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Abstract: Nitric oxide (NO) is already recognized as an important signaling molecule in the brain.
It diffuses easily and the nervous cell’s membrane is permeable to NO. The information transmission
is three-dimensional, which is different from synaptic transmission. NO operates in two different
ways: Close and specific at the synapses of neurons, and as a volumetric transmitter sending signals to
various targets, regardless of their anatomy, connectivity or function, when multiple nearby sources
act simultaneously. These modes of operation seem to be the basis by which NO is involved in
many central mechanisms of the brain, such as learning, memory formation, brain development and
synaptogenesis. This work focuses on the effect of NO dynamics on the environment through which it
diffuses, using automata networks. We study their implications in the formation of complex functional
structures in the volume transmission (VT), which are necessary for the synchronous functional
recruitment of neuronal populations. We qualitatively and quantitatively analyze the proposed model
regarding these characteristics through the concepts of entropy and mutual information. The proposed
deterministic model allows the incorporation of fuzzy dynamics. With that, a generalized model based
on fuzzy automata networks can be provided. This allows the generation and diffusion processes of NO
to be arbitrarily produced and maintained over time. This model can accommodate arbitrary processes
in decision-making mechanisms and can be part of a complete formal VT framework in the brain and
artificial neural networks.
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1. Introduction

In the early 1980s, Robert F. Furchgott and John V. Zawadzki, while analyzing the contractions
and relaxations of vascular rings in response to certain pharmacological substances (adrenaline for
constriction and acetylcholine for dilation), observed that acetylcholine did not produce vasodilation
when the inner layer of cells in blood vessels was removed [1]. This relaxation or vasodilation,
dependent on the vascular endothelium, was due to the release of a substance by acetylcholine that,
when it reached the smooth muscles of the vascular wall, produced vasodilation. This unknown
substance was called the endothelium-derived relaxing factor (EDRF); this substance had a very
unstable character (in normal physiological conditions, 3 seconds of half-life), and the vasodilation
that it produced was a consequence from activating a localized enzyme in the vascular wall called
guanylate cyclase [2].

Identifying EDRF with nitric oxide (NO) was a major milestone in vascular physiology and
pathophysiology research. Its discovery was the product of parallel work from different research groups
that reached similar results [3–6], and it was at the end of the 1980s when researchers David S. Bredt,
Solomon H. Snyder and Salvador Moncada began to relate NO to the nervous system in its role as a
neurotransmitter [7–9].

NO is an unstable molecule that is free radical, gaseous and fat soluble and it is capable of crossing
cell membranes without the aid of specific transporters or mechanisms. It is small (1.15 Ä = 1.15 ·
10−4µm), spreads rapidly and has a half-life between 3 and 5 seconds. It is produced from the amino
acid L-arginine and its production is regulated by the enzyme nitric oxide synthase (NOS).

The two classes of NOS that exist, constitutive (cNOS) and inducible (iNOS), are distributed in
very different and varied areas. Thus, the endothelial isoform (eNOS) of cNOS is located in the nerve
fibres that surround blood vessels and endothelial cells, and the neuronal isoform (nNOS) is located in
neurons of the central nervous system (CNS) and the peripheral nervous system (PNS). On the other
hand, iNOS appears in glial cells and is only expressed in the event of brain injury or neurodegenerative
diseases [10]. Based on the above, we observed that there are multiple neurons capable of synthesising
NO, which is the subject of our modeling and simulation study. This NO acts in the CNS as an atypical
neurotransmitter because it can be released by any part of the cell membrane without the need for
presynaptic or postsynaptic structures, storage vesicles or transporter proteins.

The dynamics of NO are formed by three fundamental processes (generation, diffusion and self-
regulation and recombination) [11] and begin through its generation, which is a process that occurs
within the chemical communication itself and requires the existence of the NOS enzyme and Ca2+

flux. This process causes a rapid and transitory release of moderate amounts of NO that diffuse in all
directions. The diffusion of NO is governed by the gradient of its own concentration, and its objectives
are those cells that, being within its reach, have the ability to recombine with it, such as the enzyme
soluble guanylate cyclase (GCs) [12, 13]. The maximum range of NO influence through diffusion can
reach 300 µm, totaling approximately 2 · 106 synapses [14], and as this diffusion takes place, a process
of self-regulation and recombination occurs with different substrates [15], with no reuptake processes.
The generated NO contributes to inhibiting the activity of NOS by a negative feedback mechanism,
leaving the area in a refractive period, during which NO generation does not occur again.

The presence of a molecule such as NO in the nervous system opens up new perspectives in the study
of its functioning due to its various functions in both the PNS and CNS [11], identifying it as a possible
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underlying element and supporting the high capacity of adaptation, flexibility and prediction that the
brain possesses. Confirming the latter is to understand the functioning of NO as a signaling molecule in
the brain. The absence of decisive experimental data for this function has generated the development
of various models. Thus, Tadeusz Malinski et al. [16] directly applied the Fick equation to model
the behavior of NO through isotropic and homogeneous diffusion. Lancaster J. R. [17] associated the
dynamics of NO with a random walk, intrinsically related to the parabolic equation of diffusion, and
introduced the compartment concept to model NO. Wood J. and Garthwaite J. [18] based their model
on an analytical solution of the diffusion equation and studied the physiological sphere of action and
influence of an isolated source of NO, also analyzing the self-regulation process of NO. Vaughn M.
W. et al. [19] characterized the dynamics of NO by means of a model composed of three regions with
differentiated dynamics and followed the anatomical structure of the vascular endothelium (luminal,
endothelial and adluminal). Philippides A. et al. [20] modeled the diffusion of NO from an irregular
structure using an analytical solution of the diffusion equation and introduced a global morphology
for a generation process where the generation of NO takes place in a spherical section. Suárez
Araujo C. P. et al. [21–23], developed several models to study and determine the dynamics of NO
from different approaches: An analytical model in a continuum based on the Fick equation that
allowed working with cylindrical morphologies; a compartmental model that, using phenomenological
equations of transport and compartmental analysis as an underlying formal mechanism, allowed
considering different morphologies and characteristics of NO dynamics, such as the nonisotropy of
the medium and the nonhomogeneous character of the basic processes of NO dynamics (generation
and diffusion of NO and reaction of NO with other molecules).

Our model focuses on the dynamics of NO as a signaling molecule in VT, mainly on how
NO transmits information using the extracellular environment in its three modes of operation: In
the single synapse, synaptic spillover and Volume Transmission (VT) [24]. We do not rule out
extending the scope of this model in the future, to incorporate the dynamics of NO recombination
with other substances and other biochemical networks, including models that allow us to work from
the perspective of the micro kinetics of NO.

In this field, metabolic models [25, 26], represent a very important tool for our understanding of
biological systems as they are more closely connected with cell behavior, and can adequately represent
the effects of the dynamics of NO on target cells, which span different time scales and are frequently
not recordable electrophysiologically [24].

