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experiments to compare the availability of some existing numerical algorithms.

Keywords: structured backward error; structure-preserving; saddle point problems
Mathematics Subject Classification: 15A06, 65F10, 65F50, 65G50

1. Introduction

In this paper, we consider the structured backward errors analysis for the structured linear system
arising from the incompressible Navier-Stokes equations with the following form [9]:

A u =


A1 0 BT

1
0 A2 BT

2
−B1 −B2 C




u1

u2

p

 =


f1

f2

−g

 = b, (1.1)

where A1 ∈ R
n1×n1 , A2 ∈ R

n2×n2 are nonsymmetric positive definite matrices, B1 ∈ R
m×n1 , B2 ∈ R

m×n2 has
full row ranks, and C ∈ SRm×m is a symmetric positive semi-definite matrix; Rm×n and SRm×m are the
sets of m×n real matrices and m×m real symmetric matrices, respectively. These constraints guarantee
the existence and uniqueness of the solution of the structured linear system (1.1).

Recently, there is a great variety of fast preconditioned Krylov subspace methods for solving the
structured linear system (1.1) based on the specific block structure of coefficient matrix A , such as
dimensional splitting (DS) [1], relaxed dimensional factorization (RDF) [2], relaxed splitting
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(RS) [22], modified dimensional split (MDS) [5], generalized relaxed splitting (GRS) [4], modified
relaxed splitting (MRS) [10], relaxed block upper-lower triangular (RBULT) [16], relaxed upper and
lower triangular splitting (RULT) [7], inexact modified relaxed splitting (IMRS) [15] preconditioned
GMRES methods, and so on. In order to verify the validity and the strong stability of these numerical
algorithms, one can performed the structured backward error analysis for the structured linear
system (1.1). Given an approximate solution to a certain structured problem, structured backward
error analysis involves finding a structure-preserving perturbation in the data of minimal size such that
the approximate solution is an exact solution of the structure-preserving perturbed problem. The size
of the smallest structure-preserving perturbation is called the structured backward error. In matrix
computations, structured backward error analysis is useful not only to examine the structured stability
(or strong stability [3]) of numerical algorithm, but also to design effective stopping criteria for the
iterative solution of large sparse structured systems.

There has been substantial interest in structured backward error analysis in recent years. To our
best knowledge, some scholars [6, 17, 18, 20, 23, 24] have performed the structured backward error
analysis for some standard or generalized saddle point systems. Although the block structured linear
system (1.1) can be viewed as a generalized 2 × 2 block saddle point problem, the aforementioned
structured backward error analysis does not exactly show the case of the system (1.1) due to its special
block structure. Naturally, a new and detailed analysis for the structured backward error of the linear
system (1.1) with such special structure need to be performed. This paper will focus on this topic.

This paper is organized as follows. In Section 2, we first define the structured backward error of the
structured linear system (1.1), and then derive its exact and computable formula. Based on the formula
of structured backward error, in Section 3, we perform some numerical experiments to compare the
validity of some existing numerical algorithms. Finally, in Section 4, we present some conclusions.

2. Structured backward error analysis

Similar to the structured backward error analysis for standard or generalized saddle point problems
(see [6, 17, 18, 20, 23, 24]), we define the structured backward error for the linear system (1.1).

Let ũ =
(
ũT

1 , ũ
T
2 , p̃

T
)T

be the computed solution of the system (1.1), its parameterized structured
backward error η(θ1,θ2,θ3,θ4,λ1,λ2,λ3) (ũ1, ũ2, p̃) can be defined as

η(θ1,θ2,θ3,θ4,λ1,λ2,λ3) (ũ1, ũ2, p̃) = min∆A1,∆A2,∆B1,
∆B2,∆C,∆ f1,
∆ f2,∆g

∈F

∥∥∥∥∥∥∥∥∥

∆A1 0 θ3∆BT

1 λ1∆ f1

0 θ1∆A2 θ4∆BT
2 λ2∆ f2

θ3∆B1 θ4∆B2 θ2∆C λ3∆g


∥∥∥∥∥∥∥∥∥

F

, (2.1)

where the set F is defined by

F =


(
∆A1,∆A2,∆B1,
∆B2,∆C,∆ f1,
∆ f2,∆g

)
:


