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Abstract: New characterizations for generalized inverses along the core parts of three matrix
decompositions were investigated in this paper. Let A1, Â1 and Ã1 be the core parts of the core-nilpotent
decomposition, the core-EP decomposition and EP-nilpotent decomposition of A ∈ Cn×n, respectively,
where EP denotes the EP matrix. A number of characterizations and different representations of the
Drazin inverse, the weak group inverse and the core-EP inverse were given by using the core parts A1,
Â1 and Ã1. One can prove that, the Drazin inverse is the inverse along A1, the weak group inverse is
the inverse along Â1 and the core-EP inverse is the inverse along Ã1. A unified theory presented in
this paper covers the Drazin inverse, the weak group inverse and the core-EP inverse based on the core
parts of the core-nilpotent decomposition, the core-EP decomposition and EP-nilpotent decomposition
of A ∈ Cn×n, respectively. In addition, we proved that the Drazin inverse of A is the inverse of A
along U and A1 for any U ∈ {A1, Â1, Ã1}; the weak group inverse of A is the inverse of A along U
and Â1 for any U ∈ {A1, Â1, Ã1}; the core-EP inverse of A is the inverse of A along U and Ã1 for any
U ∈ {A1, Â1, Ã1}. Let X1, X4 and X7 be the generalized inverses along A1, Â1 and Ã1, respectively. In
the last section, some useful examples were given, which showed that the generalized inverses X1, X4

and X7 were different generalized inverses. For a certain singular complex matrix, the Drazin inverse
coincides with the weak group inverse, which is different from the core-EP inverse. Moreover, we
showed that the Drazin inverse, the weak group inverse and the core-EP inverse can be the same for a
certain singular complex matrix.
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1. Introduction

Let C be the complex field. The set Cm×n denotes the set of all m × n complex matrices over the
complex field C. Let A ∈ Cm×n. The symbol A∗ denotes the conjugate transpose of A. Notations
R(A) = {y ∈ Cm : y = Ax, x ∈ Cn} and N(A) = {x ∈ Cn : Ax = 0} will be used in the sequel. The
smallest positive integer is k, such that rank (Ak) = rank(Ak+1) is called the index of A ∈ Cn×n and
denoted by ind(A).

Let A ∈ Cm×n. If a matrix X ∈ Cn×m satisfies AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA,
then X is called the Moore-Penrose inverse of A [13, 17] and denoted by X = A†. Let A, X ∈ Cn×n with
ind (A) = k. Then, the algebraic definition of the Drazin inverse is as follows if

AXA = A, XAk+1 = Ak and AX = XA,

then X is called the Drazin inverse of A. If such X exists, then it is unique and denoted by AD [7].
Note that for a square complex matrix, the algebraic definition of the Drazin inverse is equivalent to
the functional definition of the Drazin inverse. We have the following lemma by the canonical form
representation for A and AD in Theorem 7.2.1 [5].

Lemma 1.1. Let A ∈ Cn×n with ind (A) = k > 0, then the Drazin inverse exists.

The core inverse and the dual core inverse for a complex matrix was introduced by Baksalary
and Trenkler [4]. Let A ∈ Cn×n. A matrix X ∈ Cn×n is called a core inverse of A if it satisfies
AX = PA and R(X) ⊆ R(A), where R(A) denotes the column space of A and PA is the orthogonal
projector onto R(A). If such a matrix exists, then it is unique (and denoted by A #O). Baksalary and
Trenkler gave several characterizations of the core inverse by using the decomposition of Hartwig
and Spindelböck [10, 11]. In [12], Mary introduced a new type of generalized inverse, namely the
inverse along an element. This inverse is depended on Green’s relations [9]. The inverse along an
element contains some known generalized inverses, such as group inverse, Drazin inverse and Moore-
Penrose inverse. Many existence criterion for the inverse along an element can be found in [12, 16].
Manjunatha Prasad and Mohana [15] introduced the core-EP inverse of a matrix. Let A ∈ Cn×n. If there
exists X ∈ Cn×n such that XAX = X and R(X) = R(X∗) = R(Ak), then X is called the core-EP inverse
of A. If such inverse exists, then it is unique and denoted by A †O. The weak group inverse of a complex
matrix was introduced by Wang and Chen [22], which is the unique matrix X such that AX2 = X and
AX = A †OA and denoted by X = AwO.