Although there is a large body of work related to the dynamic of NO as a mediator of Central
Nervous System (CNS) functions, the manner in which NO does this is not well understood, because
its actions in target cells are mediated by metabotropic receptors with different time scales in its effects,
and these are often not electrophysiologically detectable. On the other hand, we seek to know how a
coherent and interpretable information transfer can be encoded by this signaling system in the brain.
Particularly because the message itself is not channelled to any target, but is free to diffuse from its
source in all three dimensions.

The main motivation of our work is to improve the knowledge and understanding the implications of
NO in VT, and its effects in the formation of complex functional structures on which the VT performed
by NO is supported, which are necessities for the synchronous functional recruitment of neuronal
populations.

In this work, we model the effect of NO dynamics in its environment, as well as its implications
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in the formation of complex functional structures on which the VT performed by NO is supported,
which is necessary for the synchronous functional recruitment of neuronal populations. Therefore, we
propose a model based on the different changes that occur in the environment where this dynamic takes
place. We use automata networks, which provide an alternative to classic and traditional models based
on continuous dynamic systems-ordinary differential equations and partial derivative equations. The
first model based on automata networks is deterministic, which presents a finite time of behavior based
on an initial configuration of compartments that are in a state of NO generation.

This deterministic model is extendable and can incorporate complexity into its processes. One of
these approaches allows the generation processes to occur arbitrarily in the compartments and be kept
random over time. In modeling, fuzzy dynamics are considered in the behavior of the automata that
are associated with these compartments. Thus, we obtain a model of a fuzzy automata network for the
diffusion of NO.

We organize this work into two major sections, in addition to the introduction and the conclusions.
Section 2 presents the formal tools and conceptualization of the automata networks (deterministic and
fuzzy) used to model the NO dynamics. The results of the model, an analysis and study of deterministic
convergence and an analysis of its dynamics are detailed in Section 3. We end this work with a section
that summarizes the conclusions and identifies the methodological axis of our future work. The list of
abbreviations and symbols is given in Table A1.1 (Annex 1. List of abbreviations and symbols).

2. Method

The method of our work is based on modeling using the discrete mathematical structure of
an automata network. In general, an automata network (AN) can be defined as a set of locally
interconnected automata that evolve in discrete time steps through mutual interactions between
them [27]. From a mathematical point of view, ANs are discrete dynamic systems.

Before going into the formal details of AN (in their two forms: deterministic automata networks
and fuzzy automata networks), we define the basic components that compose them: Deterministic
automata (DA) and fuzzy automata (FA).
Deterministic Automata (DA). A DA is a mathematical structure of states and transitions. The states
of a DA represent a configuration in which a modeled real system is found with one or more states
designated as starting state/s that represent the initial configuration of said real system.

Transitions in a DA are associated with changes in the configuration of the real system due to an
action that can be internal or external. The former represent internal computing steps (τ) and are not
visible in the DA environment. An external action is visible in the DA environment and is used to
interact with it.

Formally, a DA, denoted by A, is made up of the following four components:

(i) A set of states S A.

(ii) A nonempty set of starting states IA ⊆ S A.

(iii) Two sets of actions VA and WA, external (and that interact with the DA environment) and internal,
respectively, such that VA ∩ WA = ∅ and where ActA = VA ∪ WA defines the full set of actions
associated with DA transitions.
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(iv) A Cartesian product ∆A ⊆ S A × ActA × S A, which defines the relationship of DA transitions.

Thus, we say that s
a
→ s′, if ∃(s, a, s′) ∈ ∆A , meaning that action a is enabled in state s, and therefore

there is a transition labelled a from s towards another state of DA.
The DA constitute a mathematical framework for the specification and analysis of real systems,

but there are various formal extensions of them that collect aspects such as concurrency, asynchronous
events, probabilistic configuration changes and environments with uncertainty. One of these extensions
is probabilistic automata (PA), which has been formalized and developed by various authors [27–31].

An additional extension to the above is fuzzy automata (FA), which are based on the concepts
associated with fuzzy sets [32] and have been formalized and characterized by various authors [33–39].
DA and PA are particular cases of FA [34].
Fuzzy automata (FA). A FA is a DA where the final existence of the transitions between one state and
the subsequent set of states depends on a fuzzy affiliation function that defines the degrees of transition.
Therefore, in a FA, the transition from a state s to a state s′, can be implemented if the value of the
fuzzy function affiliation, before a given input e, meets a certain established existence criterion. Thus,
a transition in a FA relates a state and an action to a fuzzy interval [0, 1].

In this context, we define a fuzzy function affiliation (FFA) that characterizes a set A, which we also
call a fuzzy set (FS),∀x ∈ X, where we can calculate a value fA(x) ∈ [0, 1] and whose meaning is the
degree of membership, or affiliation, that point x has to the set A and where fA(x) = 0 corresponds to
the fact that x < A, and fA(x) = 1 with x ∈ A. Although the above can be interpreted as the simplest
way to define membership for ∀x ∈ X to FS A, there are other alternatives in which said membership
is defined based on the parameters α and β, where α, β ∈ [0, 1], and α > β. In this case, membership
is defined based on the following three cases: 1) x ∈ A if fA(x) ≥ α, 2) x < A if fA(x) ≤ β, and 3) the
membership of point x to FS A is indeterminate when β ≤ fA(x) ≤ α.

Formally, we define an FA as an algebraic structure A, formed by the following five components:

(i) A nonempty set of input states EA.

(ii) A nonempty set of internal states S A.

(iii) A nonempty set of output states VA.

(iv) A first FFA, fA : S A×EA×S A → [0, 1] called a direct fuzzy transition function, where fA(s, e j, s′)
defines the degree of state transition s to the state s′, when the input e j is received.

(v) A second FFA, gA : VA×EA×S A → [0, 1] called a direct fuzzy output function, where gA(vi, e j, s)
defines the degree to which the automaton produces the output vi when it is in a state s and
receives an input e j.

Based on the previous definition, we say that the transition s
a, fA(s,e j,s′),gA(vi,e j,s)

→ s′ occurs if fA(s, e j, s′)
and gA(vi, e j, s′) meet the membership criteria on the FSs S A × EA × S A and VA × EA × S A.

The generalization of the FA behavior for an input sequence Ek of arbitrary length k can be defined
by applying the definition of FFA composition [32].

In this case, fA(s, Ek, s′) = fA(s, e0, s1; s1, e1, sk−1; . . . ; sk−2, ek−1, sk−1) = Max{s1,s2,. . . ,sk−2} ·

Min[ fA(s, e0, s1), fA(s1, e1, s2), . . . , fA(sk−2, ek−1, sk−1)], obtaining in this case the degree of transition of
the state s to the state sk−1, when the sequence of inputs defined by Ek is received. It is also necessary
to apply the same process with the FFA gA.
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Automata Networks. Generalizing the above definitions associated with a DA and FA, an AN can be
described as a function defined between two spaces, F : E × S n → S n, where E and S are finite spaces
called spaces of inputs and states. The AN is then formed on n interconnected automata, where the
connection structure is defined by F in the following way: automaton i receives a connection from j if
Fi depends on variable j, where Fi corresponds to component i of F.

