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to Schauder and Darbo’s fixed point theorems, we can skip demonstrating closed, convex and
compactness properties of the investigated operators. We employ our fixed point theorem to provide the
existence findings for the product of n-nonlinear integral equations in the Banach algebra of continuous
functions C(I,), which is a generalization of various types of integral equations in the literature. Lastly,
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Keywords: Petryshyn’s fixed point theorem (F.P.T.); Measures of noncompactness (M.N.C.); product
of n-nonlinear integral equations
Mathematics Subject Classification: 47N20, 45G10, 47H09, 47TH10

1. Introduction

Different types of integral equations are crucial to the study of economics, biology, mechanics,
mathematical physics, control theory, vehicular traffic, population dynamics and other fields (cf. [1,2]).

Recent years have seen some successful attempts to examine the qualitative behavior of solutions
for many different types of nonlinear differential or integral equations employing the notion of the
measure of noncompactness (M.N.C.) connected to the fixed point approach (F.P.T.) (cf. [3—10]).

Based on this methodology, we first offer and demonstrate a generalization of Petryshyn’s F.P.T.
connected with the Hausdorft M.N.C., which is a generalization of numerous F.P.T. types, including
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Darbo’s, Schauder’s and traditional Petryshyn’s FP.T.s [11]. The benefit of the proposed F.P.T. is
that it enables us to skip demonstrating closed, convex and compactness properties of the investigated
operators. These enable us to investigate various varieties of differential and integral equations under
a weaker and more general set of presumptions.

Second, we employ the presented F.P.T. to solve the product of n-nonlinear Volterra integral
equations, which are a generalization of the classical and quadratic integral equations of the form

n 0i(V)
2(v) = l—[ Ji (v, 2@i(v), 2(Bi(v), fo hi(v, s, Z(%-(S)))dS), vel, =[0,d] (1.1)
i=1

for n > 2, in the Banach algebra C(/,).
In particular, forn = 2, fi(v,z1,22,23) = g&i+23, hi = [;(v—15)z3(s), equation (1.1) yields a Gripenberg
equation

Z(v) = k(gl(V) + f Li(v = s)z(s) dS) (gz(V) + f L (¢ = s)z(s) dS),
0 0

that has significant applications in biology (SI models, cf. [12]).
In [13] the authors utilized the F.P.T. approach to establish the existence of C[a, b]-solutions of the
equation

2(v) = n(hi(v) + f Ki(v, 5,2(s)) dS), v € [a,b].
i=1 a
The authors in [14] presented an extension of Darbo F.P.T. in Banach algebra to solve the g-integral
equation

z(v) = 1:1[ (hi(v) + % fa (v— qs)“”_lui(s, z($)) ds), v e[0,1].

A generalization of Darbo F.P.T. was used to investigate the existence results for the equation

n

b
ww) = [ ] () + 4 f K0, 9)fi(5,2(5)) ds), v € [a,b]

i=1 a

in ideal spaces (not be Banach algebras) in [15] see also [16-18].
We focus on applying a generalization of Petryshyn’s F.P.T. to solve a general form of product-type
integral problems in the Banach algebra C(/,).

2. Preliminaries

We employ the following symbols in the sequel:

E: Banach space;

B,: A ball of radius r and center at 0;

0B,: Sphere in E with radius r > 0 around 0;

C(1,): Space of continuous and real-valued functions on 1, = [0, al;
e (FP.T.): Fixed point theorem;

e (M.N.C.): Measure of noncompactness.
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We recall some theorems & definitions that are required for the sequel.

Definition 2.1. [19] Let Z C E be a bounded set, then
a(Z) = inf{p > 0 : A a finite number of sets of diameter < p that can cover Z}

is said to be the Kuratowski M.N.C.

Definition 2.2. [20] Let Z C E be a bounded set, then
w(Z) = inf{p > 0 : Z has a finite p-net in E}

is said to be the Hausdorff M.N.C.

Theorem 2.3. [20] For a bounded set Z C E, the M.N.C.s a and u fulfill
wZ2) < a(Z) <2u(2).