Let A ∈ Cn×n. The core-nilpotent decomposition [14, see Theorem 2.2.21] of A is the sum of two
matrices A1 and A2, i.e., A = A1 + A2, such that rank (A1) = rank (A2

1), A2 is nilpotent and A1A2 =

A2A1 = 0. It is well known that this decomposition is unique. Moreover, A1 = AADA = ADA2 = A2AD

by [5, Definition 7.3.1], if ind (A) ⩽ 1, and thus A coincides with A1. A1 is called the core part of A.
Also, A2 = A − AADA is the nilpotent part of A. In [21, Theorem 2.1], Wang introduced a new matrix
decomposition, namely the core-EP decomposition of A ∈ Cn×n with ind(A) = k. Given a matrix
A ∈ Cn×n, then A can be written as the sum of matrices Â1 ∈ C

n×n and Â2 ∈ C
n×n. That is A = Â1 + Â2,

where Â1 is an index one matrix, Âk
2 = 0 and Â∗1Â2 = Â2Â1 = 0. In [21, Theorems 2.3 and 2.4], Wang

proved this matrix decomposition is unique and that there exists a unitary matrix U ∈ Cn×n such that

Â1 = U
[

T S
0 0

]
U∗ and Â2 = U

[
0 0
0 N

]
U∗, (1.1)
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where T ∈ Cr×r is nonsingular, N ∈ C(n−r)×(n−r) is nilpotent and r is number of nonzero eigenvalues of
A. In [21, Theorem 2.3], Wang proved that Â1 can be described by using the Moore-Penrose inverse of
Ak. The explicit expressions of Â1 can be found in the following lemmas.

Lemma 1.2. Let A ∈ Cn×n with ind(A) = k. If A = Â1 + Â2 is the core-EP decomposition of A, then
Â1 = Ak(Ak)†A and Â2 = A − Ak(Ak)†A.

Let A ∈ Cn×n with ind (A) = k. The EP-nilpotent decomposition of A was introduced by Wang and
Liu [23]. A can be written as A = Ã1 + Ã2, where Ã1 is an EP matrix, Ãk+1

2 = 0 and Ã2Ã1 = 0. By the
proof of [23, Theorem 2.2], one can get the following lemma.

Lemma 1.3. [23, Theorem 2.1] Let A ∈ Cn×n with ind (A) = k and A = Ã1 + Ã2 be the EP-nilpotent
decomposition of A. Then, there exists a unitary matrix U ∈ Cn×n such that

Ã1 = U
[

T 0
0 0

]
U∗ and Ã2 = U

[
0 S
0 N

]
U∗, (1.2)

where T ∈ Cr×r is nonsingular, N ∈ C(n−r)×(n−r) is nilpotent and r is the number of nonzero eigenvalues
of A.

The core part of the EP-nilpotent decomposition can be expressed by the Moore-Penrose inverse of
Ak, where ind(A) = k.

Lemma 1.4. [23, Theorem 2.2] Let A ∈ Cn×n with ind(A) = k and A = Ã1 + Ã2 be the EP-nilpotent
decomposition of A as (1.2), then Ã1 = AAk(Ak)†.

Let A, B,C ∈ Cn×n. We say that Y ∈ Cn×n is a (B,C)-inverse of A if we have

YAB = B, CAY = C, N(C) ⊆ N(Y) and R(Y) ⊆ R(B).

If such Y exists, then it is unique (see [1, Definition 4.1] and [19, Definition 1.2]). We also call the
(B,C)-inverse of A is the inverse of A along B and C. Note that the (B,C)-inverse was introduced in the
setting of semigroups [8]. The (B,C)-inverse of A will be denoted by A∥(B,C). Note that Bapat et al. [2]
investigated an outer inverse in Theorem 5 that is exactly the same as the (y, x)-inverse, where x and y
are elements in a semigroup. In [20], Rao and Mitra showed that A∥(B,C) = B(CAB)−C, where (CAB)−

stands for the arbitrary inner inverse of CAB, where CAB is the product of A, B,C ∈ Cn×n.

Lemma 1.5. [18, Lemma 2.2.6(g)] Let A, B,C ∈ Cn×n. If rank (CAB) = rank (B) = rank (C), then
B(CAB)−C is invariant for any choice of (CAB)−.

The following lemma shows that the (B,C)-inverse of A is an outer inverse of A, and can be
characterized by using the column space of B and the null space of C.

Theorem 1.6. [8, Theorem 2.1 (ii) and Proposition 6.1] Let A, B,C ∈ Cn×n. Then, Y ∈ Cn×n is the
(B,C)-inverse of A if, and only if, YAY = Y, R(Y) = R(B) and N(Y) = N(C).

The following lemma can be found in [24, Lemma 3.11] for elements in rings, which also shows
that the Drazin inverse is the inverse along Ak and Ak, where k is the index of A.

Lemma 1.7. [8, p1910] Let A ∈ Cn×n with ind(A) = k, then the Drazin inverse of A coincides with the
(Ak, Ak)-inverse of A. In particular, the group inverse of A coincides with the (A, A)-inverse of A.
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Lemmas 1.8 and 1.9 show that the core-EP inverse of A is a generalization of the core inverse of A.
Moreover, the core inverse of Ak is the core-EP inverse of A, where k is the index of A.

