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Abstract: The composition of soils in aquifers is typically not homogeneous, and soil layers may be
cracked or displaced due to geological activities. This heterogeneity in soil distribution within
aquifers affects groundwater flow and water level variations. In the present study, we established a
two-dimensional (2D) mathematical model that considers the influence of surface recharge on
groundwater flow in heterogeneous sloping aquifers. By considering temporal variations in surface
recharge, slope angle and aquifer heterogeneity, the simulated results are expected to better reflect
real conditions in natural aquifers. The effects of aquifer heterogeneity on groundwater flow and
water levels are particularly significant in sloping aquifers. The study’s findings indicate that even
when the soil composition remains constant, variations in groundwater level and flow may be
considerable, depending on factors such as soil alignment, slope angle of the aquifer’s base layer and
the direction of water flow.
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1. Introduction

Groundwater is primarily formed when surface water seeps into aquifers and accumulates on
impermeable layers. In general, groundwater data collected from sparse wells cannot comprehensively
represent the characteristics of giant aquifers. Thus, alternative sources of groundwater data are
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warranted. Hydrological models have been developed, which can simulate groundwater levels and
flows within aquifers at any given time and location under real and hypothetical scenarios. The soil
composition of an aquifer is influenced by the sediments that accumulate within it. Hydrogeological
parameters, such as hydraulic conductivity and specific yield, vary horizontally. Hydrological models
may not fully account for aquifer heterogeneity and therefore cannot be relied upon to accurately
predict groundwater recharge rates [1,2].

According to Sudicky and Huyakorn [3], aquifer heterogeneity makes assessing groundwater
systems challenging. Average values of hydrogeological parameters cannot be used to represent the
unique characteristics of heterogeneous aquifers. Serran [4] analytically solved the nonlinear
Boussinesq equation for 2D groundwater flow using the integral transformation method. Results based
on the Dupuit assumption differed from those for aquifers with large hydraulic gradients, high recharge
rates, or low hydraulic conductivities. Cao and Kitanidis [5] proposed a numerical model that uses
finite element approximation to calculate groundwater flow in isotropic but heterogeneous aquifers.
They discovered that adaptive meshing can effectively improve the accuracy of numerical calculations.
Scheibe and Yabusaki [6] developed a numerical model that uses synthetic hydraulic conductivity to
simulate groundwater flow, evaluating the effect of each parameter on simulation results. Winter and
Tartakovsky [7] introduced a model for groundwater flow in heterogeneous composite media using the
perturbation and integral transformation methods. Their model improved upon the traditional hydraulic
head calculation model. A steady-state groundwater model was developed [8,9] that uses the Fourier—
Galerkin spectral element method and that accounts for the effects of aquifer anisotropy and the
heterogeneity on groundwater flow; small changes in hydraulic conductivity were found to affect
groundwater flow. Fahs et al. [10] studied natural convection in porous enclosures with thermal
dispersion using the Fourier series expansion. Srivastava and Serrano [11] used new linearization
techniques and a decomposition method to solve 2D groundwater flow equations for unconfined
heterogeneous aquifers while considering the stochastic nature of hydraulic conductivity. Das et al. [12]
used Laplace transformation and finite Fourier sine transformation and found that heterogeneity affects
the formation of groundwater mounds in the short term, but not in the long term. Wu and Hsieh [13] used
generalized integral transformation to solve the one-dimensional (1D) linearized Boussinesq equation
with both uniform and nonuniform source supplies and concluded that generalized integral
transformation converges faster than Laplace transformation. Moutsopoulos et al. [14] presented an
analytical solution for groundwater flow adjacent to streams with a constant pumping rate using
Laplace transformation.

