
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(12): 30445–30461.
DOI: 10.3934/math.20231555
Received: 06 August 2023
Revised: 17 September 2023
Accepted: 21 September 2023
Published: 09 November 2023

Research article

Intuitionistic fuzzy monotonic DOWA operators

Zhichun Xie1, Rong Ma2, Deqing Li1, Qianhui Wan2, Wenyi Zeng2,∗, Xianchuan Yu2 and Zeshui
Xu3

1 School of Data Science and Intelligent Engineering, Xiamen Institute of Technology, Xiamen
361021, China

2 School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
3 Business School, Sichuan University, Wuhou District, Chengdu 610064, China

* Correspondence: Email: zengwy@bnu.edu.cn; Tel: +8601058807943.
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fuzzy monotonic dependent ordered weighted averaging (IFMDOWA) operators are developed, such
as the conservative IFMDOWA (COV-IFMDOWA) operator, positive intuitionistic fuzzy monotonic
DOWA (POS-IFMDOWA) operator, conservative intuitionistic fuzzy hybrid monotonic dependent
order weighted averaging (COV-IFHMDOWA) operator, and positive intuitionistic fuzzy hybrid
monotonic dependent order weighted averaging (POS-IFHMDOWA) operator. Finally, a numerical
example is given to illustrate the flexibility of our proposed monotonic dependent order weighted
averaging operators in a practical decision making process.
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1. Introduction

In life, we are usually faced with situations in which we are required to analyze an issue from
various perspectives. For instance, in multiple attribute decision-making (MADM) problems, we need
to fuse multi-dimensional information into one-dimensional information in order to rank alternatives,
and we finish the ranking in one-dimensional space. Therefore, we should first solve the problem of
multi-dimensional information fusion. Sometimes, three-way decision-making [1–3] is an effective
framework for information fusion. However, information aggregation operators constitute an more
powerful tool for solving such problems [4]. The common aggregation operators include weighted
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averaging (WA) operator, weighted geometric averaging operator and ordered WA (OWA) operator [5].
The OWA operator presented by Yager [6] in 1988 is a widely used aggregation operator in MADM-
related fields. The prominent feature of the OWA operator is that it does not weight the attribute
values, but the ordered position of the attribute values. A lot of meaningful work concerning OWA
operators has been presented in the past 30 years [7–9]. For example, some researchers have focused
on discussing the orness measure [7, 10–13]. In addition, some scholars have focused on determining
the OWA weights. Some effective methods of obtaining the OWA weights have been proposed [14,15].
For instance, Yager [7] developed a linguistic quantifier guided method to determine the OWA weights.
Torra [16] presented an approach to obtain the weights of OWA operators by using sample learning.
Ahn [13] derived some methods to obtain the OWA weights by using some functions of dimension
n. Sang and Liu [17] employed the method of least squares deviation to obtain the corresponding
weights. The most common method of generating the weights associated with OWA operators is the
optimization-based method in which the orness level is given in advance [4, 18].

Moreover, some scholars have extended the OWA operator to suit other types of attribute values.
For instance, Torra [19] developed the weighted OWA operator in which two weighting vectors are
considered, i.e., the one associated with the WA operator and the one corresponding to the OWA
operator. Yager [20] investigated the continuous interval number OWA operator in which the inputs
are continuous intervals. Chen and Chen [21] introduced the FN-IOWA operators in which the given
arguments are fuzzy numbers. Yager [22] presented the centered OWA operators. Xu [23] investigated
intuitionistic fuzzy OWA operators. Herrera et al. [9] investigated the linguistic values-based OWA
operators in which the aggregated elements are in the form of linguistic values. Xia and Xu [24]
developed several hesitant fuzzy OWA operators in which the aggregated attribute values are hesitant
fuzzy elements. Alcantud [25] combined multi-agent decision-making with N-soft sets to present novel
OWA operators.

For convenience of application, OWA operators are usually divided into two categories: the OWA
operators associated with constant weights and the OWA operators associated with changeable weights.
The characteristic of the latter is that the weights of the OWA operator are independent of the
arguments’ ordering, but dependent on the aggregated values. Therefore, Xu [26] called this type the
dependent OWA (DOWA) operator. The prominent advantage of the DOWA operator is that it is not
necessary to give the weights in advance, since the weights are determined by the aggregated attribute
values. Therefore, the DOWA operators can fully reflect the expert’s risk preference and attitudinal
characters. Xu [26] proposed some DOWA operators and discussed the methods for generating the
corresponding weights of the DOWA operators. Xu and Da [27] proposed the uncertain OWA (UOWA)
operator in which the criterion values are interval values. Xu [28] further presented several dependent
UOWA operators in which the weights of the operators depend on the synthesized interval numbers.
Wei [29] presented some dependent uncertain linguistic OWA operators in which the input elements
are uncertain linguistic values. Zeng et al. [15] introduced a new kind of DOWA operator, namely,
monotonic argument-dependent OWA (MDOWA) operators. The weights of MDOWA operators are
generated by a collection of functions which are monotonic with respect to the corresponding variables.
The salient characteristic of MDOWA operators is that they can easily grasp the varying trends of the
weights through the vector function. Therefore, the MDOWA operators are very flexible in terms of
their ability to represent the attitudes of the decision-makers handling complex information.
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In real life, fuzzy set theory is a powerful tool for handling imprecise and uncertain information
[30, 31]. However, with the progress and development of science and technology, the information that
people need to process is becoming more and more complex. Thus, researchers have further developed
some new theories and methods to handle the more complex information. As a generalization of fuzzy
sets, intuitionistic fuzzy set (IFSs) developed by Atanassov [32], is more appropriate and effective
than the ordinary fuzzy set in dealing with uncertain information. Alcantud [33] also proposed
complemental fuzzy set theory for a complex world. Ever since Atanassov put forward the concept
of the IFS, it has attracted a large amount of interest and attention from the scholars. Some researchers
have accomplished a lot of meaningful work focused on this research topic. For example, several
scholars investigated the methods of calculating distance between IFSs [34–36]. Moreover, Melo-
Pinto et al. [37] presented some new approaches for image-thresholding based on IFSs.