Lemma 1.8. [8, p1910] Let A ∈ Cn×n with ind(A) = 1, then the core inverse of A coincides with the
(A, A∗)-inverse of A.

Lemma 1.9. [19, Theorem 1.10] Let A ∈ Cn×n with ind(A) = k, then the core-EP inverse of A coincides
with the (Ak, (Ak)∗)-inverse of A.

Lemma 1.10. [3, Remark 2.2 (i)] Let A, B,C,U,V ∈ Cn×n. If R(B) = R(U) andN(C) = N(V), then A
is (B,C)-invertible if and only if A is (U,V)-invertible. In this case, we have A∥(B,C) = A∥(U,V).

Based on the core parts of the core-nilpotent decomposition, core-EP decomposition and EP-
nilpotent decomposition of A ∈ Cn×n, respectively, three generalized inverses along two matrices are
investigated, namely, the Drazin inverse, the weak group inverse and the core-EP inverse. Let X1, X4

and X7 be the generalized inverses along A1, Â1 and Ã1, respectively. The major contributions of the
article can be highlighted as follows:

1) Three generalized inverses related the core part A1 of the core-nilpotent decomposition are
investigated.

2) Three generalized inverses related the core part Â1 of the core-EP decomposition are investigated.
3) Three generalized inverses related the core part Ã1 of the EP-nilpotent decomposition are

investigated.
4) We show that the Drazin inverse, the weak group inverse and the core-EP inverse are different

generalized inverses.
5) For a singular complex matrix, we can prove that the Drazin inverse coincides with the weak

group inverse, which is different from the core-EP inverse. Moreover, we can show that the Drazin
inverse, the weak group inverse and the core-EP inverse can be same for a certain singular complex
matrix.

The paper is organized as follows. In section two, we prove that Xi is the same as X j. Moreover, X j

coincides with the Drazin inverse of A, where i, j ∈ {1, 2, 3}. In section three, we can prove that Xi is
the same as X j and that X j coincides with the weak group inverse of A, where i, j ∈ {4, 5, 6}. In section
four, we can prove that Xi is the same as X j and X j coincides with the core-EP inverse of A, where
i, j ∈ {7, 8, 9}. In section five, relationships between Xi and X j for i, j ∈ {1, 2, · · · , 9} are investigated.

2. Three generalized inverses related the core part A1 of the core-nilpotent decomposition

In this section, three generalized inverses along the core parts of matrix decompositions are
introduced. In Table 1, one can see that we denoted the generalized inverse along the core parts of the
core-nilpotent decomposition as X1 by using the symbol of the generalized inverse along two matrices.
In a similar way, X2 denotes the generalized inverse along the core part of the core-EP decomposition
and the core part of the core-nilpotent decomposition. X3 denotes the generalized inverse along the
core part of the EP-nilpotent decomposition and the core part of the core-nilpotent decomposition. In
addition, we prove that Xi is the same as X j and that X j coincides with the Drazin inverse of A, where
i, j ∈ {1, 2, 3}.
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Table 1. Three generalized inverses related A1 of the core-nilpotent decomposition.

Three generalized inverses Core part The generalized inverses along the core part
type I A1 X1 = A∥(A1,A1)

type II Â1 and A1 X2 = A∥(Â1,A1)

type III Ã1 and A1 X3 = A∥(Ã1,A1)

Theorem 2.1. Let A ∈ Cn×n with ind(A) = k. The X1 coincides with the Drazin inverse of A. That
is the Drazin inverse of A is the inverse along A1, where A1 is the core part of the core-nilpotent
decomposition.

Proof. Let A1 be the core part of the core-nilpotent decomposition, then A1 = ADA2 and we have

A1 = ADA2 = (ADA)A = (ADA)kA = Ak(AD)kA.

Ak = ADAk+1 = (ADA)Ak = (ADA)2Ak = ADA2ADAk = A1ADAk.
(2.1)

Thus, we have
R(A1) = R(ADA2) = R(Ak). (2.2)

For any x ∈ N(A1), then

ADx = ADAADx = (ADA)2ADx = (AD)2ADA2x = (AD)2A1x = 0. (2.3)

For any y ∈ N(AD), then
A1y = ADA2y = A2ADy = 0. (2.4)

So,
N(AD) = N(A1) (2.5)

by the Eqs (2.3) and (2.4). For any u ∈ N(AD), then

Aku = ADAk+1u = Ak+1ADu = 0. (2.6)

For any v ∈ N(Ak), then

ADv = ADAADv = (ADA)kADv = (AD)k+1Akv = 0. (2.7)

