(
3
√

5 (t − c)
)
− 6 v

√
5 − 2 v − 11(

16 v − 6
√

5 − 2
)

exp
(
3
√

5 (t − c)
)
− 16 v − 6

√
5 + 2

. (5.5)

The system (5.1) is integrated using numerical techniques; results are displayed in Figure 4. Part (a)
of Figure 4 illustrates the phase portrait of the system, where solitary and non-solitary solutions to (5.1)
correspond to solid red and black lines respectively. Note, that the red line depicts the constraint (5.3).
Part (b) of Figure 4 displays solitary (red line) and non-solitary (black lines) solutions to (5.1) obtained
by fixing v = −0.025. Analogously, part (c) of Figure 4 displays solitary (red line) and non-solitary
(black lines) solutions to (5.1) obtained by fixing u = 0.2.

The validity of constraint (5.3) can be verified by the following computational experiment. Let
x̃( jh, u, v) and ỹ( jh, u, v) denote the approximate numerical solutions to (5.1) at c = 0, obtained using
the constant step numerical integrator with the step-size h = 0.1 ( j = 0, . . . , 100). The difference
between the approximate numerical solution and the kink solitary solution (5.4)-(5.5) is then defined
as follows:

ε (u, v) =
100∑
j=0

∣∣∣x̃( jh, u, v) − x( jh, 0, u)
∣∣∣ + ∣∣∣̃y( jh, u, v) − y( jh, 0, v)

∣∣∣ . (5.6)

The distribution of ε (u, v) is displayed in Figure 5. Is is clear that the values of ε (u, v) are closest
to zero on the line v = 1

2u − 1
8 .
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Figure 4. Numerical integration of the system (5.1). Part (a) illustrates the phase portrait
of the system. Solid red and black lines correspond to solitary and non-solitary solutions
respectively. Blue circle denotes equilibrium point. Fixing v = −0.025 yields solitary and
non-solitary solutions to (5.1) depicted in the part (b). Analogously, Fixing u = 0.2 yields
solitary and non-solitary solutions to (5.1) depicted in the part (c).
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Figure 5. The distribution of ε (u, v) for the system (5.1) at c = 0. The linear relationship
between u and v is v = 1

2u − 1
8 coincides with the curve on which ε (u, v) = 0.

6. Conclusions

Kink solitary solutions to a system of Riccati differential equations with diffusive coupling
were constructed via the generalized differential operator technique aided by computer algebra
computations. The presented scheme was also used to derive necessary and sufficient existence
conditions for kink solitary solutions with respect to the Riccati system parameters. This approach
allowed us to determine analytical conditions that generate the constraints that the solitary solutions
must satisfy in both the space of system parameters and the space of solution parameters. Furthermore,
it was proven via the inverse balancing technique that (1.1) cannot admit bright/dark and higher-order
solitary solutions under any conditions.

The presented stepwise approach (Section 4.2) is a powerful tool for the construction of analytical
solutions to nonlinear differential equations. Note that this technique is not limited to system (1.1),
but can potentially be applied to a variety of both Riccati-type equations and more general ordinary
differential equations (ODEs) with polynomial nonlinearity.

The obtained results are counterintuitive. Even though diffusive coupling can be perceived as less
limiting than multiplicative coupling, the multiplicative case yields both kink and bright-dark solitary
solutions, while diffusive coupling results only in kink solitary solutions.

Solitary solutions have special properties that make them especially important in the analysis of
propagating waves. Problems concerning propagating waves arise from partial differential equations
(PDEs), which are transformed to ODEs via a linear wave-variable substitution. Analysis of these
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ODEs allows the consideration of wave propagation in various nonlinear equations.
While the analysis of solitary solutions in PDEs is enabled by the wave-variable substitution, many

approaches (such as the exp-function method) for the construction of solutions to the obtained ODE
have gotten a significant amount of criticism [30, 31]. Conversely, the techniques presented in this
paper do not have the drawbacks of the exp-function method: While computer algebra is applied, the
presented approach also allows the derivation of necessary and sufficient conditions for the existence
of solitary solutions.
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