A1 + ∆A1 0 (B1 + ∆B1)T

0 A2 + ∆A2 (B2 + ∆B2)T

− (B1 + ∆B1) − (B2 + ∆B2) C + ∆C




ũ1

ũ2

p̃

 =


f1 + ∆ f1
f2 + ∆ f2
−g − ∆g

 ,

∆C = ∆CT


(2.2)

and θ1, θ2, θ3, θ4, λ1, λ2, λ3 are positive parameters that can be adjusted to emphasize the requisite
perturbations more than others. A special set of selections is

θ̃1 ≡
∥A1∥F

∥A2∥F
, θ̃2 ≡

∥A1∥F

∥C∥F
, θ̃3 ≡

∥A1∥F

∥B1∥F
, θ̃4 ≡

∥A1∥F

∥B2∥F
, λ̃1 ≡

∥A1∥F

∥ f1∥F
, λ̃2 ≡

∥A1∥F

∥ f2∥2
, λ̃3 ≡

∥A1∥F

∥g∥2
(2.3)
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which yields the relative structured backward error

ηS (ũ) = η(θ̃1,θ̃2,θ̃3,θ̃4,λ̃1,λ̃2,λ̃3) (ũ1, ũ2, p̃) / ∥A1∥F , (2.4)

where ∥·∥F and ∥·∥2 denote the Frobenius norm and Euclidean norm, respectively.
It can be seen from the above definition that a small ηS (ũ) means the computed solution ũ =(

ũT
1 , ũ

T
2 , p̃

T
)T

is the exact solution of a slightly perturbed structure-preserving linear system. We call ũ =(
ũT

1 , ũ
T
2 , p̃

T
)T

a structured backward stable solution to (1.1) and the corresponding numerical algorithm
is structured backward stable if ηS (ũ) is a small multiple of the machine precision. Consequently,
finding the exact and computable formula of the structured backward errors η(θ1,θ2,θ3,θ4,λ1,λ2,λ3) (ũ1, ũ2, p̃)
will be useful for testing the strong stability of a practical algorithm.

In the following, we give the explicit expression of parameterized structured backward error
η(θ1,θ2,θ3,θ4,λ1,λ2,λ3) (ũ1, ũ2, p̃).

Theorem 2.1. Let ũ =
(
ũT

1 , ũ
T
2 , p̃

T
)T

with p̃ , 0 be a computed solution to the structured linear
system (1.1). Then

η(θ1,θ2,θ3,θ4,λ1,λ2,λ3) (ũ1, ũ2, p̃) =
∥∥∥P⊥Kd

∥∥∥
2
, (2.5)

where

K =



θ3Imn1 0 0
0 θ4Imn2 0
0 0 λ3Im

−
In1⊗ p̃T

∥û1∥2
0 0

0 −
In2⊗p̃T

∥û2∥2
0

θ2(ũT
1 ⊗Im)
∥ p̃∥2

θ2(ũT
2 ⊗Im)
∥ p̃∥2

−
θ2Im
∥ p̃∥2

θ2(ũT
1 ⊗(Im− p̃ p̃†))
∥ p̃∥2

θ2(ũT
2 ⊗(Im− p̃ p̃†))
∥ p̃∥2

−
θ2(Im− p̃ p̃†)
∥ p̃∥2


∈ Rs×t, d =



0
0
0
r f1
∥û1∥2r f2
∥û2∥2
θ2rg

∥ p̃∥2
θ2(Im− p̃p̃†)rg

∥ p̃∥2


∈ Rs, (2.6)

r f1 = f1 − A1ũ1 − BT
1 p̃, r f2 = f2 − A2ũ2 − BT

2 p̃, rg = −g + B1ũ1 + B2ũ2 −Cp̃, (2.7)

û1 =
(
ũT

1 , 1/λ1

)T
, û2 =

(
ũT

2 /θ1, 1/λ2

)T
, (2.8)

and
s = mn1 + mn2 + 3m + n1 + n2, t = mn1 + mn2 + m.