So,
N(AD) = N(Ak) (2.8)

by the Eqs (2.6) and (2.7). Thus, we have

N(A1) = N(Ak) (2.9)

by the Eqs (2.5) and (2.8). Therefore, X1 coincides with the Drazin inverse by Eqs (2.2) and (2.9) and
Lemmas 1.7 and 1.10. □

Theorem 2.2. Let A ∈ Cn×n with ind(A) = k. The X2 coincides with the Drazin inverse of A. That
is the Drazin inverse of A is the inverse along Â1 and A1, where Â1 is the core part of the core-EP
decomposition and A1 is the core part of the core-nilpotent decomposition.
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Proof. By the equalities Â1 = Ak(Ak)†A = Ak[(Ak)†Ak]∗(Ak)†A = Ak(Ak)∗[(Ak)†]∗(Ak)†A and Ak(Ak)∗ =
Ak(Ak)†Ak(Ak)∗ = Ak(Ak)†AAk−1(Ak)∗ = Â1Ak−1(Ak)∗, we have

R(Â1) = R(Ak(Ak)∗). (2.10)

Thus, X2 coincides the inverse along Ak(Ak)∗ and (Ak)∗A. That is X2 = A∥(A
k(Ak)∗,(Ak)∗A), which

is equivalent to X2 as the (Ak(Ak)∗, (Ak)∗A)-inverse. By Â1 = Ak(Ak)†A and Ak = Ak(Ak)†Ak =

Ak(Ak)†AAk−1 = A1Ak−1, we have R(Â1) = R(Ak). Thus, the condition (3.6) can be replaced by
R(Â1) = R(Ak) and we have the following theorems.
Thus, X2 coincides with the Drazin inverse of A by Lemma 1.10, and the proof of Theorem 2.1. □

Theorem 2.3. Let A ∈ Cn×n with ind(A) = k. The X3 coincides with the Drazin inverse of A, that is
the Drazin inverse of A is the inverse along Ã1 and A1, where Ã1 is the core part of the EP-nilpotent
decomposition and A1 is the core part of the core-nilpotent decomposition.

Proof. Since

Ak+1(Ak)† = Ak+1(Ak)†Ak(Ak)†

= Ak+1[(Ak)†)Ak]∗(Ak)† = Ak+1(Ak)∗[(Ak)†]∗(Ak)†,
Ak+1(Ak)∗ = Ak+1(Ak(Ak)†Ak)∗ = Ak+1[(Ak)†Ak]∗(Ak)∗

= Ak+1(Ak)†Ak(Ak)∗,

(2.11)

we have R(Ak+1) = R(Ã1), which implies

R(Ak) = R(Ã1). (2.12)

Thus, X2 coincides the inverse along Ak(Ak)∗ and (Ak)∗A. That is X2 = A∥(A
k(Ak)∗,(Ak)∗A), which is

equivalent to X2 as the (Ak(Ak)∗, (Ak)∗A)-inverse. By Â1 = Ak(Ak)†A and Ak = Ak(Ak)†Ak =

Ak(Ak)†AAk−1 = A1Ak−1, we have R(Â1) = R(Ak). Thus, the condition (3.6) can be replaced by
R(Â1) = R(Ak) and we have the following theorem. Thus, X3 coincides with the Drazin inverse of
A by Lemma 1.10, and the proof of Theorem 2.1. □

Theorem 2.4. Let A ∈ Cn×n with ind(A) = k, then, Xi is the same as X j. Moreover, X j coincides with
the Drazin inverse of A, where i, j ∈ {1, 2, 3}.

Proof. It is trivial by Theorems 2.1–2.3. □

3. Three generalized inverses related the core part Â1 of the core-EP decomposition

In this section, three generalized inverses along the core parts of matrix decompositions are
introduced. In Table 2, one can see that we denoted the generalized inverse along the core parts of the
core-EP decomposition as X4 by using the symbol of the generalized inverse along two matrices. In a
similar way, X5 denotes the generalized inverse along the core part of the core-nilpotent decomposition
and the core part of the core-EP decomposition. X6 denotes the generalized inverse along the core part
of the EP-nilpotent decomposition and the core part of the core-EP decomposition decomposition. In
addition, we prove that Xi is the same as X j and that X j coincides with the weak group inverse of A,
where i, j ∈ {4, 5, 6}.
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Table 2. Three generalized inverses related Â1 of the core-EP decomposition.

Three generalized inverses Core parts The generalized inverses along the core part
type IV Â1 X4 = A∥(Â1,Â1)

type V A1 and Â1 X5 = A∥(A1,Â1)

type VI Ã1 and Â1 X6 = A∥(Ã1,Â1)

Theorem 3.1. Let A ∈ Cn×n with ind(A) = k, then the generalized inverse X4 coincides with the
(Ak(Ak)∗, (Ak)∗A)-inverse of A.