For more information about the properties of the M.N.C. see [11,20].
The space C[0, a] yields to a Banach space under the norm ||z|]| = sup{|z(v)| : v € I,} and we shall
write the modulus of continuity of a function z € C(/,) as

w(z,p) = sup{lz(v) —z(s)| : [v—s| < p}.
Theorem 2.4. [20] For a bounded set Z C C(1,), the M.N.C. in C(1,) is denoted by

wZz) = })ILI(I) sup w(z, p). 2.1

z€Z

Definition 2.5. [21] Let P : E — E be a continuous map. P is said to be a contraction map if for all
Z c C,) be bounded, P(Z) be bounded and

a(PZ) <ka(Z), 0 <k<1.
Moreover, P is said to be condensing (densifying) map if
a(PZ) < a(Z).

Note that a contraction map yields condensing (densifying) but not vice versa.

Remark 2.6. In C(1,), the M.N.C. u fulfills condition (m) (cf. [22]) and its generalization for a finite
sequence of bounded sets {N;}i=1.. ., n =2 (cf. [14]) i.e.

.....

n n

ﬂ(]:[zv,.)sz [T v ucv.

i=1 j=1,j#i
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3. Main results

In order to solve Eq (1.1), we first give a fixed point z € B, of the problem

e=pPz=| | Pz, (3.1)
i=1
where P, : B, - E, i=1,---,n, n > 2 are known operators.

Definition 2.5 should be rewritten in view of the M.N.C. u in C(Z,).

Definition 3.1. The operator P : C(1,) — C(l,) is said to be a contraction map if for all Z c C(1,) be
bounded set, P(Z) be bounded set and

W(PZ) <2ku(Z), 0<k< %
Moreover, P is said to be condensing (densifying) map if
u(PZ) < u(2).
Proof. Since Z and P(Z) are bounded sets in C(/,) and by using Theorem 2.3, we have

u(PZ) < a(PZ)<ka(Z)<2ku(Z)
= W(PZ) < 2ku(2).

The above inequality with 0 < k < % finishes the proof. O

Note that a contraction map related to the M.N.C. u yields condensing (densifying) with 0 < k < %
but not vice versa.
The following Proposition can be presented and proven by us.

Proposition 3.2. Suppose that the operators P; : B, — E, i = 1,---n and that:
(B1) P; are continuouson B,, i=1,---n.

(B2) There exist k; > 0 such that P; fulfill:
wP2) <ku2),i=1,---n

for arbitrary bounded Z C E,
B3) K=Y ki H?:Ljii ||P]B,|| <3
(B4) P(z) = kz, for some 7 € 0B, then k < 1,

then the set Fix(P) of fixed points of P in B, is nonempty.
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Proof. Let 0 # Z C B,. By utilizing the above assumptions, we obtain

wpzy=u(| |Pz) < > || 1Pzil-wp2)
i=1 i=1 j=1,j#i
< >k || Pzn-u@
i=1 Jj=1,j#i
< (D k| ] 1PiB)-w@)
i=1 Jj=1,j#i
= K- u@).
By using Petryshyn’s E.P.T., we have finished. O

Remark 3.3. e Ifn = 1, Proposition 3.2 reduces to classical Petryshyn’s FEP.T. [11], which is a
generalization of classical Darbo and Schauder F.P.Ts.
e [fn = 2, Proposition 3.2 reduces to the F.P.T. presented in [11,21,21], which is a generalization
of the results presented in [22].
e [fn > 2, Proposition 3.2 is a general form of the F.P.T. presented in [14, 15].

Now, we will apply Proposition 3.2 to check the solvability of Eq. (1.1) under the assumptions:

(A1) Assume that «;,8;,y; : I, = I, and ¢; : I, — R* are continuous s.t. ¢;(v) < B,fori=1,---,n
and B>0,vel,

(A2) The functions h; € C(I, X [0, B]XxR,R) and f; € C(I, x R X R X R, R), where there exist constants
ki > 0, s.t.

1fi(v, Q1, Q2, Q3) — £i(v, Q1, Qp, Q)| < k(1 — Q| + Q0 — Qo +1Q3 = Q3)), i =1,--+ ,n.

(A3) There exists M; > 0 and ry > 0 such that

sup{ [ [ 4009100, 09| :vel, 191 <7, j=1,2, 101 <[ | BM, i=1,-~,n}Sro,
i=1 i=1

where
Mi = Sup{lhi(V7 S, Z)|7 v Vv E Ia’ AS [07 B]7Z € [_r()a r()]}'
(Ad) K = S 2% [Ty Il < 1.

Theorem 3.4. Under the tacit assumption (Al)—(A4) above, Eq. (1.1) has at least one solution in
C(1,).