Proof. It is seen from (2.2) that
(
∆A1,∆A2,∆B1,
∆B2,∆C,∆ f1,
∆ f2,∆g

)
∈ F if and only if ∆A1, ∆A2, ∆B1, ∆B2, ∆C, ∆ f1, ∆ f2,

∆g satisfy

∆A1ũ1 − ∆ f1 = r f1 − ∆BT
1 p̃, ∆A2ũ2 − ∆ f2 = r f2 − ∆BT

2 p̃, ∆Cp̃ = w and ∆C = ∆CT , (2.9)

i.e.,

(∆A1,−λ1∆ f1)
(

ũ1
1
λ1

)
= r f1 − ∆BT

1 p̃, (θ1∆A2,−λ2∆ f2)
( 1
θ1

ũ2
1
λ2

)
= r f2 − ∆BT

2 p̃,

and

(θ2∆C)
(

1
θ2

p̃
)
= w, ∆C = ∆CT ,
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where
w := rg − ∆g + ∆B1ũ1 + ∆B2ũ2.

From the above equations and (2.8), and using the well-known conclusions of Lemmas 2.1 and 2.2
in [20] or in [21], we have

(∆A1,−λ1∆ f1) =
(
r f1 − ∆BT

1 p̃
)

û†1+Z1

(
In1+1 − û1û†1

)
,

(θ1∆A2,−λ2∆ f2) =
(
r f2 − ∆BT

2 p̃
)

û†2+Z2

(
In2+1 − û2û†2

)
,

and
θ2∆C = θ2wp̃† + θ2

(
wp̃†

)T (
Im − p̃ p̃†

)
+

(
Im − p̃p̃†

)
T

(
Im − p̃p̃†

)
,

where Z1 ∈ R
n1×(n1+1), Z2 ∈ R

n2×(n2+1), T ∈ Rm×m. Due to the fact that

û†1
(
In1+1 − û1û†1

)
= 0, û†2

(
In2+1 − û2û†2

)
= 0

and p̃†
(
Im − p̃p̃†

)
= 0, we have

∥∆A1∥
2
F + λ

2
1 ∥∆ f1∥

2
2 =

∥∥∥r f1 − ∆BT
1 p̃

∥∥∥2

2

∥û1∥
2
2

+
∥∥∥∥Z1

(
In1+1 − û1û†1

)∥∥∥∥2

F
, (2.10)

θ21 ∥∆A2∥
2
F + λ

2
2 ∥∆ f2∥

2
2 =

∥∥∥r f2 − ∆BT
2 p̃

∥∥∥2

2

∥û2∥
2
2

+
∥∥∥∥Z2

(
In2+1 − û2û†2

)∥∥∥∥2

F
, (2.11)

and

θ22 ∥∆C∥2F =
θ22 ∥w∥

2
2

∥ p̃∥22
+
θ22

∥∥∥∥(Im − p̃p̃†
)

w
∥∥∥∥2

2

∥ p̃∥22
+

∥∥∥∥(Im − p̃p̃†
)

T
(
Im − p̃p̃†

)∥∥∥∥2

F
. (2.12)

It follows from the definition (2.1) of η(θ1,θ2,θ3,θ4,λ1,λ2,λ3) (ũ1, ũ2, p̃) and (2.10)–(2.12) that(
η(θ1,θ2,θ3,θ4,λ1,λ2,λ3) (ũ1, ũ2, p̃)

)2

= min
Z1∈R(n1+1)×(n1+1),Z2∈R(n2+1)×(n2+1),

T∈Rm×m,∆B1∈R
m×n1 ,∆B2∈R

m×n2 ,∆g∈Rm

{
∥∆A1∥

2
F + θ

2
1 ∥∆A2∥

2
F + θ

2
2 ∥∆C∥2F + θ

2
3 ∥∆B1∥

2
F

+θ24 ∥∆B2∥
2
F + λ

2
1 ∥∆ f1∥

2
2 + λ

2
2 ∥∆ f2∥

2
2 + λ

2
3 ∥∆g∥22

}
= min
∆B1∈R

m×n1 ,∆B2∈R
m×n2 ,∆g∈Rm

p (∆B1,∆B2,∆g) ,

where

p (∆B1,∆B2,∆g) =

∥∥∥r f1 − ∆BT
1 p̃

∥∥∥2

2

∥û1∥
2
2

+

∥∥∥r f2 − ∆BT
2 p̃

∥∥∥2

2

∥û2∥
2
2

+
θ22 ∥w∥

2
2

∥ p̃∥22
+
θ22

∥∥∥∥(Im − p̃p̃†
)

w
∥∥∥∥2

2

∥ p̃∥22
+ θ23 ∥∆B1∥

2
F + θ

2
4 ∥∆B2∥

2
F + λ

2
3 ∥∆g∥22 .