Proof. Let Â1 be the core part of the core-EP decomposition as (1.1), the Â1 = Ak(Ak)†A by Lemma 1.2.
For any x ∈ N((Ak)†A), we have

Â1x = Ak(Ak)†Ax = 0. (3.1)

For any y ∈ N(Â1), we have

(Ak)†Ay = (Ak)†Ak(Ak)†Ay = (Ak)†A1y = 0. (3.2)

Thus, we have
N(Â1) = N((Ak)†A) (3.3)

by Eqs (3.1) and (3.2). Also, we have

N((Ak)∗A) = N((Ak)†A) (3.4)

by
(Ak)∗A = [Ak(Ak)†Ak]∗A = (Ak)∗Ak(Ak)†A

and
(Ak)†A = (Ak)†Ak(Ak)†A = (Ak)†[Ak(Ak)†]∗A = (Ak)†[(Ak)†]∗(Ak)∗A.

Equations (3.3) and (3.4) imply
N(Â1) = N((Ak)∗A). (3.5)

By Â1 = Ak(Ak)†A = Ak(Ak)†Ak(Ak)†A = Ak[(Ak)†Ak]∗(Ak)†A = Ak(Ak)∗[(Ak)†]∗(Ak)†A and Ak(Ak)∗ =
Ak(Ak)†Ak(Ak)∗ = Ak(Ak)†AAk−1(Ak)∗ = Â1Ak−1(Ak)∗, we have

R(Â1) = R(Ak(Ak)∗). (3.6)

Thus, X4 coincides the inverse along Ak(Ak)∗ and (Ak)∗A. That is, X4 = A∥(A
k(Ak)∗,(Ak)∗A), which is

equivalent to X4 as the (Ak(Ak)∗, (Ak)∗A)-inverse. □

We have Â1 = Ak(Ak)†A and Ak = Ak(Ak)†Ak = Ak(Ak)†AAk−1 = A1Ak−1 by Lemma 1.2, so R(Â1) =
R(Ak). Thus, condition (3.6) can be replaced by R(Â1) = R(Ak) and we have the following theorem.

Theorem 3.2. Let A ∈ Cn×n with ind(A) = k, then X4 coincides with the (Ak, (Ak)∗A)-inverse.
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For the square matrix A1, an inner inverse of A1 with columns belonging to the linear manifold
generated by the columns of A1 and rows belonging to the linear manifold generated by the rows of
A1 will be called a generalized constrained inverse of A and denoted by A−gRC [6, Definition 3.1]. That
is, if X ∈ Cn×n satisfies A1XA1 = A1, R(X) ⊆ R(A1) and RS(X) ⊆ RS(A1), then X = A−gRC. In the
following lemmas, one can see that the generalized constrained inverse of A coincides with the weak
group inverse by Lemma 3.3. Moreover, the weak group inverse of A coincides with the group inverse
of Â1 by Lemma 3.5, thus the generalized constrained inverse of A coincides with the group inverse
of Â1. By Lemma 3.4 and Theorem 3.2, we have that X4 coincides with the generalized constrained
inverse of A.

Lemma 3.3. [6, Theorem 3.4] Let A ∈ Cn×n. If X ∈ Cn×n is a generalized constrained inverse of A,
then this generalized constrained inverse of A is unique. Moreover, the generalized constrained inverse
of A coincides with the weak group inverse; that is, A−gRC = AwO.

Lemma 3.4. [6, Theorem 4.4] Let A ∈ Cn×n with ind (A) = k. The generalized constrained inverse of
A coincides with the (Ak, (Ak)∗A)-inverse of A.

Lemma 3.5. [22, Theorem 3.7] Let A ∈ Cn×n with ind(A) = k and A = Â1 + Â2 be the core-EP
decomposition of A as given in (1.1). The weak group inverse of A coincides with the group inverse of
Â1; that is, AwO = Â#

1.

Lemma 3.6. Let A ∈ Cn×n with ind(A) = k and A = Â1 + Â2 be the core-EP decomposition of A as
given in (1.1). The weak group inverse of A coincides with the (Â1, Â1)-inverse of A.

Proof. It is trivial by Lemmas 3.5 and 1.7. □

Theorem 3.7. Let A ∈ Cn×n with ind(A) = k and A = Â1 + Â2 be the core-EP decomposition of A
as (1.1). Then, the inverse X4 coincides with the weak group inverse of A.

Proof. It is trivial by Lemma 3.6 and the definition of the inverse of X2. □

Theorem 3.8. Let A ∈ Cn×n with ind(A) = k, then the generalized inverse X5 coincides with the
(Ak, (Ak)∗A)-inverse of A.

Proof. It is trivial by Theorems 2.1 and 3.1. □

Theorem 3.9. Let A ∈ Cn×n with ind(A) = k, then the generalized inverse X6 coincides with the
(Ak, (Ak)∗A)-inverse of A.