Considering that intuitionistic fuzzy numbers (IFNs) play an important role in the process of
handling with intuitionistic fuzzy information, Chen and Tan [38] defined the score function s(β) for
any IFN β. Feng et al. [39] proposed novel Minkowski weighted score functions for intuitionistic fuzzy
values. Moreover, Hong and Choi [40] developed the accuracy function h(β) to express the accuracy
degree of β. By utilizing the score function and accuracy function, Xu [23] proposed a comparison law
to compare any two IFNs. Furthermore, several new methods of ranking IFNs have been developed by
researchers [41–43].

To fuse intuitionistic fuzzy information, Xu [23] proposed a series of intuitionistic fuzzy aggregation
operators, such as the intuitionistic fuzzy WA (IFWA) operator, intuitionistic fuzzy OWA (IFOWA)
operator and so on. To accommodate the intuitionistic fuzzy environment, by employing Einstein
operations, Wang and Liu [44] established some novel intuitionistic fuzzy aggregation operators.
Further, Zhao and Wei [45] developed several new Einstein hybrid aggregation operators in which
the aggregated elements were IFNs. Xu [46] proposed several new power aggregation operators to
aggregate IFNs. To solve multi-criteria decision-making problems in which the criteria values are
IFNs, Chen et al. [47] presented two new IFN score functions for estimating the degree of suitability
of the project; in their method, not only ae the membership degree, non-membership degree and the
hesitance degree of an IFN considered, the decision-makers’ preference is also taken into account.
Focusing on developing new aggregation operators to aggregate IFNs, in this paper we introduce a
kind of new measure for IFNs and present a novel ranking method for IFNs. The main idea of the
presented ranking method is to compare the magnitudes of IFNs by giving a new measure to express
the magnitude of each IFN. Some theoretical basis of the ranking method is investigated. Later, by
using the proposed new IFN measure, we develop some monotonic DOWA operators to aggregate
IFNs, including conservative intuitionistic fuzzy monotonic DOWA (COV-IFMDOWA) operator and
positive intuitionistic fuzzy monotonic DOWA (POS-IFMDOWA) operator.

To this end, we have organized this paper as follows. In Section 2, some basic notions of OWA
operators and IFSs are reviewed. In Section 3, a new IFN measure is proposed, and it can reflect
the magnitude of IFN effectively. Based on the proposed measure and score function of IFNs, a new
method for ranking IFNs is developed. The reasonability of the proposed ranking method is also
investigated. In Section 4, several novel MDOWA operators for aggregating IFNs are developed. In
Section 5, an application example is given to illustrate the flexibility of the developed operators. The
conclusion is given in the last section.
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2. Preliminaries

2.1. OWA operators

In what follows, we briefly introduce some results associated with OWA operators.

Definition 2.1. [7] Let t = (t1, t2, · · · , tm) ∈ [0, 1]m; the OWA operator is defined as follows:

OWA(t1, t2, · · · , tm) =

m∑
k=1

wktσ(k), (2.1)

where W = (w1,w2, · · · ,wm) is the weighting vector that satisfies that wk ≥ 0, (k = 1, 2, · · · ,m), where∑m
k=1 wk = 1, tσ(k) is the kth largest of the tk.
Suppose that the associated weighting vector of the OWA operator is W = (w1,w2, · · · ,wm);

Yager [7] proposed the orness measure to reflect the decision maker’s attitude as follows:

orness(W) =
1

m − 1

m∑
k=1

(n − k)wk. (2.2)

Yager [7] proposed several special OWA operators, in which the corresponding weights depend on
the synthesized values. For convenience, Xu [26] called them DOWA operators. Furthermore

DOWA(t1, t2, · · · , tm) =

m∑
k=1

wk(tσ(1), tσ(2), · · · , tσ(m))tσ(k). (2.3)

The weights associated with the DOWA operators are functions of argument elements. For
convenience, Zeng et al. [15] called them changeable weights, in which every weight is a function
of m-dimensions.

Yager [7] provided a collection of argument-dependent weights, as follows:

wk(t1, t2, · · · , tm) =
tασ(k)

m∑
l=1

tασ(l)

, k = 1, 2, · · · ,m, (2.4)

where α ∈ (−∞,+∞).
To expand the application range of DOWA operators, Zeng et al. [15] developed a kind of special

DOWA operators which are able to control the varying trend of the weights easily.

Definition 2.2. [15] Let t = (t1, t2, · · · , tm) ∈ [0, 1]m; suppose that Tk(t1, t2, · · · , tm) : [0, 1]m →

[0,+∞)(k = 1, 2, · · · ,m) satisfies the following properties:
(a) Each function Tk(t1, t2, · · · , tm) is continuous in every variable tl, k, l = 1, 2, · · · ,m;
(b) Each function Tk(t1, t2, · · · , tm) is monotonically decreasing on tk (k = 1, 2, · · · ,m);
(c) Tk(tσ(1), tσ(2), · · · , tσ(m)) ≤ T j(tσ(1), tσ(2), · · · , tσ(m)) if k < j,

where tσ(k) is the kth largest of the tk. Then, we say that T (t) = (T1(t),T2(t), · · · ,Tm(t)) is a conservative
function vector.
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Remark 2.1. We say that T (t) = T (t1, t2, · · · , tm) is a positive function vector, if it satisfies the above
condition (a) in Definition 2.2 and the following properties:

(b′) Tk(t1, t2, · · · , tm) is monotonically increasing on tk (k = 1, 2, · · · ,m);
(c′) Tk(tσ(1), tσ(2), · · · , tσ(m)) ≥ T j(tσ(1), tσ(2), · · · , tσ(m)) if k < j.
Both conservative and positive function vectors can express the overall influences of the synthesized

values. For convenience, we simply call them function vectors.
Let t = (t1, t2, · · · , tm), and T (t) = (T1(t),T2(t), · · · ,Tm(t)) be a function vector of dimension m;

Zeng et al. [15] developed the changeable weights associated with DOWA operator by using T (t) as
follows:

wT
k (t) =

Tk(σ(t))∑n
j=1 T j(σ(t))

, k = 1, 2, · · · ,m, (2.5)

where tσ(k) is the kth largest of tk.
A characteristic of the above changeable weighting vector w(t) = (wT

1 (t),wT
2 (t), · · · ,wT

m(t)) is that
wT

i (t) ≤ wT
j (t)(i < j) if T (t) is a conservative function vector, and wT

i (t) ≥ wT
j (t) (i < j) if T (t) is a

positive function vector. Therefore, Zeng et al. [15] proposed the MDOWA operator as follows:

MDOWAT (t1, t2, · · · , tm) =

m∑
k=1

wT
k (t)tσ(k) =

∑m
k=1 Tk(σ(t))tσ(k)∑m

j=1 T j(σ(t))
, (2.6)

where σ(t) = (tσ(1), tσ(2), · · · , tσ(m)) and tσ(k) is the kth largest of tk.
If T (t) is a conservative function vector, we call the above MDOWA operator a conservative

MDOWA operator associated with T , expressed as the COV-MDOWAT operator. Similarly, if T (t)
is a positive function vector, we call the MDOWA operator a positive MDOWA operator associated
with T , expressed as the POS-MDOWAT operator.

Definition 2.3. [15] Suppose that M(t) = M(t1, t2, · · · , tm) : [0, 1]m → R is a function. Let

T M
k (t) =

∂M(t)
∂tk

, k = 1, 2, · · · ,m. (2.7)

1) If T M(t) = (T M
1 (t),T M

2 (t), · · · ,T M
m (t)) forms a conservative function vector, then we call M(t)

conservative fundamental function;
2) If T M(t) = (T M

1 (t),T M
2 (t), · · · ,T M

m (t)) forms a positive function vector, we call M(t) a positive
fundamental function.

Assume that M(t) is a fundamental function, then, W M(t) = (wM
1 (x),wM

2 (t), · · · ,wM
m (t)) expresses

the weighting vector of the MDOWA operator generated by T M(t) according to Eq (2.7). MDOWAM

expresses the MDOWA operator which has an associated changeable weighting vector W M(t).

2.2. IFS

Definition 2.4. [32] An IFS in a given set Y is denoted by

I = {〈y, µI(y), νI(y)〉|y ∈ Y}, (2.8)

where µI : Y → [0, 1] and νI : Y → [0, 1] are the membership and non-membership functions,
respectively, with the condition that 0 ≤ µI(y) + νI(y) ≤ 1. πI(y) = 1 − µI(y) − νI(y) is called the degree
of indeterminacy.
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For simplicity, Xu [23] simply denoted β = 〈µβ, νβ〉 and called it IFN. Assuming that β1 = 〈µβ1 , νβ1〉

and β2 = 〈µβ2 , νβ2〉 are two IFNs, Xu and Yager [48] developed several operations, as follows:
(1) β1 ⊕ β2 = 〈µβ1 + µβ2 − µβ1µβ2 , νβ1νβ2〉;
(2) β1 ⊗ β2 = 〈µβ1µβ2 , νβ1 + νβ2 − νβ1νβ2〉;
(3) γβ = 〈1 − (1 − µβ)γ, ν

γ
β〉, γ > 0;

(4) βγ = 〈µ
γ
β, 1 − (1 − νβ)γ〉, γ > 0.

Using the above operation laws, Xu [23] introduced several intuitionistic fuzzy averaging operators
as follows:

Assume that β1 = 〈µβ1 , νβ1〉, β2 = 〈µβ2 , νβ2〉, · · · , βm = 〈µβm , νβm〉 are a collection of IFNs;

IFWA(β1, β2, · · · , βm) =

m⊕
k=1

(wkβk) = 〈1 −
m∏

k=1

(1 − µβk)
wk ,

m∏
k=1

(νβk)
wk〉, (2.9)

IFOWA(β1, β2, · · · , βm) =

m⊕
k=1

(wkβσ(k)) = 〈1 −
m∏

k=1

(1 − µβσ(k))
wk ,

m∏
k=1

(νβσ(k))
wk〉, (2.10)

where w = (w1,w2, · · · ,wm) is the weighting vector that satisfies the conditions that wk ≥ 0, where∑m
k=1 wk = 1, and βσ(k) is the kth largest of βk.

Ranking IFNs is an important research issue in applications of IFSs. In what follows, we introduce
several existing ranking methods for IFNs that have been presented by some researchers.

Method 1: Natural ranking method
The ranking of IFNs was proposed by Atanassov [32], and it is called a natural ranking method of

IFNs.

Definition 2.5. [32] Let β1 = 〈µβ1 , νβ1〉 and β2 = 〈µβ2 , νβ2〉 be two IFNs; the natural ranking method of
IFNs is defined as follows:

β1 ≥ β2 if and only if µβ1 ≥ µβ2 and νβ1 ≤ νβ2 .

Method 2: Score function based ranking method
To compare any two IFNs, Chen and Tan [38] presented the concept of the score function s(β) for

IFN β.