The way in which automata are interconnected in the AN is given by their structure or topology of
connections.

A state of the network is a vector x in S n. The dynamics of the network are then defined as the rule
that transforms said vector x of S n into a vector y of S n when a given input e is received. The rule of
parallel iteration is defined by y = F(x, e) and can be interpreted as follows: In each time step, each
automaton calculates its next state by means of the function Fi on the current state x of the network.
The AN iteration rule can present different modes of iteration: Parallel (the order in which each Fi is
calculated is irrelevant) and sequential (the order in which Fi is calculated does matter).

As soon as the dynamics-or temporal evolutions-of the network are defined, the problem of its
asymptotic behavior arises. Since the space of states S, on which the AN has been defined, is finite, all
trajectories of the AN are periodic, i.e., from cyclical or fixed points.

A fuzzy automata network (FAN) is made up of n interconnected FA, where the connection structure
is defined by the inputs that each FA receives.

Once the formal tools that we use in our modelling have been presented, we will define a series of
concepts associated with NO dynamics and their effects on the diffusion environment.
Compartment. The concept of compartment determines, through a mathematical construct,
the minimum place study where there is a complete NO dynamic diffusion defined by the
automaton [22, 23], which is part of the neuronal substrate. From a biochemical point of view, it
could be identified as a chemical computing environment capable of producing the different processes
involved in NO dynamics: NO generation, NO reception and NO self-regulation [11], as shown in
Figure 1(a). In direct correspondence with each of these processes and to identify the set of possible
states in which said compartment may exist, it is established that such processes may be in a state of
activation or operation or in a state of nonactivation.

We can then match the situation in which the NO generation process is active in the compartment
with that in which certain chemical machinery is active in the biological substrate that converges in
the generation of NO. Likewise, we can say that when NO reception is active in a compartment,
a combination of NO and its possible receptor molecules is occurring in the biological substrate
associated with the compartment, and thus some functional and/or metabolic change is being activated
with said NO reception, as shown in Figure 1(b).

We treat the self-regulation process independently, knowing that, at the biological level, NO is
depleted as it diffuses and combines with different substrates and that certain levels of NO condition
its own generation. We can see in the definition of the set of states and transition function that the
state of self-regulation is always later than that of generation and that when a compartment is in that
state, there is no NO. We can also identify how, at the level of the neuronal substrate, we will have a
state of transmission, which is a direct consequence of the state of diffusion of NO that occurs in its
dynamics. In this state, the compartment receives NO from the environment and generates NO that
will be received in other compartments, Figure 1(b).
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(a)

(b)

Figure 1. Identification of the possible states involved in NO dynamics (a) and of previous
states caused in the neuronal/biological substrate (b). The states that are modeled in our
model are inscribed with dotted lines and the states that are modeled in other models [16–19]
and [21] are inscribed with dashed lines.

Neighborhood and Scope. Within our set of compartments, whose structural and functional definition
is established in the following two sections, we can define the following relationship:

Relationship belonging to a neighborhood. Given two compartments Ci and C j, we say that Ci

belongs to the neighborhood of C j if and only if Ci is influenced by the state of C j. In this case, we say
that C j creates the neighborhood ΠC j and that Ci ∈ ΠC j .

The above relationship allows us to define the neighborhoods of each compartment, and these are
the ones that inherently define the scope of NO that is generated in each compartment to later diffuse.
In Figure 2, we can see how compartment Ci simultaneously belongs to the neighborhoods ΠC j , ΠCk

and ΠCp . This means that the dynamics of compartment Ci are influenced by the states in which
compartments C j, Ck and Cp are found. Likewise, compartment Ci will create a neighborhood ΠCi to
which compartments C j, Ck and Cp may belong.
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Figure 2. Scheme of compartments that create neighborhoods ΠCi , ΠCi and ΠCi .
Compartment Ci belongs to these neighborhoods.

2.1. Deterministic automata network (DAN) for modeling the effect of NO in its diffusion environment
- states and transition function

Based on the previous definitions, we identify the following states in which the automaton can
be found:

(1) Nonactivity state, (n). A compartment is in a nonactive state when the concentration of NO, or its
variation, is negligible.

(2) Receiving state, (r). A compartment in a receiving state is receiving NO. This NO is generated or
transmitted by any of the compartments that are creating the neighborhoods to which it belongs.

(3) Transmission state, (t). Two different situations can cause a compartment to be in a
transmitting state.

– The first of these situations occurs when the generation of NO occurs in a compartment.
When (as we will see later) and if there is a compartment in its neighborhood in a receiving
state, this would imply that our automaton would go to a state of NO generation. However,
if it also happens that the generation of NO occurs in any of the compartments, to whose
neighborhood this compartment in question belongs, then the state associated with this
situation is that of transmission.

– The second of the situations presented corresponds to the opposite sequence. A compartment
may be receiving NO and begin a process of NO generation in it, which takes it to
the transmission state if there is a compartment in its neighborhood with the capacity to
receive NO.

The state of transmission, in the definition of our automaton, has been called this way because
it intrinsically captures the existence of a relationship between what is received and what is
generated from NO. It is not known if the reception of NO can have some implication in
subsequent generation processes. In the same region of the nervous tissue, we understand that this
relationship may occur in higher level processes. Likewise, it is not known what NO reception in
a certain region of nervous tissue may imply when there is already a process of NO generation
in that region. Our hypothesis could be an acceleration towards self-regulation. Therefore, this
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name identifies only one state of our automaton that is reached by the two situations previously
explained, and from the point of view of transmission of the information, independent collection
is relevant.
Figure 3 shows a sequence of states with which to better understand the transmission state. A
small section of an automaton network is shown where compartments C j and Cp have been
highlighted along with the neighborhoods ΠC j and ΠCp that they form and thus the scope that the
NO generated in compartments C j and Cp can have. In Figure 3(a), we can see the initial state of
the compartments and their associated neighborhoods. Figure 3(b) shows how the activation of a
NO generation process in compartment C j initiates a receiving state in all the compartments that
belong to its neighborhood, including Cp itself. Figure 3(c) shows how a generation process is
activated in compartment Cp, thus initiating a transmission state (in the same way, compartment
C j also goes to a transmission state), without any relationship existing between the generation
that has occurred and the NO that it received previously. Figure 3(d) shows how the generation
of NO in C j ends, and thus C j goes to a state of self-regulation and Cp to one of generation.

(a) (b)

(c) (d)

Figure 3. Sequences of events in the AN that bring compartments C j and Cp to the
transmission state. (a) initial state of the compartments and their associated neighbourhoods,
(b) activation of a NO generation process in compartment C j, (c) generation process is
activated in compartment Cp and (d) the generation of NO in C j has finished, and thus C j

goes to a state of self-regulation and Cp pass to one of generation.
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(4) NO generation state, (g). A compartment is in this state when NO generation takes place in
it. Through this process of NO generation, the compartment influences those compartments that
belong to its neighborhood.