Proof. It is trivial by Theorems 2.3 and 3.1. □

Theorem 3.10. Let A ∈ Cn×n with ind(A) = k, then Xi is the same as X j. Moreover, X j coincides with
the weak group inverse of A, where i, j ∈ {4, 5, 6}.

Proof. It is obvious by Theorems 3.1, 3.8 and 3.9. □
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4. Three generalized inverses related the core part Ã1 of the EP-nilpotent decomposition

In this section, three generalized inverses along the core parts of matrix decompositions are
introduced. In Table 3, one can see that we denoted the generalized inverse along the core parts
of the EP-nilpotent decomposition as X7 by using the symbol of the generalized inverse along two
matrices. In a similar way, X8 denotes the generalized inverse along the core part of the core-nilpotent
decomposition and the core part of the EP-nilpotent decomposition. X9 denotes the generalized inverse
along the core part of the core-EP decomposition and the core part of the EP-nilpotent decomposition
decomposition. In addition, we prove that Xi is the same as X j and that X j coincides with the core-EP
inverse of A, where i, j ∈ {7, 8, 9}.

Table 3. Three generalized inverses related Ã1 of the EP-nilpotent decomposition.

Three generalized inverses Core parts The generalized inverses along the core part
type VII Ã1 X7 = A∥(Ã1,Ã1)

type VIII A1 and Ã1 X8 = A∥(A1,Ã1)

type IX Â1 and Ã1 X9 = A∥(Â1,Ã1)

Theorem 4.1. Let A ∈ Cn×n with ind(A) = k. The X7 coincides with the inverse of A along Ak+1(Ak)∗

and (Ak)∗, that is X7 is the (Ak, (Ak)∗)-inverse. Moreover, the generalized inverse X7 is the core-EP
inverse of A.

Proof. Let X3 be the (Ã1, Ã1)-inverse of A. That is the (Ak+1(Ak)†, Ak+1(Ak)†)-inverse of A by Lemma 1.4.
Since

Ak+1(Ak)† = Ak+1(Ak)†Ak(Ak)†

= Ak+1[(Ak)†)Ak]∗(Ak)† = Ak+1(Ak)∗[(Ak)†]∗(Ak)†,
Ak+1(Ak)∗ = Ak+1(Ak(Ak)†Ak)∗ = Ak+1[(Ak)†Ak]∗(Ak)∗

= Ak+1(Ak)†Ak(Ak)∗,

(4.1)

we have R(Ak+1) = R(Ã1), which implies

R(Ak) = R(Ã1). (4.2)

For any u ∈ N(Ã1),

(Ak)∗u = [Ak(Ak)†Ak]∗ = (Ak)∗Ak(Ak)†u
= (Ak)∗ADAk+1(Ak)†u = (Ak)∗ADÃ1u = 0

(4.3)

by Lemma 1.1. For any v ∈ N((Ak)∗),

Ã1v = Ak+1(Ak)†v = Ak+1(Ak)†Ak(Ak)†v
= Ak+1(Ak)†((Ak)†)∗(Ak)∗v = 0,

(4.4)

and we have
N(Ã1) = N((Ak)∗). (4.5)
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Thus, X7 coincides with the inverse of A along Ak+1(Ak)∗ and (Ak)∗ by (4.2), (4.5) and Lemma 1.10.
Therefore, the generalized inverse X7 is the core-EP inverse of A by Lemma 1.8 and the condition X7

is the (Ak, (Ak)∗)-inverse. □

Theorem 4.2. Let A ∈ Cn×n with ind(A) = k, then X8 coincides with the inverse of A along Ak+1(Ak)∗

and (Ak)∗, that is X8 is the (Ak, (Ak)∗)-inverse. Moreover, the generalized inverse X8 is the core-EP
inverse of A.

Proof. It is trivial by Theorems 2.1 and 4.1. □

Theorem 4.3. Let A ∈ Cn×n with ind(A) = k, then X9 coincides with the inverse of A along Ak+1(Ak)∗

and (Ak)∗, that is X9 is the (Ak, (Ak)∗)-inverse. Moreover, the generalized inverse X9 is the core-EP
inverse of A.

Proof. It is trivial by Theorems 3.1 and 4.1. □

Theorem 4.4. Let A ∈ Cn×n with ind(A) = k, then Xi is the same as X j. Moreover, X j coincides with
the core-EP inverse of A, where i, j ∈ {7, 8, 9}.