Using the Kronecker product [11, 12], we have

vec
(
r f1 − ∆BT

1 p̃
)
= r f1 −

(
In1 ⊗ p̃T

)
vec (∆B1) , vec

(
r f2 − ∆BT

2 p̃
)
= r f2 −

(
In2 ⊗ p̃T

)
vec (∆B2) ,
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vec (w) = rg − ∆g +
(
ũT

1 ⊗ Im

)
vec (∆B1) +

(
ũT

2 ⊗ Im

)
vec (∆B2) ,

and

vec
(
(Im − p̃p̃†)w

)
=

(
Im − p̃p̃†

)
rg −

(
Im − p̃p̃†

)
∆g +

(
ũT

1 ⊗ (Im − p̃p̃†)
)

vec (∆B1)

+
(
ũT

2 ⊗ (Im − p̃p̃†)
)

vec (∆B2) .

Then

(
η(θ1,θ2,θ3,θ4,λ1,λ2,λ3) (ũ1, ũ2, p̃)

)2
= min
∆B1∈R

m×n1 ,∆B2∈R
m×n2 ,∆g∈Rm

∥∥∥∥∥∥∥∥∥K


vec (∆B1)
vec (∆B2)
∆g

 + d

∥∥∥∥∥∥∥∥∥
2

2

=
∥∥∥∥(Is − KK†

)
d
∥∥∥∥2

2
,

in which K and d are defined as those in (2.6), and here K† stands for the Moore-Penrose inverse [11]
of K. □

Reconsidering the structured backward error η(θ1,θ2,θ3,θ4,λ1,λ2,λ3) (ũ1, ũ2, p̃), by broadening the
structure-preserving constraint in (2.2) to unstructured constraint, we can get the relative unstructured
backward error ηA ,b (ũ) which defined by [13, 19]

ηA ,b (ũ) = min
∆A ,∆b

{∥∥∥∥∥∥
(
∥∆A ∥F
∥A ∥F

,
∥∆b∥2
∥b∥2

)∥∥∥∥∥∥
F

: (A + ∆A ) ũ = b + ∆b
}
=

∥b −A ũ∥2√
∥A ∥2F ∥ũ∥

2
2 + ∥b∥

2
2

.

In addition, if only the right-side is perturbed, yields

ηb (ũ) = min
∆b

{
∥∆b∥2
∥b∥2

: A ũ = b + ∆b
}
=
∥b −A ũ∥2
∥b∥2

,

which often used as the stopping criterion for the iterative methods.
We note that a small ηA ,b (ũ) means the computed solution ũ =

(
ũT

1 , ũ
T
2 , p̃

T
)T

is the exact solution

of a slightly perturbed linear system. We call ũ =
(
ũT

1 , ũ
T
2 , p̃

T
)T

a backward stable solution to (1.1) and
the corresponding numerical algorithm is backward stable if ηA ,b (ũ) is a small multiple of the machine
precision. It is worth noting that a backward stable solution may be not the exact solution of a slightly
perturbed structure-preserving linear system (1.1). In other words, the relative structured backward
error ηS (ũ) may be much large than the relative unstructured backward error ηA ,b (ũ). Next, we given
an example to illustrate it.