(5) State of self-regulation, (a). The state of self-regulation is subsequent in sequence to the state of
NO generation. During this state, there are no dynamics related to NO. It is important to bear
in mind that, both in the self-regulation sate and in the receiving state, NO disappears. The self-
regulation of NO is a process by which the generated NO disappears. At this time, it is being
argued that this disappearance is carried out in proportion to the amount of NO that exists in the
environment, although some models assume this occurs with other types of dependence [19]. The
automaton model that we present here does not handle amounts of NO, and self-regulation is
introduced as a state after the generation and forced transition.

We begin the specification of the transition function of the automaton by defining the jump behavior
between each of the possible states in which said automaton can be found.

Two versions of the transition function are proposed, as shown in Table 1 (version 0 and version 1).
Both versions reach a finite and deterministic behavior regardless of the initial configuration, and the
generation and nonactivity states of NO are possible only in these initial configurations. These versions,
although they present a complex behavior, should be seen as an intermediate step for the final definition
of our fuzzy transition function, which will require stochastic behaviors to reflect NO generation and
self-regulation more realistically.

Table 1. A deterministic transition function that defines the basic jump conditions.

[Version 0] Transition condition φCk
i
→ φCk+1

i

r0 ≡ (∃C j : Ci ∈ ΠC j) ∧ (φCk
j
= g ∨ φCk

j
= t) n→ r, r→ r

r0 n→ n, r→ n
r1 ≡ (∃C j : Ci ∈ ΠC j) ∧ (φCk

j
= g ∨ φCk

j
= t) ∧ (∃Ch : Ch ∈ ΠCi) ∧ (φCk

h
= n ∨ φCk

h
= r) g→ t, t→ t

r1 t→ a
r2 ≡ (∃C j : Ci ∈ ΠC j) ∧ (φCk

j
= g ∨ φCk

j
= t) ∧ (∃Ch : Ch ∈ ΠCi) ∧ (φCk

h
= g ∨ φCk

h
= t) g→ a

r1 ∧ r2 g→ g
ε a→ n
[Version 1] Transition condition φCk

i
→ φCk+1

i

s0 ≡ (∃C j : Ci ∈ ΠC j) ∧ (φCk
j
= g ∨ φCk

j
= t) ∧ (∀Ch : Ch ∈ ΠCi) ∧ (φCk

h
, r) n→ r, r→ r

s0 r→ n
s1 ≡ (∃C j : Ci ∈ ΠC j) ∧ (φCk

j
= g ∨ φCk

j
= t) ∧ (∀Ch : Ch ∈ ΠCi) ∧ (φCk

h
= r) n→ g

s0 ∧ s1 n→ n
s2 ≡ (∃C j : Ci ∈ ΠC j) ∧ (φCk

j
= g) ∧ (∃Ch : Ch ∈ ΠCi) ∧ (φCk

h
= n ∨ φCk

h
= r) g→ t

s2 g→ a
s3 ≡ (∃C j : Ci ∈ ΠC j) ∧ (φCk

j
= t) ∧ (∃Ch : Ch ∈ ΠCi) ∧ (φCk

h
= n ∨ φCk

h
= r) t→ r

s2 t→ a
ε a→ n

Figure 4 shows the state diagrams of both versions of the transition function, which cause the

AIMS Mathematics Volume 8, Issue 12, 30142–30181.



30152

environment to be divided into three different basic dynamics: The dynamics of nonactivity or
receiving NO, the dynamics of NO generation and the dynamics of NO transmission. The possibility
of passing between the previous dynamics is the main difference between the two versions that have
been defined as the transition function.

(a) (b)

Figure 4. Scheme of rules between states of the deterministic automaton network that define
the transition function: (a) Version 1 of the DAN and (b) version 2 of the DAN.

As seen in the definition of the transition functions in Table 1, in version 0 of our automata
network (rules r0, r1 and r2), whether a compartment is in the dynamic of nonactivity or NO reception,
or in the dynamics of generation or transmission of NO, will depend mainly on the initial configuration,
since in no rule of its transition function is it allowed that a compartment initiating the receiving
dynamics can pass to the dynamics of generation or transmission. We can also see that the reverse
transition is allowed in this version of the automaton. A compartment can start in a generation
dynamic and later move to a receiving dynamic directly or by a temporary transition through the
transmission dynamic.

Version 1 of our automata network (rules s0, s1, s2 and s3) completes the previous scenario, allowing
the transition between the dynamics of nonactivity or reception, originating in an initial configuration,
to generation and transmission dynamics.

Therefore, our two versions of the transition function have 7 rules (defined algebraically in Table 1)
to control the previous behavior. Below is a detailed textual definition of these rules:

Version 0:

• Rule r0: Represents a situation in which, being a compartment without NO dynamics, it begins
to receive NO. The automaton associated with said compartment will change from a state of
nonactivity (n) to a state of reception (r). This occurs when any of the generating automatons
of the neighborhoods to which the associated automaton belongs are in a generation (g) or
transmission (t) state. The automaton will continue in this state of reception (r) as long as the
previous situation is maintained. When this situation ceases to occur, the automaton returns to a
state of nonactivity (n).
The rule r0 controls the dynamics of those zones in which NO is not generated and only NO is
received. The areas where it is produced and received will NOT be controlled by Rules r1 and r2.
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• Rule r1: Rule r1 controls passing from NO generation dynamics to transmission dynamics, where
there is NO generation and reception.
Therefore, we are faced with a situation where some of the generating automatons of
the neighborhoods to which the associated automaton belongs are in a generation (g) or
transmission (t) state, and some of the automatons of their own neighborhood are found in a
state of reception (r) or nonactivity (n).
When the above occurs, the automaton goes from a generation state (g), which it reached as a
result of its initial configuration, to a transmission state (t), remaining in said transmission state (t)
as long as said rule is met.
• Rule r2: This rule identifies a situation after an NO generation dynamic, which in our model is

associated with an NO self-regulation state. There is a period of nonactivity in the compartment,
which is necessary after the dynamics of NO generation and transmission.
With the automaton in a generation state (g), we go to a self-regulation state (a) when the
automaton is being influenced by states of generation (g) or transmission (t) from the automatons
that have it in their neighborhoods, and in the neighborhood of the automaton itself, there are also
automatons in a state of generation (g) or transmission (t).
When the conditions of Rules r1 and r2 are not met, the automaton must continue in a state of
generation (g).