Proof. It is obvious by Theorems 4.1–4.3. □

Let X1, X4 and X7 be the generalized inverses along A1, Â1 and Ã1, respectively. Note that X1 denotes
the inverse along A1 and A1; X2 denotes the inverse along Â1 and A1; X3 denotes the inverse along Ã1

and A1; X4 denotes the inverse along A1 and Â1; X5 denotes the inverse along Â1 and Â1; X6 denotes the
inverse along Ã1 and Â1; X7 denotes the inverse along A1 and Ã1; X8 denotes the inverse along Â1 and
Ã1 and X9 denotes the inverse along Ã1 and Ã1. Table 4 shows that X1, X2 and X3 have the same column
and nilpotent parts and R(Xi) = R(Ak) and N(Xi) = N(Ak) for i = 1, 2, 3; X4, X5 and X6 have the same
column and nilpotent parts and that R(X j) = R(Ak) and N(X j) = N((Ak)∗A) for j = 4, 5, 6 and X7, X8

and X9 have the same column and nilpotent parts and R(Xk) = R(Ak) and that N(Xk) = N((Ak)∗) for
k = 7, 8, 9.

Table 4. Relationships between Xi and X j(i, j ∈ {1, 2, ..., 9}).

Nine generalized inverses The column part The nilpotent part
X1 Ak Ak

X2 Ak Ak

X3 Ak Ak

X4 Ak (Ak)∗A
X5 Ak (Ak)∗A
X6 Ak (Ak)∗A
X7 Ak (Ak)∗

X8 Ak (Ak)∗

X9 Ak (Ak)∗

5. Relationships between Xi and X j for i, j ∈ {1, 2, · · · , 9}

Let A ∈ Cn×n with ind A = k. In this section, we will show that the generalized inverses X1, X4

and X7 are different generalized inverses. For a singular complex matrix, we can prove that the Drazin

AIMS Mathematics Volume 8, Issue 12, 30194–30208.



30204

inverse coincides with the weak group inverse, which is different from the core-EP inverse. Moreover,
we show that the Drazin inverse, the weak group inverse and the core-EP inverse can be the same for a
certain singular complex matrix.

Example 5.1. Let A =


1 1 0
1 1 1
1 1 1

2

 ∈ C3×3. Then, it is easy to check that ind(A) = 2 and

A1 =


4
5

4
5

2
5

6
5

6
5

3
5

1 1 1
2

 , Â1 =


60
77

60
77

34
77

90
77

90
77

51
77

75
77

75
77

85
154

 , Ã1 =


40
77

60
77

50
77

60
77

90
77

75
77

50
77

75
77

125
154

 ,
X1 = X2 = X3 =


16

125
16

125
8

125
24

125
24

125
12

125
4
25

4
25

2
25

 , X4 = X5 = X6 =


48

385
48

385
136

1925
72

385
72

385
204

1925
12
77

12
77

34
385

 ,
X7 = X8 = X9 =


32

385
48

385
8

77
48

385
72

385
12
77

8
77

12
77

10
77

 .
However, X1 , X4, X1 , X7, X4 , X7.

It is trivial that the generalized inverses X1, X4 and X7 are different generalized inverses by
Example 5.1. Thus, we have the following theorem.

Theorem 5.2. Let A ∈ Cn×n with ind A = k, then generalized inverses X1, X4 and X7 are different
generalized inverses.

Example 5.3. Let A =


1 0 1 2
0 1 1 2
0 0 2 4
0 0 −1 −2

 ∈ C4×4. Then, it is easy to check that ind(A) = 2, and

A1 =


1 0 1 2
0 1 1 2
0 0 0 0
0 0 0 0

 , Â1 =


1 0 1 2
0 1 1 2
0 0 0 0
0 0 0 0

 , Ã1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

X1 = X2 = X3 = X4 = X5 = X6


1 0 1 2
0 1 1 2
0 0 0 0
0 0 0 0

 ,

X7 = X8 = X9 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .
However, X1 , X7, X4 , X7.

For a singular complex matrix, Example 5.3 shows that the Drazin inverse coincides with the weak
group inverse, which is different from the core-EP inverse.
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Example 5.4. Let A =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

 ∈ C4×4. Then, it is easy to check that ind(A) = 1, and

A1 =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

 , Â1 =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

 , Ã1 =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

 .

However, X1 = X2 = X3 = X4 = X5 = X6 = X7 = X8 = X9 =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

.
Example 5.4 shows that the Drazin inverse, the weak group inverse and the core-EP inverse can be

the same for a certain singular complex matrix.

Example 5.5. Let A =


1 0 1 −1
0 1 1 −1
0 0 0 1
0 0 0 0

 ∈ C4×4, B =


1 −1 1 0
0 0 0 0
0 1 0 0
0 0 1 0

 ∈ C4×4. Then, it is easy to check

that ind(A) = 2 and ind(B) = 3, but

A1 =


1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

 , Â1 =


1 0 1 −1
0 1 1 −1
0 0 0 0
0 0 0 0

 , Ã1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

X1 = X2 = X3 =


1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

 , X4 = X5 = X6 =


1 0 1 −1
0 1 1 −1
0 0 0 0
0 0 0 0

 ,

X7 = X8 = X9 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,
with X1 , X4, X1 , X7, X4 , X7, and
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B1 =


1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , B̂1 =


1 −1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , B̃1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

Y1 = Y2 = Y3 =


1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,Y4 = Y5 = Y6 =


1 −1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

Y7 = Y8 = Y9 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
with Y1 , Y4, Y1 , Y7, Y4 , Y7.