Proof. First, let us define the operators P; : B,, — C(l,), as follows

n n i(v)
Py = [ | Patv) = ]_[ﬁ(v,zw,-(v)),z(ﬁ,-(v)), f v, s,zm(s)))ds), vel. (32
i=1 i=1

Next, we will divide the proof into some steps according to Proposition 3.2. Step 1. The operator P is
well defined on C(/,). Obviously from assumptions (A1) and (A2), we have P : C(I,) — C(l,).
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Step 2. We will demonstrate that the operators P, P;,i = 1,--- , n are continuous on the ball B,,.
Take arbitrary z,y € B,, and € > 0 s.t. ||z — y|| < &, then for v € I,, we obtain

|(P2)() - (Py))|
i (V)
= (v 2@ 2B, fo (v, . 20D = £ 9@, ¥ B0, f:

i(v)

hi(v, s, y(y,-<s>>>ds)

IA

pi(v)

i (V) i(v)
(v 2@, 25,0 fo (v, . 207 (s) = £ ¥(@v), 2B,) fo (v, 5, 207(5)ds )

i (V)
¥ ﬁ(v,ymi(v»,z(ﬁi(v)), fo v, 5,20 (5))ds ) = (Y@ (0, Y B0, fo hi(v, s,zw,-(s)))ds)

0i(v)

0i(V)
+ ﬁ(V,Y(ai(V)),y(ﬁi(V)), fo hi(v, S,Z()’i(S)))dS)—ﬁ(V,)’(ai(V)),y(ﬁi(V)), ﬁ hi(v, S,y(%(S)))dS)

IA

@i (V)
ki|z(@i(v)) = ()| + kilz(Bi(v) = y(Bi(v))| + k; fo |y, 5, 2(7i(5))) = v, 5, y(y1(5))|ds
2killz = yll + kB - w(h;, €),

IA

where w(h;, &) = sup {|hi(v, s,2) — hi(v, s,y)| : ve I,,s € [0,Bl,z,y € [—ro, 1o, llz = yI| < &}.

From assumption (A2), the functions h; = h;(v, s, z) are uniformly continuous on [0, a] X [0, B] X R,
we indicate that w(h;, €) — 0 as € — 0. Thus, the operators P;,i = 1,--- , n are continuous on B,, and
consequently, the operator P = [];_, P; is continuous on B,,.

Step 3. We will demonstrate that the operator P fulfills the densifying condition in view of .
Take arbitrary p > 0 and z € M C C(l,) is bounded set and for v, v, € I, s.t. vi < v, withv,—v; < p,
we obtain

i(v2)
((P2)(v2) — (P)(v) \ﬁ(w(m(w)),z(ﬁi(vz», f v, 5,20l

i(v1)
—fi(Vl, z(@i(v1)), 2(Bi(v1)), f: hi(vy, s, Z(%'(S)))ds)

IA

i(v2)
‘fz‘(Vz, z(@i(v2)), 2(Bi(v2)), j: hi(va, s, Z(%(S)))ds)

i(v1)
—fi(vz, z(@i(v2)), 2(Bi(v2)), f hi(vy, s, Z(%(S)))ds)

+

i(v1)
‘fz‘(vz, z(@i(v2)), 2(Bi(v2)), j: hi(t;, s, Z()’i(s)))ds)

i(v1)
~ {2 2v20), 2B, f; (o1, 5. 20(9)ds )

+

i(vi)
|fl-(vZ, 2@ (v2), 2Biv1)), f; (01,5, 207i(5)ds )

i(v1)
~ {2 2. 2B, f v, 5, 207i(5)ds )
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where

+

i(v1)
‘fi(Vz, Z(ai(v1)), 2(Bi(v1)), f hi(vi, s, Z()’i(S)))dS)

i(v1)
—fi(Vl, z(@i(v1)), 2(Bi(v1)), f: hi(vy, s, Z(%'(S)))ds)

IA

i(v2) i(v1)
ki‘ f hi(va, 5, 20yi(s))ds — f hi(vr, 5, 2($))ds
0

0
+hil2(Bi(v2) = 2Biv1)| + kifz(@i(v2)) — z(@i(v)| + Wy (L. p)

i) 0i(v2)
o [ ehprts s [ s zntomas
0 @i(v1)

+kl'(U(Z, w(ﬁl’p)) + kia)(Z, w(al’p)) + w;ﬂ(la’p)a

IA

U);qi(la,p) = Sup{lhi(va S, Z) - hi(‘_)’ S, Z)l : |V - ‘_)l < P,V € Iaa s € [0, B], Z€ [_7"0, rO]}a