Version 1:

• Rule s0: Represents a situation in which, being a compartment without NO dynamics, it begins
to receive NO. Therefore, the automaton will change from a state of nonactivity (n) to a state of
reception (r) and remain in this state as long as it continues to receive NO. This occurs when any
of the generating automatons of the neighborhoods to which the associated automaton belongs
are in the generation (g) or transmission (t) state, and none of the automatons that belong to
its neighborhood are already in a reception state (r). When this situation ceases to occur, the
automaton returns to a state of nonactivity (n).
• Rule s1: This rule identifies the conditions that must be produced to cause a change between the

dynamics of nonactivity or NO reception and the dynamics of NO generation or transmission.
With the automaton in a state of nonactivity (n), we go to a state of generation (g) when the
automaton is being influenced by states of generation (g) or transmission (t) from the automatons
that have it in its neighborhood, and there are automata from its own neighborhood in a state of
reception (r), a situation in which there is a functional demand for NO.
• Rule s2: Like Rule r1 of version 0 in the transition function, this rule controls a transition

from the dynamics of only NO generation to the dynamics where there is generation and
reception (transmission).
We are faced with a situation where if any of the generating automatons of the neighborhoods to
which the automaton belongs are in a generation state (g) and some of the automatons from its
own neighborhood are in a reception state (r) or nonactivity state (n), the automaton goes to the
transmission state (t).
If the above condition is not met, the automaton goes to a state of self-regulation (a).
• Rule s3: This rule is directly associated with a condition where the compartment should leave the

NO transmission state (t).
If any of the generating automatons of the neighborhoods to which the automaton belongs are in
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a state of transmission (t), and any of the automatons from its own neighborhood are in a state
of reception (r) or nonactivity (n), the automaton goes from a transmitting state (t) to a receiving
state (r).
If the above condition is not met, the automaton goes to a state of self-regulation (a).

3. Results and discussion

Of the wide spectrum of particularities presented by NO dynamics, such as 1) nonlocalized
generation, 2) existence of a maximum range of NO beyond which there should be no influence thereof,
3) existence of areas where NO is recombined with other substances to influence the dynamics of
other mechanisms of cellular communication, and therefore, in higher order processes such as neural
plasticity and learning and 4) existence of substance self-regulation, among others, in our work, we will
focus on how NO performs complex structures formation when it develops its dynamics and on which
the possible transmission of information is constituted, which is necessary to provoke the synchronous
functional recruitment of involved neural populations.

It is in this section that the result of analyzing the modeling through the DANs made explicit in
the previous sections can be observed. This will allow us to know what type of behavior they develop
throughout the generations.

We focus on the 1D versions of our automaton networks for modeling NO, and these studies are
totally valid for automata networks of different dimensionalities [40]. Likewise, these results will be
extrapolated to their 2D versions.

Figure 5 shows different 1D evolutions associated with the two versions of our automaton network;
Figure 5(a),(b) for version 0; Figure 5(c),(d) for version 1. In this case, networks with 32 automata
are used. The initial configurations have been established randomly, following the premise that each
automaton can be either in a generation state (g) or nonactivity state (n) with equal probability,
assuming the above that in these initial configurations, we will have approximately 50% of the
automatons in a generation state (g). In these figures, it is observed how, in all cases, separate structures
of a stable or periodic type are generated.

In version 0 of the DAN, the structures are supported by the different convergence cycles of each
automaton, and we can quantify their appearance based on the level of NO generation contained in the
initial configurations, as well as on the range of the neighborhood. In Figure 6, we can observe the
number of times that the convergence cycle appears, composed only of the generation state (g) and for
different reaches of the neighborhood: Range 1 for a neighborhood with three cells of the lattice (the
two neighbors and the cell itself), range 2 for 5 cells and range 3 for 7 cells. This figure shows us
how the occurrence of this convergence cycle varies as a function of the probability of the generation
in the initial configuration and the scope of the neighborhood. It is observed that an interval occurs in
which said convergence cycle disappears completely, the latter being able to be interpreted as a control
mechanism of the NO level.

Annex 2 (identification and analysis of the different convergence cycles of the automata networks for
modeling NO) compiles this quantification for all the possible sequences of these convergence cycles
of said version 0 for our automaton network.

As we have already indicated, in version 0 of the transition function for the automaton network,
the generation state (g) of a compartment can only occur in the initial configuration of the automaton.
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This is the main difference between the two versions of the developed automaton network, since in
version 1, the process of generating NO in the automaton cannot only occur in the initial configuration.

As seen in the regular expressions that define the sequences of states that can be produced,

n{n|r{r}n|gan|gtan|gtr{r}n}
gan{n|r{r}n|gan|gtan|gtr{r}n}.

(3.1)

(a) (b)

(c) (d)

Figure 5. 1D evolutions of DANs for modeling the dynamics and effect of NO. (a) and (b)
for version 0, (c) and (d) for version 1. Yellow: Transmission state (t), white: State of self-
regulation (a), red: Generation state (g), blue: Nonactivity state (n) and green: Receiving
state (r).

Both expressions are mutually self-contained, and therefore, the automaton can begin in a state of
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nonactivity (n) and later go to a state of generation (g) depending on whether the rules that define its
transition function are met. This makes a detailed analysis of all the possible sequences, or convergence
cycles, not feasible, as presented by version 1 of our automaton network.

Figure 6. Histogram of the generation state (g) convergence cycle in version 0 of the
automata network for different ranges of scope of the neighborhood.

3.1. Qualitative and quantitative analysis of automata

Once this first visual analysis of both versions of our automaton network has been carried out, a
qualitative analysis is carried out, taking as a cataloguing reference the classification established by
Stephen Wolfram [40]. In this classification, there are four different types of dynamics for automata
networks, which, depending on their variation in space and time from a random initial configuration,
are classified as follows:

• Class I. The evolution of the automaton network converges to a homogeneous state, without
spatial or temporal structures of any kind.
• Class II. The evolution of the automaton network tends to separate structures of a stable or

periodic type.
• Class III. The evolution of the automaton network presents chaotic patterns. Fractal structures

emerge spatially, and cycles of very long length are observed.
• Class IV. The evolution of the automaton network generates localized complex structures, which

spread and whose duration increases exponentially with the size of the network.

The first three classes correspond qualitatively to the three types of behaviors observed in continuous
systems (attractors, periodic/quasiperiodic and chaotic).

From the qualitative analysis, the temporal evolutions of both versions of our automaton network
are determined to be Class II.

Quantitative analysis is driven by the work of Chris G. Langton [41]. First, the set DK
N of all the

possible transition functions follow the algebraic structure ∆ : ΣN → Σ, where K corresponds to the
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number of states of the automaton and N to the number of neighbors that are involved in said transition
function, including the automaton for which the transition function calculates the new state.

Let sq be a state that we identify as a quiescent state. Once this quiescent state is identified, we can
identify the n transitions that lead us to that state. Once identified, we are interested in quantifying the
values (KN − n) because they represent the rest of the transitions. The degree of heterogeneity in the
behavior of the automaton will depend on the way in which said (KN − n) transitions are defined. For
this purpose, the parameter λ is established according to expression 3.2 [41]:

λ = (KN − n)/KN . (3.2)

If n = KN , all transitions have sq as the final state, and the behavior of the automaton is completely
homogeneous (all initial configurations end in sq) and λ = 0. On the other hand, if n = 0, no transition
has sq as the final state, and then λ = 1. The most heterogeneous behavior occurs when all state
transitions (including those with sq as the final state) are equally represented, which happens when
n = KN − 1 and λ = 1 − 1/K. Based on the definition of the parameter λ, we perform its calculation
for the two versions of the automaton network when we work in a 1D environment.