Example 5.5 shows that the difference index of the complex matrices does not affect the
relationships between the Drazin inverse, the weak group inverse and the core-EP inverse.

Theorem 5.2 and Example 5.1 show that the generalized inverses X1, X4 and X7 are different
generalized inverses. Thus, we have the following Tables 5 and 6.

Table 5. Counterexamples related the inverse X1 to X9.

Related generalized inverses Counterexamples
X1 , X4 Example 5.1
X1 , X7 Example 5.1
X4 , X7 Example 5.1

Table 6. Examples related the inverse X1 to X9.

Related generalized inverses Examples
X1 = X4 , X7 Example 5.3
Xi = X j (i, j ∈ 1, 2, · · · , 9) Example 5.4

6. Conclusions

New characterizations for generalized inverses along the core parts of three matrix decompositions
were investigated in this paper. A number of characterizations and different representations of the
Drazin inverse, the weak group inverse and the core-EP inverse were given by using the core parts
A1, Â1 and Ã1. Some useful examples were given, which showed that the generalized inverses X1,
X4 and X7 are different generalized inverses. We believe that investigation related to the generalized
inverses along the core parts of related matrix decompositions will attract attention, and we describe
perspectives for further research:
1) Considering the matrix partial orders based on the generalized inverses can relate the core parts of
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matrix decompositions.
2) Extending the generalized inverses can relate the core parts of matrix decompositions to an element
in rings.
3) The column space and the null space of a complex matrix can be described by the core parts of
matrix decompositions.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The research article is supported by the National Natural Science Foundation of China
(No. 12001223), the Qing Lan Project of Jiangsu Province, the Natural Science Foundation of
Jiangsu Province of China (No. BK20220702), the Natural Science Foundation of Jiangsu Education
Committee (No. 22KJB110010), “Five-Three-Three” Talents of Huaian City and College Students
Innovation and Entrepreneurship Training Program (No. 202311049024Z).

Conflict of interest

The authors declare no conflict of interest.

References

1. J. Benı́tez, E. Boasso, H. W. Jin, On one-sided (B,C)-inverses of arbitrary matrices, Electron. J.
Linear Al., 32 (2017), 391–422. https://doi.org/10.13001/1081-3810.3487

2. R. B. Bapat, S. K. Jain, K. M. P. Karantha, M. D. Raj, Outer inverses: characterization and
application, Linear Algebra Appl., 528 (2017), 171–184. https://doi.org/10.1016/j.laa.2016.06.045

3. E. Boasso, G. Kantún-Montiel, The (b, c)-inverses in rings and in the Banach context, Mediterr. J.
Math., 14 (2017), 112. http://doi.org/ 10.1007/s00009-017-0910-1

4. O. M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear A., 58 (2010), 681–697.
http://doi.org/10.1080/03081080902778222

5. S. L. Campbell, C. D. Meyer, Generalized inverses of linear transformations, Philadelphia: SIAM,
2009. https://doi.org/10.1137/1.9780898719048

6. X. F. Cao, S. Z. Xu, X. C. Wang, K. Liu, Two generalized constrained inverses based on the core
part of the core-EP decomposition of a complex matrix, ScienceAsia,(accepted).

7. M. P. Drazin, Pseudo-inverses in associative rings and semigroup, Am. Math. Mon., 65 (1958),
506–514. http://doi.org/10.1080/00029890.1958.11991949

8. M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl., 436 (2012), 1909–1923.
https://doi.org/10.1016/j.laa.2011.09.004

9. J. A. Green, On the structure of semigroups, Ann. Math., 54 (1951), 163–172.

AIMS Mathematics Volume 8, Issue 12, 30194–30208.

http://dx.doi.org/https://doi.org/10.13001/1081-3810.3487
http://dx.doi.org/https://doi.org/10.1016/j.laa.2016.06.045
http://dx.doi.org/http://doi.org/ 10.1007/s00009-017-0910-1
http://dx.doi.org/http://doi.org/10.1080/03081080902778222
http://dx.doi.org/https://doi.org/10.1137/1.9780898719048
http://dx.doi.org/http://doi.org/10.1080/00029890.1958.11991949
http://dx.doi.org/https://doi.org/10.1016/j.laa.2011.09.004


30208

10. R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal., 61 (1976), 197–251.
https://doi.org/ 10.1007/BF00281485
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