Example 2.1. Consider the structured linear system (1.1) with

A1 = M (1 : 3, 1 : 3) , A1 = M (4 : 6, 4 : 6) , B1 = B2 =


0 0 1
0 1 0

104 0 0

 , C = 10−14 ×


1 −2 1
−2 6 0
1 0 0


and

f1 =
(
108, 10, 0

)T
, f2 =

(
108, 1, 0

)T
, g =

(
10−8, 0, 0

)T
,
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where M = D1PD2, D1 = diag
(
1, 5, 10, 50, 100, 104

)
, D2 = diag (1, 5, 100, 1, 5, 10) and P is the

Pascal matrix of order 6. Using Gaussian elimination with partial pivoting, we obtain a computed
solution ũ =

(
ũT

1 , ũ
T
2 , p̃

T
)T

with

ũ1 =


−4.5172 × 10−1

9.8272 × 10−2

−1.4527 × 10−2

 , ũ2 =


4.5172 × 10−1

−9.8272 × 10−2

1.4527 × 10−2

 , p̃ =


7.6937 × 101

2.9135 × 101

1.0000 × 104

 .
Then, in view of (2.4), we have the relative structured backward error

ηS (ũ) = 7.7318 × 10−06,

and the relative unstructured backward error

ηA ,b (ũ) = 5.8850 × 10−20, ηb (ũ) = 1.0812 × 10−16.

It is seen from the above results that Gaussian elimination with partial pivoting for solving this problem
is backward stable but not structured backward stable, and the relative structured backward error
ηS (ũ) can indeed be much larger than the unstructured backward error ηA ,b (ũ). This implies that
the structured backward error provides a more reliable measure for assessing accuracy of a computed
solution of the structured linear system (1.1).

3. Numerical examples

In this section, we will present some test examples to examine the stability and effectiveness of some
existing preconditioners for the generalized saddle point problem (1.1) by the structured backward error
analysis. These problems arises from the discretization of the 2D linearized steady-state Navier-Stokes
equation, i.e., the steady Oseen equation of the form:{

−v∆u + (ω · ∇) u + ∇p = f ,
∇ · u = 0,

in Ω, (3.1)

where Ω is a bounded domain, v > 0 is the viscosity, and ω is the viscosity field. The vector field u
stands for the velocity, and p represents the pressure. We use the IFISS software package developed
by Elman et al. [8] to generate discretizations of the “regularized” two-dimensional lid-driven cavity
problem for the Oseen equation (3.1). The mixed finite element used here is the bilinear pressure Q1-
P0 pair with local stabilization. In addition, we use the uniform grids of increasing size and the known
viscosity scalar and others are follows the default setting.

We apply the GMRES method in conjunction with the preconditioners RBULT [16], MRS [10],
GRS [4] and MDS [5] to solve the generalized saddle point problem (1.1). All runs are started from
the initial zero vector and terminated if the current iterations satisfy RES = ∥b −A ũ∥2 / ∥b∥2 < 10−14.
In actual computations, the subsystems of linear equations arising in the applications of the
preconditioners are solved by the Cholesky or the LU factorization in combination with AMD or
column AMD reordering. We choose the parameters in the preconditioned GMRES methods by using
the algebraic estimation technique [14]. The symbols “IT” and “CPU” stand for the iteration counts
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and total CPU time respectively. All experiments were run on a PC with 3.30 GHz central processing
unit (Intel(R) Core(TM) i7-11370H), 16 GB memory and Windows 10 operating system using
MATLAB 2014a with machine precision 2.2204 × 10−16.

For different grids and viscosities, the iteration counts and elapsed CPU times of GMRES with four
preconditioners, the residual, the unstructured backward errors ηA ,b (ũ) and the structured backward
errors ηS (ũ) with respect to the final iteration solutions ũ =

(
ũT

1 , ũ
T
2 , p̃

T
)T

are listed in Tables 1–4. It
is seen from Tables 1–4 that the structured backward errors are about one order of magnitude larger
than the unstructured one for each test problem and they are both of the order of unit round-off, which
indicates that the preconditioned GMRES methods are backward stable and strongly stable for solving
these test problems. In addition, we see from the iteration numbers, the elapsed CPU times and the
structured backward errors that the MRS preconditioned GMRES method is more accuracy (strongly
stable) and effective than those of the other preconditioned GMRES methods.

Table 1. Preconditioned GMRES methods numerical results for the Oseen problem with
v = 0.5.