As seen in Tables 2 and 3, for each possible state si(t) and states of its neighbors si−1(t) and si+1(t),
the state si(t + 1) is made to correspond according to the rules that define our transitions, as shown in
Table 1. In this case, we are working with a value of K = 5, corresponding directly with the states:
Nonactivity (n), generation (g), transmission (t), reception (r) and self-regulation (a). The definition
of the neighborhood of the automaton and the fact that we are working in a 1D environment give us a
value of N = 3.

Table 2. Evolution of the automaton for a 1D environment (Version 0), row: si(t),
column: si−1(t)si+1(t).
nn ng nt nr na gn gg gt gr ga tn tg tt tr ta rn rg rt rr ra an ag at ar aa

n n r r n n r r r r r r r r r r n r r n n n r r n n
g g t t g g t a a t g t a a t g g t t g g g g g g g
t a t t a a t a a t a t a a t a a t t a a a a a a a
r n n n n n n r r n n n r r n n n n n n n n n n n n
a n r r n n r r r r r r r r r r n r r n n n r r n n

Table 3. Evolution of the automaton for a 1D environment (Version 1), row: si(t),
column: si−1(t)si+1(t).
nn ng nt nr na gn gg gt gr ga tn tg tt tr ta rn rg rt rr ra an ag at ar aa

n n r r g n r r r n r r r r n r g n n g g n r r g n
g a t a a a t a a t a a a a a a a t a a a a a a a a
t a a r a a a a a a a r a a r a a a r a a a a a a a
r n r r n n r r r n r r r r n r n n n n n n r r n n
a n n n n n n n n n n n n n n n n n n n n n n n n n

Based on the logical rules defined in Table 1, all possible transitions are detailed in Tables 2 and 3 as
a preliminary step for calculating the parameter λ. The expression of the transition functions, according
to these tables, is defined as follows: If [s(i − 1)(t)s(i + 1)(t) =′ nr′] ∧ [si(t) =′ t′] then si(t + 1) =′ a′,
following, in this case, the transition indicated in Table 3.
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The above allows us to calculate the value of λ for a certain quiescent state sq by direct application
of the expression (KN - number of occurrences of sq)/KN , obtaining the values shown in Table 4 for
both versions of our automata network.

Taking as sq the state of nonactivity, we have λv0 = 0.656 and a λv1 = 0.632, as shown in Table 4.
These values allow us to locate the transition functions of our automata in the set of all possible
functions, DK

N . It is important to note that when any of the other states is selected as state sq, the
values of λv0 and λv1 change.

Table 4. Values of λ for both versions of the automata network.
sq λv0 λv1

n 0.656 0.632
g 0.896 0.96
t 0.872 0.968
r 0.744 0.776
a 0.832 0.664

To analyze the emergence of complexity produced by the dynamics of our automata networks, we
will use the probabilistic approach offered by entropy as a basic measure of self-information. For a
discrete process T of K possible states, this is defined according to Eq (3.3).

H(T ) = −

K∑
i=1

pilog(pi), (3.3)

where pi corresponds to the probability of state i occurring in process T .
On the other hand, to quantify the degree of cooperation that may exist in our DANs, on which the

synchronous functional recruitment feature is supported, we quantify the level of correlation that exists
in the events that occur (state changes) in the automata. For this, the concept of mutual information
I(Tn,Tm) is used between two automata n and m, in which the discrete processes Tn and Tm occur. The
magnitude is defined as a function of the individual entropy H(Tn) and H(Tm) of the two automata and
the entropy of the two automata considered as a joint process H(Tn,m).

Therefore, the mutual information is given by the following expression:

I(Tn,Tm) = H(Tn) + H(Tm) − H(Tn,m). (3.4)

This measure will have direct dependence on the correlation of process Tn with the state of process Tm.
Thus, high values in the average of I(Tn,Tm) will imply a high cooperation between automata n and m.
In contrast, a functional independence, or change of states, between automata will assume low values
of the previous measure.

By virtue of the defined magnitudes, our network of automatons for NO modeling adequately
incorporates the characteristics of complex structure formation by having an intermediate value of
the average of the general entropy H, understanding that the complex is between the order of a system,
where H ≈ 0, and the total disorder, where H presents its highest values. On the other hand, having
a high synchronous functional recruitment between the various dynamics of NO implies that we must
have high values in the average general mutual information I.
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It should be taken into consideration that since the previous magnitudes are dependent on the
trajectories followed by the automata network, according to the initial configuration, and since the latter
has a random character, in our quantitative study, average values of these magnitudes are calculated
throughout a set of executions where the initial configuration changes in its form for each one of them,
but the proportions of automata that can be in an initial state of generation (g) or nonactivity (n).

In the same way, all the calculated variables that depend on the trajectories that the network of
automatons follow are organized on the axis of λ associated with the set DK

N , being able to locate our
networks of automatons in said set for comparison.

Figure 7 shows us the values of the general entropy H and general mutual information I for a
subset of DK

N along the dimension λ in the range between 0 and 1 − 1/K. This interval corresponds to
the interval that goes from the values of λ associated with the most homogeneous automata networks
λ = 0 to the most heterogeneous λ = 1 − 1/K.

Figure 7(a) shows how the value of H in version 1 of our automaton is approximately H = 1.25,
which is approximately half the value (H ≈ 2.1) that the automata networks of DK

N have for that same λ.
This fact indicates that version 1 of our automata network forms complex structures in its dynamics.

Figure 7(b) shows the suitability of version 1 of our automata network from the perspective of
synchronous functional recruitment, since this network has a value of I = 0.8, which practically
doubles the average value of the rest of the automata networks of DK

N .
In both comparisons shown in Figure 7, for the selection of the rest of the automata networks that

make up the subset of DK
N , the “table-walk-through” procedure has been carried out [41], taking as a

seed version 1 of the automaton network and modifying its transition function stochastically to obtain
automaton networks with different λ within the study interval indicated above, and a state sq equal to
that of nonactivity (n).

(a) (b)

Figure 7. Values of the average entropy (a), and of the average mutual information (b),
associated with version 1 of the automata network, and with the rest of the automata networks
DK

N obtained with a sq = nonactivity (n), and depending on the parameter λ.

In Figure 8, we have the same comparison of the values of H and I, but in this case, the subset of DK
N

has been generated with the “table-walk-through” process, using version 1 as a seed automaton network
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and the state sq = self-regulation (a). The main difference is if we compare the levels of H (Figures 7(a)
and 8(a)), when we work with sq = self-regulation (a), its lowest values are close to that of our automata
network, implying that the level of complex structures of our automata network does not present a
differentiating character for the rest.