Definition 2.6. [38] For a given IFN β = 〈µβ, νβ〉, we define the score function of β as follows:

s(β) = µβ − νβ. (2.11)

Furthermore, Hong and Choi [40] proposed the accuracy function h(β) for IFN β as follows.

Definition 2.7. [40] For a given IFN β = 〈µβ, νβ〉, we define the accuracy function of β as follows:

h(β) = µβ + νβ. (2.12)

To compare IFNs β1 and β2, by employing s(β) and h(β), Xu [23] developed the following
comparison laws:

(1) If s(β1) > s(β2), then β1 > β2.
(2) If s(β1) = s(β2), then the following holds:

(a) If h(β1) > h(β2), then β1 > β2.
(b) If h(β1) = h(β2), then β1 = β2.
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3. Novel method for ranking IFNs

3.1. Strength index for IFNs

Given an IFN α = 〈µα, να〉. It is easy to understand that each IFN can be seen as a point in a
rectangular coordinate system. However, it is clear that each IFN can also be seen as a point in the
polar coordinate system. Let

rα =

√
µ2
α + ν2

α; (3.1)

then, there exists an angle θα such that

µα = rα cos(θα), (3.2)

να = rα sin(θα), (3.3)

where 0 ≤ θα ≤ π
2

Hence, for any IFN α = 〈µα, να〉, it is associated with a pair of (rα, θα) which is called the strength
vector of α. For convenience, we call rα the strength of α. Apparently, θα determines the direction of
rα. The relationship between (µα, να) and (rα, θα) is denoted by Eqs (3.1)–(3.3).

Yager [49] proposed the concept of a Pythagorean fuzzy set, which is a generalization of an IFS.
To rank Pythagorean fuzzy values, Yager [49] introduced a measure to represent the magnitude of
Pythagorean fuzzy values. Motivated by the idea presented by Yager in Ref. [49], in what follows, we
proposed a measure to reflect the magnitude of IFNs.

Definition 3.1. Let α = 〈µα, να〉 be an IFN, in which the strength vector is (rα, θα). We define the
strength index of α as follows:

V(α) =
1
2

+ rα(
1
2
−

2θα
π

). (3.4)

3.2. Properties of strength index

In what follows, we investigate the related properties of V(α).

Property 3.1. 0 ≤ V(α) ≤ 1. V(α) = 0 if and only if α = 〈0, 1〉; V(α) = 1 if and only if α = 〈1, 0〉.

Proof. Since 0 ≤ θα ≤ π
2 , and 0 ≤ rα ≤ 1, −1

2 ≤
1
2 −

2θα
π
≤ 1

2 . Therefore, we have that 0 ≤ V(α) ≤ 1. If
α = 〈0, 1〉, then rα = 1 and θα = π

2 . Hence V(α) = 0. On the other hand, if V(α) = 0, then rα = 1 and
θα = π

2 . By using Eqs (3.2) and (3.3), we have that µα = 0 and να = 1.
Similarly, we can prove that V(α) = 1 if and only if α = 〈1, 0〉. �

Property 3.2. V(α) ≥ 1
2 if and only if µα ≥ να; V(α) ≤ 1

2 if and only if µα ≥ να; V(α) = 1
2 if and only if

µα = να.

Proof. By using Eq (3.4), the proof is straightforward. �

Lemma 3.1. Let f (x) =
π
4−x

cos(x) (0 ≤ x ≤ π
4 ); then, f (x) is strictly monotonically decreasing with respect

to x.
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Proof. f ′(x) =
− cos(x)+( π4−x) sin(x)

cos2(x) . Let g(x) = − cos(x) + (π4 − x) sin(x)(0 ≤ x ≤ π
4 ); then, g′(x) =

(π4 − x) cos(x) ≥ 0(0 ≤ x ≤ π
4 ). Hence, g(x) is monotonically increasing with respect to x. Since

g(π4 ) = −
√

2
2 < 0, g(x) < 0. Therefore, f ′(x) < 0. Thus, f (x) is strictly monotonically decreasing with

respect to x.
This completes the proof of Lemma 3.1. �

Theorem 3.1. Let α = 〈µα, να〉 and β = 〈µβ, νβ〉 be two IFNs; if µα ≥ µβ and να ≤ νβ, then V(α) ≥ V(β).

Proof. Assume that α = 〈µα, να〉 and β = 〈µβ, νβ〉, where µα = rα cos(θα), να = rα sin(θα) and µβ =

rβ cos(θβ), νβ = rβ sin(θβ). If µα ≥ µβ and να ≤ νβ, then θα ≤ θβ. By utilizing Eq (3.4), we have that
V(α) = 1

2 + 2rα
π

(π4 − θα) and V(β) = 1
2 +

2rβ
π

(π4 − θβ). Hence,

V(α) − V(β) =
2rα
π

(
π

4
− θα) −

2rβ
π

(
π

4
− θβ). (3.5)

According to the situations of the values of θα and θβ, the proof can be divided into the following
three cases:

Case 1. θα ≤ π
4 ≤ θβ.

By using Eq (3.5), we have that V(α) − V(β) ≥ 0; then, V(α) ≥ V(β).
Case 2. θα ≤ θβ ≤ π

4 .
If rα ≥ rβ, by using Eq (3.5), we have that V(α) − V(β) ≥ 0; then, V(α) ≥ V(β).