‘U}l(la,p) = Sup“ﬁ(V, 215,425 ZB)_ﬁ(‘_}, 21525 Z3)| : |V—\_/| < P,V € Iaa 21,22 € [_r()’ rO]» <3 € [_BMi9 BMI]}

and

Mi = Sup{lhi(v’ S,Z)l L ve Ia’ s € [0’ B]’ zZ€ [_r()a r()]}'

From the above relations we get

(Pi2)(v) = (Py)W)| < kiBw), (I, p) + kiMiei, ) + kito(z, 0(Bis ) + kitoz, (@i, ) + Wy (Las ).

Letp — 0, we get

w(Pizsp) < 2k[(l)(Z, p)

This yields the following estimation:

p(PiM) < 2kip(M).

Therefore,

n n

uPM) = p( | [ PiM) <K = (Z 2% | | IIijI)u(M)-
i=1

i=1 Jj=1,j#i

From assumption (A4), we get P is a condensing map with K < %

Step 4. We will demonstrate assumption (B4) of Proposition 3.2.
Suppose z € 83,0. If Tz = kz then we get kry = k||z|| = ||Pz|| and by (H3) we have

ﬁ Piz(v)
i=1

for all v € I, hence ||Pz|| < rg, so this shows k < 1.

|Pz(v)] =

< ro,

n pi(V)
[1s (v, (), 2B V)). fo (v, s, z(yi(S)))dS)
i=1

Step 5. The proof is completed when Proposition 3.2 is applied.

O
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4. Applications and examples

To demonstrate the value of our results, we provide a few examples and instances of integral
equations.

o lfn =2, fi(v,Q,0,,Q3) = f(v,Q)) + p(v,Q,Q3), a1(v) = ¢1(v) = v, /L(v,Q,,,Q3) =
q(v,Q1,Q3), 2(v) = a, then we have

z(V):(f(v,z(V))+p(v,z(B1(V)), fo hi(v, s,z(%(S)))dS)Xq(v,z(az(V)), f hy (v, S,Z(Yz(S)))dS),

which was inspected in [23].
e Forn =2, fi(v,Q1,Q,,83) = pi(v,Q21,Q3), y1(v) = y2(v) = ¢1(v) = v, 2(v) = a, we have

Z(V)=p1(v,z(a1(V)), f hi(v, s,z(S)dS)sz(v,z(ozz(V)), f hy (v, s,z(S))dS),
0 0

which was inspected in [24,25].
o Ifn= 27 ﬁ(v5 QlagZa Q3) = pi(v7 QbQS)’ 902(‘}) = 1 then we get

01 (V) 1
Z(V)=p1(v,z(a1(V)), fo hi(v, s,z(%(S)))dS)sz(v,z(az(V)), fo hy(v, s,z(yz(S)))dS),

which was inspected in [26,27].
[ ] Ifl’l = 2, fl(V, QI,QZ, Q3l) = a(V) . Q31’ fz(v, QI’QZ9 QSZ) = Q3l . Q32, a/l,(v) — SDI(V) — ,yi(v) —
Y2(v) = v, ¢2(v) = a, then we get

z(v) = a(v)f (v, s, z(s)ds + (f h(v,s, z(s))ds)( f hy(v, s, z(s))ds),
0 0 0

which was inspected in [28].

Example 4.1. Consider the integral equation in C|[0, 1]

2 1 1 W 1
20) = (m sin(izv)) + 5 In(1 + 12V + 7 fo %(j@)ds)
[eemr2za-w 1 f%” v(1 + arctan(£2y)) 4
6+v 8+v Jy 2+s >
viez(3v) 1 Y seig(s)
X( 3 T2+ +s)+evf0 2+ lcoseon’) Ve @b

Equation (4.1) is a particular form of Eq (1.1) such that:

a,-(v) = V,i = 1’2, 0/3(‘}) = %V’ ﬁl(v) = \/;’ﬁZ(v) =1- V,ﬁ3(V) =V,

Y1) = W, () =y =v @i(v) = W, () = §,¢3(v) =,

AIMS Mathematics Volume 8, Issue 12, 30562-30573.
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o A0 Z@()).2BI)). WD) = 15 sin(zW)) + 2 In(L+ (VD)) + Wy, Wy = [ e g