(a) (b)

Figure 8. Values of the average entropy (a), and of the average mutual information (b),
associated with version 1 of the automata network, and with the rest of the automata
networks. DK

N obtained with a sq = self-regulation (a), and as a function of the parameter λ.

Figure 9 shows a relationship factor that has H and I with the temporal evolution of the automaton
networks of DK

N for different values of λ. This figure shows the evolution of 6 automata networks made
up of 32 automata in a cyclical lattice, where their transition functions have been obtained by taking
both versions of our automata network for modeling NO and where sq corresponds to the state of
nonactivity (n). Figure 9(a)–(c) correspond to version 0, and Figure 9(d)–(f) correspond to version 1.
It can be seen in these figures how the temporal evolution of the states of these networks presents
structures of a certain complexity and fractal tendency, and they are characterized by different values,
not only for the parameter λ but also with regard to the values of H and I.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Evolution of different automata networks belonging to DK
N and for different values

of λ. (a), (b) and (c) correspond to version 0 of the automata network and different λ
values: 0.304, 0.504 and 0.704 respectively, and (d), (e) and (f) correspond to version 1
of the automata network and different λ values: 0.304, 0.504 and 0.704 respectively. Yellow:
Transmission state (t), white: State of self-regulation (a), red: Generation state (g), blue:
Nonactivity state (n) and green: Receiving state (r).

The behavior observed in the analyzed DANs is also present in larger automaton networks, as we
can see in Annex 3. Detail of the evolution of the automata networks with 128 automata (version 0 and
version 1) of the automata network for modeling NO, for DANs with 128 automata.

In the developed quantitative analysis, it has also been verified how dependent the values of H
and I are in relation to the initial configurations and to the level of NO generation that may exist in
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them. Figure 10 shows the evolution of H and I when we vary the percentage of automata that are in a
generation state (g) in the initial configuration.

(a) (b)

Figure 10. Values of the average entropy (a), and of the average mutual information (b),
associated with version 1 of the automata network and for different percentages of the level
of NO generation in the initial configuration.

In this figure, it can be seen that the average values of H show a slight increase (from a value of
H ≈ 1.2, up to a value of H ≈ 1.3) as we increase the level of NO generation present in the initial
configurations, from 10% to 70%, becoming unstable for percentages greater than the latter. For the
case of I, we see that its variation, despite being upwards, is practically negligible, staying around
I ≈ 0.8 and behaving in the same way as H once the NO generation percentage exceeds 70%.

On the other hand, it seems that the storage of information by any system (be it discrete or
continuous) implies a low entropy, and the transmission of information implies the existence of an
increase [42]. Likewise, a high mutual information supposes a high correlation between the automata.

The final analysis for version 1 of our automaton network seeks to see what position the latter has
in the plane facing both magnitudes: Entropy versus mutual information, which is always in compared
with the rest of the automaton networks of DK

N .
Figure 11 shows that version 1 of our network is located in the area of the plane that gives it a

medium entropy level. Consequently, we have a high formation of complex structures, and on the
other hand, the level of mutual information seems to be at high values compared to all the automata
networks that are defined by DK

N . The above allows us to argue that version 1 of the automaton network
also presents high levels of synchronous functional recruitment.
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Figure 11. Relationship between H and I for various subsets of DK
N (blue) and different initial

configurations. This relationship is also shown for version 1 (red colour) of the automata
network, all for certain values of the parameter λ.

A more exhaustive analysis of how version 1 of our automaton network behaves in relation to the
values of H and I for all the possible initial configurations is shown in Figure 12. The different colors
determine the level of NO generation that the initial configurations present. It is observed in this
figure that the initial configurations that make our network of automatons exit the area given by the
following values are minimal (H ≈ 0.3 and I ≈ 0.8), which is identified as suitable for having an
adequate level of complex structure formation and synchronous functional recruitment. It is also seen
in this figure that the initial configuration that produces maximum values of H and I corresponds to
an initial configuration composed of the following sequence of states: nnggnngg. . . nngg, where n
and g correspond to the nonactivity and generation states respectively and whose evolution is shown in
Figure 13.

Figure 12. Relationship between H and I for version 1 of our automaton network and all the
possible initial configurations. The values of the NO generation percentage that these initial
configurations have are also shown.
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Figure 13. Evolution of version 1 of our automaton network when it has an initial
configuration that causes maximum values in H and I.

We extend our study to 2D DAN, where results parallel to those achieved with 1D DAN can be
observed. Thus, Figure 14 shows the complex structure formation by all the dynamics associated with
the different states, Figure 14(a)–(e), in which automata may exist when we work with a network
of 10,000 automata arranged in a 100 × 100 lattice and where each automaton has 5 neighbors, in
correspondence with a Moore-type neighborhood. In these figures, the formation of a set of structures
is perceived when the automaton network is in the 75th generation.

Figure 15 shows the convergence of the same automata network with version 1 of the transition
function towards the final complex structures when we sufficiently advance in the number of
generations. The edges of the structure show a changing and cyclical behavior.
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(a) (b)

(c) (d)

(e)

Figure 14. Complex structure formation in a network of 2D automata (version 1) made up
of 10,000 automata arranged in a 100× 100 lattice, when the automata network is in the 75th
generation. (a) non-activity state, (b) generation state, (c) reception state, (d) transmission
state and (e) self-regulation state.
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(a) (b)

(c) (d)

(e) (f)

Figure 15. Convergence towards a complex structure in a 2D environment of the NO
generation dynamics, using version 1 of the automata network. (a) the automata network
is in the 50th generation, (b) in the 100th generation, (c) in the 200th generation, (d) in the
300th generation, (e) in the 400th generation and (f) in the 500th generation.
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The implementation of the different versions of the automaton network was developed in Python
3.8.13 (www.python.org) using the TensorFlow 2.3.0 libraries (www.tensorflow.org). The source
code used in all the experiments in this article is available for download on GitHub (https://github.
com/pablo-fernandez-lopez/NANetwork_NO).

4. Conclusions

In this work, a model based on deterministic automata networks is proposed for modeling the effect
that NO dynamics exert on the environment through which it diffuses in its role as a molecule with
the ability to perform VT. We carry out the formalization of its transition function through the logical
extrapolation of those mechanisms associated with the diffusion dynamics of NO as a neuroactive
substance. The obtained model adequately depicts the characteristics of complex structure formation
and synchronous functional recruitment.

To achieve this, we have built two versions of transition functions (version 0 and version 1) that
segment the environment into three different basic dynamics: the dynamics of nonactivity or NO
reception, the dynamics of NO generation and the dynamics of NO transmission. The possibility
of passing between the dynamics of nonactivity or NO reception to the rest of dynamics is the main
difference in version 1 compared to version 0. The two versions of the transition function, defined and
analysed in this work utilize a deterministic NO generation process. This generation of NO occurs in
the initial configuration of the automata (case of version 0) or in the initial configuration by meeting a
specific logical rule of its transition function that responds to the situation of the functional requirement
of NO (case version 1).