Grids RBULT MRS GRS MDS

IT 13 15 16 21
CPU 0.0526 0.0097 0.0058 0.0111

4 × 4 RES 2.7696e-15 4.3654e-16 3.8489e-15 2.9127e-15
ηA ,b (ũ) 1.3540e-16 4.8642e-17 2.8253e-16 2.4661e-16
ηS (ũ) 4.5049e-16 2.7545e-16 1.3018e-15 8.4573e-16

IT 31 22 32 29
CPU 0.0727 0.0240 0.0362 0.0384

8 × 8 RES 8.1142e-15 2.6728e-15 7.0315e-15 8.3449e-15
ηA ,b (ũ) 1.2244e-16 4.6301e-17 1.0205e-16 9.5598e-17
ηS (ũ) 2.6232e-15 3.9443e-16 2.1595e-15 9.2548e-16

Table 2. Preconditioned GMRES methods numerical results for the Oseen problem with
v = 0.1.

Grids RBULT MRS GRS MDS

IT 13 15 16 21
CPU 0.0402 0.0099 0.0072 0.0123

4 × 4 RES 1.3354e-15 6.3830e-16 4.3890e-15 2.9338e-15
ηA ,b (ũ) 1.0812e-16 5.6560e-17 3.5954e-16 2.5398e-16
ηS (ũ) 3.4183e-16 2.9241e-16 1.9758e-15 8.9378e-16

IT 31 22 32 29
CPU 0.0760 0.0264 0.0357 0.0373

8 × 8 RES 9.6628e-15 2.4086e-15 9.2769e-15 7.6370e-15
ηA ,b (ũ) 1.5059e-16 4.1375e-17 1.3495e-16 8.9264e-17
ηS (ũ) 3.1619e-15 3.6270e-16 2.8529e-15 8.6730e-16
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Table 3. Preconditioned GMRES methods numerical results for the Oseen problem with
v = 0.05.

Grids RBULT MRS GRS MDS

IT 13 15 16 21
CPU 0.0341 0.0080 0.0060 0.0099

4 × 4 RES 3.1126e-15 6.6461e-16 3.7661e-15 2.9099e-15
ηA ,b (ũ) 1.5922e-16 4.9428e-17 3.2641e-16 2.5155e-16
ηS (ũ) 4.8855e-16 2.5989e-16 1.8577e-15 8.8886e-16

IT 31 22 32 29
CPU 0.0718 0.0268 0.0367 0.0345

8 × 8 RES 9.7311e-15 2.2431e-15 9.5202e-15 7.3532e-15
ηA ,b (ũ) 1.5364e-16 4.5875e-17 1.3954e-16 8.6810e-17
ηS (ũ) 3.2157e-15 3.7135e-16 2.9603e-15 8.4309e-16

Table 4. Preconditioned GMRES methods numerical results for the Oseen problem with
v = 0.01.

Grids RBULT MRS GRS MDS

IT 13 15 16 21
CPU 0.0337 0.0109 0.0067 0.0119

4 × 4 RES 5.0086e-15 6.8143e-16 4.5317e-15 2.8925e-15
ηA ,b (ũ) 2.6048e-16 6.5806e-17 3.6459e-16 2.5462e-16
ηS (ũ) 7.4883e-16 3.1987e-16 2.0524e-15 9.1407e-16

IT 31 22 32 29
CPU 0.0737 0.0237 0.0315 0.0344

8 × 8 RES 9.7263e-15 2.0932e-15 9.6089e-15 7.1474e-15
ηA ,b (ũ) 1.5504e-16 3.8421e-17 1.4355e-16 9.0864e-17
ηS (ũ) 3.2365e-15 3.1490e-16 2.9856e-15 8.6299e-16

4. Concluding remarks

In this paper, we discussed the structured backward error analysis for the generalized saddle point
problems arising from the incompressible Navier-Stokes equations and obtained the explicit
expressions of the structured backward error. The structured backward error may be much large than
the relative unstructured backward error which make it more suitable for assessing the validity and
practicability of the numerical algorithms for solving the structured linear system (1.1). In addition,
we also presented some test examples to examine the accuracy (strongly stability) and effectiveness of
some existing preconditioned GMRES methods by the structured backward error.
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