If rα < rβ, suppose that γ = 〈µγ, νγ〉 is an IFN, where µγ = µβ and νγ = να. Let rγ =
√
µ2
γ + ν2

γ,
µγ = rγ cos(θγ), νγ = rγ sin(θγ). Then, θα < θγ < θβ and rγ < rα < rβ. Thus, we have that V(α) ≥ V(γ).
In addition, rγ(π4 − θγ) =

µγ
cos(θγ) (

π
4 − θγ) and rβ(π4 − θβ) =

µβ
cos(θβ) (

π
4 − θβ). Since θγ < θβ and µβ = µγ, by

Lemma 1, we have µγ
cos(θγ) (

π
4 − θγ) >

µβ
cos(θβ) (

π
4 − θβ), that is rγ(π4 − θγ) > rβ(π4 − θβ). Hence, we obtain

V(γ) ≥ V(β). Therefore, we have that V(α) ≥ V(β).
Case 3. π

4 ≤ θα ≤ θβ.
It can be proved analogously to Case 2. Thus, we have completed the proof of this theorem.
Theorem 3.1 denotes that the strength index V(α) of α can be used to compare the magnitude of

α. �

3.3. Strength index-based ranking method for IFNs

In this subsection, based on the strength index V(β) and the score function s(β) for IFNs, we present
a novel approach for ranking IFNs as follows:

For any two IFNs β1 =< µβ1 , νβ1 > and β2 =< µβ2 , νβ2 >, the following holds:
(1) If V(β1) > V(β2), then β1 > β2.
(2) If V(β1) = V(β2), then we have the following:

(a) If s(β1) > s(β2), then β1 > β2;
(b) If s(β1) = s(β2), then β1 = β2.

Example 3.1. Let α1 = 〈0.5, 0.4〉 and α2 = 〈0.4, 0.3〉. By applying Eq (3.4), we obtain that V(α1) =

0.5451 and V(α2) = 0.5452. Then V(α2) > V(α1). By utilizing our proposed ranking approach, we
have that α2 > α1.
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Example 3.2. Let α = 〈0.4 cos( π
10 ), 0.4 sin( π

10 )〉 and β = 〈0.3 cos( π
20 ), 0.3 sin( π

20 )〉 be two IFNs. By using
Eq (3.4), we have that V(α) = 0.62, V(β) = 0.62. And, given Eq (2.11), we have that s(α) = 0.2568
and s(β) = 0.2494. Since s(α) > s(β), then α > β.

Example 3.3. Let α3 =< 0.4, 0.01 > and β3 =< 0.5, 0.1 > be two IFNs. By using Eq (2.11), we have
that s(α3) = 0.39 and s(β3) = 0.4. By using Eq (3.4), we have V(α3) = 0.6937,V(β3) = 0.6908. When
we use the score function, we have that s(α3) < s(β3). When we use the strength index, we have that
V(α3) > V(β3).

4. Intuitionistic fuzzy monotonic dependent OWA operators

4.1. Intuitionistic fuzzy monotonic dependent OWA operators

Let C1,C2, . . . ,Cm be m criteria and G = (β1, β2, . . . , βm) be the corresponding criterion values,
where βk = 〈µβk , νβk〉 is an IFN expressing the value of the criterion Ck(k = 1, 2, . . . ,m).
V(G) = (V(β1),V(β2), . . . ,V(βm)) is the strength index vector for G. Suppose that T (t) =

(T1(t),T2(t), . . . ,Tm(t)) be m-dimensional conservative(positive) function vector satisfying the
conditions in Definition 2.2 and t ∈ [0, 1]m. We give the definition of an intuitionistic fuzzy
conservative (positive) function vector as follows.

Definition 4.1. 1) Suppose that T (t) = (T1(t),T2(t), . . . ,Tm(t)) is an m-dimensional conservative
function vector satisfying the conditions in Definition 2.2 and t ∈ [0, 1]m. Let G = (β1, β2, . . . , βm)
be an IFN vector and V(G) = (V(β1),V(β2), . . . ,V(βm)) be the strength index vector for G. We state
that T (G) = (T1(V(G)),T2(V(G)), . . . ,Tm(V(G))) is an intuitionistic fuzzy conservative function vector.

2) Suppose that T (t) = (T1(t),T2(t), . . . ,Tm(t)) is an m-dimensional positive function vector
satisfying the conditions in Definition 2.2 and t ∈ [0, 1]m. Let G = (β1, β2, . . . , βm) be IFN vector,
and V(G) = (V(β1),V(β2), . . . ,V(βm)) be the strength index vector for G. We state that T (G) =

(T1(V(G)),T2(V(G)), . . . ,Tm(V(G))) is an intuitionistic fuzzy positive function vector.
The changeable weights of MDOWA operators generated by T (G) are as follows:

wT
k (G) =

Tk(σ(V(G)))∑m
j=1 T j(σ(V(G)))

, k = 1, 2, · · · ,m (4.1)

where σ(V(G)) = (V(βσ(1)),V(βσ(2)), · · · ,V(βσ(m))) is a permutation of (V(β1),V(β2), . . . ,V(βm)), such
that V(βσ(k−1)) ≥ V(βσ(k)) for all k = 2, 3, · · · ,m.

Furthermore, we establish the intuitionistic fuzzy monotonic dependent OWA (IFMDOWA)
operator as follows:

IFMDOWA(β1, β2, · · · , βm) =

m⊕
k=1

(wT
k (G)βσ(k)) = 〈1 −

m∏
k=1

(1 − µβσ(k))
wT

k (G),

m∏
k=1

(νβσ(k))
wT

k (G)〉 (4.2)

where βσ(k) is the kth largest of βk.
For conveniences, we call the above IFMDOWA operator an intuitionistic fuzzy MDOWA operator

according to T , represented by IFMDOWAT simply. Especially, if T is an intuitionistic fuzzy
conservative function vector, then we call the above IFMDOWA operator a conservative IFMDOWA
operator according to T , represented by CON-IFMDOWAT . If T is an intuitionistic fuzzy positive
function vector, then we call the above IFMDOWA operator a positive IFMDOWA operator according
to T , denoted by POS-IFMDOWAT .
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4.2. Intuitionistic fuzzy hybrid monotonic dependent OWA operators

Note that IFMDOWA operators only weight the sorted positions of the IFN, not the IFN itself.
To overcome this limitation, in what follows, we propose an intuitionistic fuzzy hybrid MDOWA
(IFHMDOWA) operator, which not only weights the aggregated IFN, but it also weights its sorted
position.