Both versions cause separate structures of a stable or periodic type in all the sequences of states
through which the automata network passes for each initial configuration. These structures are
supported by the different convergence cycles that each automaton develops, whose occurrences
depend on the level of NO generation of the initial configuration as well as the range of the
neighborhood. From a qualitative perspective, the two versions of our automaton network are classified
as class II on the Stephen Wolfram rating scale [40].

The quantitative analysis of version 1 of our automaton network, when compared with the rest of
the possible automata networks generated and organized according to the heterogeneity measurement
parameter λ, defined by Chris G. Langton [41], presents adequate values for entropy and mutual
information (H ≈ 1.3 and I ≈ 0.8), achieving an adequate predisposition of the network for complex
structure formation and synchronous functional recruitment necessary to model the VT and study its
implications in mechanisms and higher processes of the brain, such as learning and memory formation.

Working with version 1 of our automaton network in 2D environments, it is observed that
NO dynamics produce areas of isolation and segmentation of the environment in relation to the
characteristics of complex structure formation and synchronous functional recruitment. These complex
structures present a zonal convergence when we sufficiently advance the number of generations, where
the edges of the structure present a changing and cyclical behavior.

Finally, we propose the first discrete model in all its variables that can work with different NO
dynamics and analyze the implications of VT in more complex architectures and aspects related to
learning and memory formation.

We consider the DAN model proposal presented in this work, in its two versions, as a first step, and
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we identified the need to extend our model to incorporate stochastic conditions that make the state of
NO generation be induced by higher mechanisms or brain processes. To carry out this generalization,
which will also constitute a model that can accommodate arbitrary processes in decision-making
mechanisms, we propose the use of fuzzy automata networks. This model will be part of a complete
formal framework of volumetric transmission in the brain and in artificial neural networks and therefore
in complex decision-making systems.
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Supplementary:

Annex 1. List of abbreviations and symbols

Table A1.1. List of abbreviations and symbols.
Abbreviation/symbol Description
NO Nitric oxide
VT Volumetric transmission
EDRF Endothelium-derived relaxing factor
NOS Nitric oxide synthase
cNOS Constitutive nitric oxide synthase
eNOS Endothelial isoform nitric oxide synthase
iNOS Inducible nitric oxide synthase
nNOS Neuronal isoform nitric oxide synthase
PNS Peripheral nervous system
CNS Central nervous system
GCs Soluble guanylate cyclase
AN Automata network
DA Deterministic automata
FA Fuzzy automata
τ Internal computing steps
S A Set of states (internal in Fuzzy automata)
IA Set of starting states
ActA Set of external actions
WA Set of internal actions
PA Probabilistic automata
FA Fuzzy set
FFA, fA, gA Fuzzy function affiliation
EA Set of input states (in Fuzzy Automata)
VA Set of output states (in Fuzzy Automata)
DAN Deterministic automata network
FAN Fuzzy automata network
Ci Compartment i
ΠCi Neighborhood of Ci

n State of nonactivity
r State of receiving
t State of Transmission
g State of NO generation
a State of self-regulation
λ Langton parameter
DK

N Set of all possible transition functions
sq Quiescent state
I Mutual information
I Average general mutual information
H Individual entropy
H Average of the general entropy
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Annex 2. Identification and analysis of the different convergence cycles of the automata networks for
modeling NO

Version 0 of the automata network:

Figure A2.1. Histogram of the generation state (g) convergence cycle in version 0 of the
automata network for different ranges of neighborhood scope.

Figure A2.2. Histogram of the convergence cycle of the generation (g), self-regulation (a)
and nonactivity (n) states in version 0 of the automata network for different ranges of
neighborhood scope.
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Figure A2.3. Histogram of the convergence cycle of the generation (g), self-regulation (a),
nonactivity (n) and reception (r) states in version 0 of the automata network for different
ranges of neighborhood scope.

Figure A2.4. Histogram of the convergence cycle of the generation (g) and transmission (t)
states in version 0 of the automata network for different ranges of neighborhood scope.
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Figure A2.5. Histogram of the convergence cycle of the generation (g), transmission (t),
self-regulation (a) and nonactivity (n) states in version 0 of the automata network for different
ranges of neighborhood scope. The absence of a histogram profile for a specific range means
that, when this range is used, this convergence cycle does not occur.

Figure A2.6. Histogram of the nonactivity state (n) convergence cycle in version 0 of the
automata network for different ranges of neighborhood scope.
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Figure A2.7. Histogram of the convergence cycle of the nonactivity (n) and reception (r)
states in version 0 of the automata network for different ranges of neighborhood scope.

Figure A2.8. Histogram of the convergence cycle of the nonactivity (n) and reception (r)
states in version 0 of the automata network for different ranges of neighborhood scope. The
absence of a histogram profile for a specific range means that, when this range is used, this
convergence cycle does not occur.
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Annex 3. Detail of the evolution of the automata networks with 128 automata (version 0 and
version 1) of the automata network for modeling NO

(a) (b)

Figure A3.1. Evolution of an automata network for an approximate λ = 0.1, calculated
according to the “table-walk-through” procedure [41], taking as seed the version 0 (a),
version 1 (b), of the automata network for the modeling of NO.

(a) (b)

Figure A3.2. Evolution of an automata network for an approximate λ = 0.2, calculated
according to the “table-walk-through” procedure [41], taking as seed the version 0 (a),
version 1 (b), of the automata network for the modeling of NO.
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(a) (b)

Figure A3.3. Evolution of an automata network for an approximate λ = 0.3, calculated
according to the “table-walk-through” procedure [41], taking as seed the version 0 (a),
version 1 (b), of the automata network for the modeling of NO.

(a) (b)

Figure A3.4. Evolution of an automata network for an approximate λ = 0.4, calculated
according to the “table-walk-through” procedure [41], taking as seed the version 0 (a),
version 1 (b), of the automata network for the modeling of NO.
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(a) (b)

Figure A3.5. Evolution of an automata network for an approximate λ = 0.5, calculated
according to the “table-walk-through” procedure [41], taking as seed the version 0 (a),
version 1 (b), of the automata network for the modeling of NO.

(a) (b)

Figure A3.6. Evolution of an automata network for an approximate λ = 0.6, calculated
according to the “table-walk-through” procedure [41], taking as seed the version 0 (a),
version 1 (b), of the automata network for the modeling of NO.
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(a) (b)

Figure A3.7. Evolution of an automata network for an approximate λ = 0.7, calculated
according to the “table-walk-through” procedure [41], taking as seed the version 0 (a),
version 1 (b), of the automata network for the modeling of NO.

(a) (b)

Figure A3.8. Evolution of an automata network for an approximate λ = 0.8, calculated
according to the “table-walk-through” procedure [41], taking as seed the version 0 (a),
version 1 (b), of the automata network for the modeling of NO.
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(a) (b)

Figure A3.9. Evolution of version 0 (a), and version 1 (b), of the automata network for NO
modelling.
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