1+s+e”

2
Y 1 v(1+arctan( A7) ))
2z(1— 1 v +2(s2
o O A@(), 2(Ba(v), Wy) = LD 4 LW, W, = [ ——— e d,
W) = v4e_"z(%v) 1 W Wa = v se~27(s) d
o f3(v, (a2 (v)), 2(B2(v)), W) = 3 T e V3 37 Jo 2oz @8-

It can be seen that

_ 1 _ _
1f1(v, Q1,€9,8Q3) — f1i(v,Q,Q,3)| < §(|Ql — Q| + Qs — Qo] + €23 —73]),

_ 1 _ _ _
1o(v, Q1,,Q3) — L(v,Q,Q,Q3)] < §(|Ql — Q| + Qs — Q] + Q3 — Qs]),

_ 1 _ _ _
|f3(v, Q1,€0,83) — f3(v,Q1,Q,3)| < §(|Q1 — Q| + Qs — ] + |3 — Q3]).

So we can choose . . |
k==, ky==, =
T2 T3 3

and so the conditions (Al) and (A2) hold. Moreover, for ||z|| < ry, we get

k3:

ZW)] < A1, 21 (), 2B1 (1)), W] - | (v, 2@a(), 2(Bo (), Wa)| - | 5, 2(as(0)), 2(B3(v)), W)

<(1+1 +1)(1 +(1+r0))(1 +1 )<
=\15 T 20T g\ Ty \3To T gT0) =0

This shows that ry < 2.1104. Also, for ry € [0,0.64368] C [0,2.1104] we have

1
K =2k (AH- 1610 + Zkdial- 161D + 2ksdIAll - 114D < -

Therefore, assumptions (Al )—(A4) be fulfilled and Theorem 3.4 indicates the solution of (4.1) in C[0, 1].

Example 4.2. Consider the integral equation in C|[0, 1]

sin(

1 . COS(Z(VS)) 1. W) 1 v (/1 + 2)z( \/E)l + tSz) cos(s)
e+ 2L 1 [ .

T R 4535
1 t2(\V) 1 W (1 +cos(Vs)(4/1 + 2lz(Vs))
(gveoston + 91 +2(v) | 9e" + 3% fo T+ stn(1 + ) as) @)

o Here ay(v) =V, aa(v) = VW, Bi(v) = fo(v) = Vv, 71(V) = 72(0) = Vv, 01(v) = Vv, 2(v) =

Vv,
_ s(z(v3 1 .- (Vv) 1
o i, 2@ (), 2(Bi(M), W) = Lve™ 4 S 4 1 @0y 4 Ly

1
2
o A, @), 2(Br(v), Wa) = v cos@z() + gt + b W,

o« W, = 0" ( V1+2|Z(\/E)|+tsz)COS(S)ds’ W, = fOW (1+cos( V) V1+2|Z(\/3)|)ds.

4+43+/s 1+stIn(1+s)
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It can be seen that

_ 1 _ _ _
|f1(v, Q1,Q, Q3) — fi(v, Q1,Q,Q3)| < §(|Ql = Q] + Qs — Q| + Q3 — Q3)),

- 1 _ _ _
12(v, Q1,80,3) — fH(v, 2,8, 3)| < §(|Ql = Q] + €y — Q] + Q3 — Q3]).

So we can choose | )
ki=—, ky=—
T8 %9

and so the conditions (Al) and (A2) hold. Moreover, for ||z|| < ry, we get

z0I < [ A, z(al(V)) z(ﬁl(v» wl- |0, Z(a’z(v)) 2(Ba(v)), Wa)|
1
(2 + = 3 + + —(\/1 +2r0))( + + (\/1 +2r0)) <r
This shows that ry > 0.41410. Also, for ry € [0.41410,9.3765] we have
1
K =2kl + 2kl fill < 5
Therefore, assumptions (Al)—(A4) be fulfilled and Theorem 3.4 indicates the solution of (4.1) in C[0, 1].
5. Conclusions and perspective
In this article, a generalization of Petryshyn F.P.T. and the MNC idea were used to analyze the
solutions for products of n-nonlinear integral equations in the Banach algebra C(I,). The presented
F.PT. is a generalization of Darbo, Schauder and the classical Petryshyn F.P.T. Examples are provided
to demonstrate the usefulness of our findings. The upcoming work in this field will consider different
Banach algebras, including AC, C' or BV spaces.
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