Let C1,C2, . . . ,Cm be m criteria and w=(w1,w2, . . . ,wm) be the weighting vector for all criteria,
which satisfies that

∑m
k=1 wk = 1 and wk ∈ [0, 1]. Suppose that G = (β1, β2, . . . , βm) denotes the

corresponding criteria values, where βk = 〈µβk , νβk〉 is an IFN expressing the value of the criterion
Ck (k = 1, 2, . . . ,m). w � G = (w1β1,w2β2, . . . ,wmβm) is the weighted criterion value vector.
V(w � G) = (V(w1β1),V(w2β2), . . . ,V(wmβm)) is the strength index vector for w � G. Suppose that
T (t) = (T1(t),T2(t), . . . ,Tm(t)) is an m-dimensional conservative (positive) function vector satisfying
the conditions in Definition 2.2 and t ∈ [0, 1]m. We give the definition of an intuitionistic fuzzy hybrid
conservative (positive) function vector as follows.

Definition 4.2. Let G = (β1, β2, . . . , βm) be an IFN vector, and w=(w1,w2, . . . ,wm) be the weighting
vector, which satisfies that

∑m
k=1 wk = 1 and wk ∈ [0, 1]. w � G = (w1β1,w2β2, . . . ,wmβm) is the

weighted IFN vector. V(w � G) = (V(w1β1),V(w2β2), . . . ,V(wmβm)) is the strength index vector for
w �G.

1) Suppose that T (t) = (T1(t),T2(t), . . . ,Tm(t)) is an m-dimensional conservative function vector
satisfying the conditions in Definition 2.2 and t ∈ [0, 1]m. We call T (w�G) = (T1(V(w�G)),T2(V(w�
G)), . . . ,Tm(V(w �G))) as intuitionistic fuzzy hybrid conservative function vector.

2) Suppose that T (t) = (T1(t),T2(t), . . . ,Tm(t)) be m-dimensional positive function vector satisfying
the conditions in Definition 2.2 and t ∈ [0, 1]m. We call T (w � G) = (T1(V(w � G)),T2(V(w �
G)), . . . ,Tm(V(w �G))) an intuitionistic fuzzy hybrid positive function vector.

Furthermore, we propose the IFHMDOWA operator as follows:

IFHMDOWA(β1, β2, · · · , βm) =

m⊕
k=1

(wT
k (w �G)β̃σ(k)) = 〈1 −

m∏
k=1

(1 − µβ̃σ(k)
)wT

k (w�G),

m∏
k=1

(νβ̃σ(k)
)wT

k (w�G)〉,

(4.3)
where β̃k = wkβk, (k = 1, 2, · · · , k) and β̃σ(k) is the kth largest of β̃k.

For convenience, we call the above IFHMDOWA operator an intuitionistic fuzzy hybrid MDOWA
operator according to T , represented by IFHMDOWAT simply. Especially, if T is an intuitionistic
fuzzy conservative function vector, then we call the above IFHMDOWA operator a conservative
IFHMDOWA operator according to T , represented by COV-IFHMDOWAT . If T is an intuitionistic
fuzzy positive function vector, then we call the above IFHMDOWA operator as positive intuitionistic
fuzzy hybrid MDOWA operator according to T , represented by POS-IFHMDOWAT .

Here, the changeable weights of IFHMDOWA operators generated by T (w �G) are as follows:

wT
k (w �G) =

Tk(σ(V(w �G)))∑m
j=1 T j(σ(V(w �G))

, k = 1, 2, · · · ,m, (4.4)

where σ(V(w � G)) = (V(wσ(1)βσ(1)),V(wσ(2)βσ(2)), · · · ,V(wσ(m)βσ(m))) is a permutation of
(V(w1β1),V(w2β2), . . . ,V(wmβm)), such that V(wσ(k−1)βσ(k−1)) ≥ V(wσ(k)βσ(k)) for all k = 2, 3, · · · ,m.
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Example for changeable weights. To illustrate details of computing changeable weights,
we add this example to improve readability. Assume that there are four criteria and
the corresponding weighting vector is given as W = (0.2, 0.1, 0.3, 0.4); one sample is G = {<

0.4, 0.5 >, < 0.5, 0.4 >, < 0.2, 0.7 >, < 0.2, 0.5 >}. Then, we can obtain that w � G =

{< 0.0971, 0.8706 >, < 0.0670, 0.9124 >, < 0.0647, 0.8985 >, < 0.0854, 0.7579 >} through
Definition 2.4. Further, we can obtain the results of V(w � G) = {0.3265, 0.3793, 0.1780, 0.2475}
through Definition 2.4 and Eq (3.4). And we apply descending order for this vector and obtain
the result σ(V(w � G)) = {0.3793, 0.3265, 0.2475, 0.1780}. We use the conservative fundamental
function T (x) =

∑4
i=1

eλxi

λ
(λ < 0). Let λ = −0.5; we can obtain the final changeable weights

wT
k (w �G) = {0.2444, 0.2380, 0.2632, 0.2543} through Eq (4.4).

5. Application example

In what follows, we present a numerical example to illustrate the application of the developed
operators.

Example 5.1. (adapted from [45]) An investment firm decides to invest some money profitably.
There are five potential alternatives in which to invest the sum of money. Y1 is a real estate, Y2

is a furniture industry, Y3 is an electronic commerce firm, Y4 is a communications firm, Y5 is an
air-conditioning company. Four criteria Ci (i = 1, 2, 3, 4) are taken into account to evaluate the
alternatives: C1 is risk avoidance; C2 is productivity; C3 is technological innovation capability; C4 is
the environmental protection. The criterion weighting vector is given as W = (0.2, 0.1, 0.3, 0.4). The
decision group provides its evaluations to evaluate the five potential alternatives by applying IFNs over
the aforementioned four criteria. The evaluations are listed in Table 1.

By utilizing Eqs (3.1)–(3.3), we obtain the corresponding strength vectors for the IFNs which are
listed in Table 2. Furthermore, by utilizing Eq (3.4), we obtain the corresponding strength index values
V(α) for the IFNs. The results are listed in Table 3.

Table 1. The evaluations of IFNs provided by the decision-making group.

C1 C2 C3 C4

Y1 〈0.4, 0.5〉 〈0.5, 0.4〉 〈0.2, 0.7〉 〈0.2, 0.5〉
Y2 〈0.6, 0.4〉 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0.3.0.6〉
Y3 〈0.5, 0.5〉 〈0.4, 0.5〉 〈0.4, 0.4〉 〈0.5, 0.4〉
Y4 〈0.7, 0.2〉 〈0.5, 0.4〉 〈0.2, 0.5〉 〈0.3, 0.7〉
Y5 〈0.5, 0.3〉 〈0.3, 0.4〉 〈0.6, 0.2〉 〈0.4, 0.4〉

Table 2. The corresponding strength vectors (rα, θα) for the IFNs.

C1 C2 C3 C4

Y1 (0.6403,0.8961) (0.6403,0.6747) (0.7280,1.2925) (0.5385, 1.1903)
Y2 (0.7211,0.5880) (0.6708,0.4636) (0.6708,0.4636) (0.6708,1.1071)
Y3 (0.7071,0.7854) (0.6403,0.8961) (0.5657,0.7854) ( 0.6403,0.6747)
Y4 (0.7280,0.2783) (0.6403,0.6747) (0.5385,1.1903) (0.7616,1.1659)
Y5 (0.5831,0.5404) (0.5000, 0.9273) (0.6325, 0.3218) (0.5657,0.7854)

AIMS Mathematics Volume 8, Issue 12, 30445–30461.



30456

Table 3. The corresponding strength indexes V(α) for the IFNs.

C1 C2 C3 C4

Y1 0.4549 0.5451 0.2650 0.3612
Y2 0.5906 0.6374 0.6374 0.3626
Y3 0.5000 0.4549 0.5000 0.5451
Y4 0.7350 0.5451 0.3612 0.3155
Y5 0.5909 0.4548 0.6867 0.5000

Suppose that the decision makers emphasize the balance among the criteria; then, we should use
the intuitionistic fuzzy conservative function vector to generate the weights associated with the DOWA

operators. In this paper, we use the conservative fundamental function M(x) =
∑4

i=1
eλxi

λ
(λ < 0)

to generate the conservative function vector. If the criterion weights are not taken into account,
then we utilize the COV-IFMDOWA operator to aggregate the IFNs. To illustrate the effectiveness
of the developed operators, we have employed several different COV-IFMDOWA operators to
aggregate IFNs by selecting different values of the parameter λ. The ranking results are listed in
Table 4. For convenience, the strength index values for V (IFMDOWA(Yk))(k = 1, 2, 3, 4, 5) are
simply denoted as V(Yk)(k = 1, 2, 3, 4, 5). For example, if λ = −0.5, by utilizing Eq (4.2), we
obtain the corresponding aggregation values IFMDOWA(Y1) = 〈0.3315, 0.5195〉, IFMDOWA(Y2) =

〈0.5334, 0.3896〉, IFMDOWA(Y3) = 〈0.4517, 0.4478〉, IFMDOWA(Y4) = 〈0.4454, 0.4242〉 and
IFMDOWA(Y5) = 〈0.4567, 0.3169〉. By employing Eq (3.4), we have the following V(Y1) = 0.4147,
V(Y2) = 0.5650, V(Y3) = 0.5018, V(Y4) = 0.5095, V(Y5) = 0.5633. Since V(Y2) > V(Y5) > V(Y4) >
V(Y3) > V(Y1), we have that Y2 � Y5 � Y4 � Y3 � Y1. Thus, the most desirable alternative is Y2.

Table 4. Ranking results applying IFMDOWA operators with different values of λ.

V(Y1) V(Y2) V(Y3) V(Y4) V(Y5) Ranking results
λ = −5.5 0.3622 0.4896 0.4967 0.4000 0.5268 Y5 � Y3 � Y2 � Y4 � Y1

λ = −4.5 0.3721 0.5062 0.4977 0.4159 0.5333 Y5 � Y2 � Y3 � Y4 � Y1

λ = −3.5 0.3825 0.5225 0.4987 0.4350 0.5403 Y5 � Y2 � Y3 � Y4 � Y1

λ = −2.5 0.3931 0.5380 0.4997 0.4572 0.5477 Y5 � Y2 � Y3 � Y4 � Y1

λ = −1.5 0.4039 0.5522 0.5008 0.4823 0.5553 Y5 � Y2 � Y3 � Y4 � Y1

λ = −0.5 0.4147 0.5650 0.5018 0.5095 0.5633 Y2 � Y5 � Y4 � Y3 � Y1

From the aforementioned results, it is easy to see that different parameter values for the fundamental
function can provide different ranking results. In other words, the attitudinal character of decision-
makers can affect the decision results. When λ = −1.5,−2.5,−3.5,−4.5, the ranking results obtained by
the proposed IFMDOWA operator are the same as the results provided by Zhao and Wei’s method [45].
To further investigate the influence of the parameter values of λ, we can calculate the orness measures
of the changeable weights associated with the IFMDOWA operator. For each given value of λ, every
alternative is associated with different changeable weights. The orness measures associated with
parameter values of λ are listed in Table 5. It can be easily seen that the smaller the value of λ,
the smaller of orness measure. Therefore, a smaller value of λ indicates a more conservative decision-
maker and greater closeness of the IFMDOWA operator to the minimum operator. Moreover, the
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aforementioned results also indicate that, as long as the experts correctly describe their attitude by
selecting an appropriate value of λ, the developed IFMDOWA operators can present more accurate
and robust decision-making results. Therefore, the proposed operators are very efficient and flexible
because the decision makers have more choices according to their interests and actual needs.

Table 5. Orness measures for changeable weights associated with different values of λ.

orness(Y1) orness(Y2) orness(Y3) orness(Y4) orness(Y5)
λ = −5.5 0.2994 0.2680 0.4383 0.2534 0.3892
λ = −4.5 0.3323 0.3112 0.4494 0.2843 0.4069
λ = −3.5 0.3672 0.3554 0.4606 0.3213 0.4257
λ = −2.5 0.4039 0.3993 0.4718 0.3647 0.4457
λ = −1.5 0.4418 0.4417 0.4831 0.4146 0.4666
λ = −0.5 0.4805 0.4814 0.4944 0.4704 0.4886

If the criterion weights w = (0.2, 0.3, 0.1, 0.15, 0.25) are taken into account, then we can utilize
the COV-IFHMDOWA operator to aggregate the IFNs. We can also use the conservative fundamental

function M(x) =
∑5

i=1
eλxi

λ(λ < 0) to generate the conservative function vector. We selected different
values of λ to obtain different fundamental functions and aggregate the IFNs by utilizing Eq (4.3). The
ranking results for the alternatives obtained by using the COV-IFHMDOWA operator with different
values of λ are listed in Table 6.

Table 6. Ranking results obtained by applying IFHMDOWA operators with different values
of λ.

V(Y1) V(Y2) V(Y3) V(Y4) V(Y5) Ranking results
λ = −6.5 0.1120 0.1677 0.1387 0.1367 0.1548 Y2 � Y5 � Y3 � Y4 � Y1

λ = −5.5 0.1131 0.1709 0.1447 0.1398 0.1641 Y2 � Y5 � Y3 � Y4 � Y1

λ = −4.5 0.1142 0.1744 0.1510 0.1431 0.1737 Y2 � Y5 � Y3 � Y4 � Y1

λ = −3.5 0.1153 0.1780 0.1575 0.1465 0.1834 Y5 � Y2 � Y3 � Y4 � Y1

λ = −2.5 0.1165 0.1817 0.1641 0.1502 0.1932 Y5 � Y2 � Y3 � Y4 � Y1

λ = −1.5 0.1177 0.1856 0.1709 0.1541 0.2029 Y5 � Y2 � Y3 � Y4 � Y1

λ = −0.5 0.1189 0.1897 0.1778 0.1582 0.2123 Y5 � Y2 � Y3 � Y4 � Y1

We can easily see that the ranking result obtained by the COV-IFHMDOWA operator is different
from the ranking order obtained by using the COV-IFMDOWA operator when we select the same value
of λ. The difference just indicates impact of the criterion weights on the decision-making results.

If we use an IFWA operator to aggregate the IFNs, by utilizing Eq (2.9), we have the following:
IFWA(Y1) = 〈0.2794, 0.5409〉, IFWA(Y2) = 〈0.4996, 0.4193〉, IFWA(Y3) = 〈0.4622, 0.4277〉,
IFWA(Y4) = 〈0.4053, 0.4657〉, IFWA(Y5) = 〈0.4798, 0.3067〉. By Eq (3.4), we have the following:
V(IFWA(Y1)) = 0.3804, V(IFWA(Y2)) = 0.5362, V(IFWA(Y3)) = 0.5155, V(IFWA(Y4)) = 0.4728,
V(IFWA(Y5)) = 0.5785. Thus, the final result is Y5 � Y2 � Y3 � Y4 � Y1. We can easily see that
when λ = −0.5,−1.5,−2.5,−3.5, the result obtained by the proposed IFHMDOWA operator is the
same as the results obtained by using the IFWA operator and Zhao and Wei’s method [45]. However,
if λ = −4.5,−5.5,−6.5, the results obtained by using the IFHMDOWA operator are different from the
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results obtained by using the IFWA operator and Zhao and Wei’s method [45]. This indicates that the
IFHMDOWA operator has more flexibility since it provides the decision-makers with more options by
selecting different values of λ. Thus, the decision-maker’s attitudinal character can be fully expressed
in the decision making process.

Using the novel proposed aggregation operators, we performed comparison experiments with IFWA
aggregation operators. And, we adjusted different λ values to obtain different ranking results. The POS-
IFMDOWA and COV-IFHMDOWA aggregation operators have been shown to provide more flexibility
and effectiveness.

6. Conclusions

IFSs constitute a useful tool for modeling the ambiguous and uncertain information in decision-
making-related fields. Ranking IFNs plays an essential role in intuitionistic fuzzy decision making
problems. To solve this problem, we have presented a new measure to reflect the magnitude of IFNs.
By applying the presented measure of IFN, we proposed a new ranking method for IFNs. Furthermore,
by utilizing the presented measure and the new ranking method for IFNs, we have developed several
new intuitionistic fuzzy DOWA operators, such as IFMDOWA operators and IFHMDOWA operators,
for the aggregation of intuitionistic fuzzy informations. The weights associated with the developed
operators can be generated and adjusted dynamically and automatically. Therefore, the developed
DOWA operators can reflect the decision maker’s attitudinal character and risk preference more flexibly
than the ordinary OWA operator, as well as have some potential applications.

In future research, we will further investigate the methodology for selecting appropriate parameter
values for the fundamental function in the intuitionistic fuzzy decision making process.
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