Samani and Sedghi [15] derived a semianalytical solution for groundwater flow in a multizone
wedge-shaped aquifer using Laplace transformation. Liang et al. [16,17] used Fourier integral
transformation to analyze 1D groundwater flow in heterogeneous aquifers. Due to the constant
hydraulic head boundary condition, their simulation showed unstable groundwater level fluctuations
at the beginning; however, the fluctuations became stable over time. Aguila et al. [18] used numerical
methods to analyze groundwater fluctuations caused by discrete precipitation events in unconfined
aquifers, highlighting potential uncertainty in recharge estimates when recharge is temporally
distributed and groundwater drainage is present. Akylas and Koussis [19] studied the interaction
between rivers and unconfined sloping aquifers to examine the groundwater stage and flow exchange
using Laplace transformation. Koussis et al. [20] employed the system response function of the 1D
linearized Boussinesq equation derived in [19]. When the groundwater level change causing the flow
is a common function, the solution is analytical; otherwise, the convolution integral is calculated
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numerically. Wu and Hsieh [21] developed a complete analytical solution using generalized integral
transformation to explore the effects of spatiotemporal recharge on groundwater flow in unconfined
sloping aquifers. Zhang et al. [22] used integral transformation to solve the 1D Boussinesq equation
and studied the effects of precipitation and flood recharge on river water and groundwater exchange
in heterogeneous aquifers. Hydraulic conductivity affects lateral flow across the interface.

We proposed a 2D analytical groundwater model that accounts for the variable recharge and
anisotropic properties of a heterogeneous 2D sloping aquifer via the change-of-variable technique to
convert the original partial differential equation into a diffusion equation and the improved separation-
of-variable method.

2. Methodology

We simulated an anisotropic, sloping, unconfined aquifer with dimensions L, X L, X d and
hydraulic conductivities K, and K, inthe x and y directions, respectively (Figure 1). The aquifer
is adjacent to two bodies of water with a constant hydraulic head (hy). The aquifer boundaries x =
Ly and y = L, are free of inflow; therefore, no-flow conditions are imposed at the boundaries. The
heterogeneity interface is located at x = Lg, and initial groundwater level, hg, is uniform. Recharge
activity is spatially uniform but time-varying.

L

Figure 1. Schematic of groundwater level response subject to time-varying surface
recharge in a heterogeneous sloping aquifer.
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Nomenclature

L,: Length of the unconfined aquifer in the x
direction (m).

Ly: Length of the unconfined aquifer in the y
direction (m).

Lg : Interface between different soils in the
heterogeneous aquifer in the x direction (m).

d: Thickness of unconfined aquifer (m).
t: Time (d).
hy: Initial water level (m).

q1,: Unit width flow rate in the x direction of
Zone 1 (m?/d).

G2, Unit width flow rate in the x direction of
Zone 2 (m?/d).

q1y: Unit width flow rate in the y direction of
Zone 1 (m?/d).

d2y: Unit width flow rate in the y direction of
Zone 2 (m?/d).
h: The groundwater level (m).

0,: Slope angle of the aquifer.

Ki,: Principal hydraulic conductivity in the x
direction in Zone 1 (m/d).

K5, : Principal hydraulic conductivity in the x
direction in Zone 2 (m/d).

K;,: Principal hydraulic conductivity in the y
direction in Zone 1 (m/d).

K3, : Principal hydraulic conductivity in the y
direction in Zone 2 (m/d).

S

y1- Specific yield in Zone 1.

Sy2: Specific yield in Zone 2.

r: Recharge rate (mm/h).
P: Total number of time steps.

1. The k" digital values of collected data
within the time step At = t;, — t,_; (mm/h).

u: Heaviside function.

h: Average groundwater level (m).

h;: Variable water depth at the end of time (m).
H: Dimensionless groundwater level.

H, Groundwater level after wvariable
transformation. (to eliminate first-order space
differential terms.)

H, Groundwater level after variable
transformation. (to homogenize the boundary
conditions.)

R: Dimensionless recharge rate.

T: Dimensionless time.

tp: Duration of rainfall recharge rate (d).
¢: Eigen function in x direction.

Y: Eigen function in y direction.

I': Eigen function of time.

a, ap: Eigenvalue in x direction.

B, Bn: Eigenvalue in y direction.

€1, Cy, C3, C4: Undetermined coefficients of
the eigen equation.

According to the simulated parameters, seepage fluxes g, and g, per unit width of the aquifer

at any horizontal position are expressed as follows:

AIMS Mathematics
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G1(x,y,t) = —Kq, cos? 0, [h%(h + xtaon)] 0<x<L;,0<y<lL, (1)
Gz (x,y,t) = —K,, cos? 0, [haa—x(h + xtanex)] L <x<Ly,0<y<L, (2)

oh
q1y=—K1yh5,O<x<Ls,0<y<Ly (3)

oh
q2y=—szh5,Ls<x<Lx,0<J’<Ly 4)

where h is groundwater level [L]; K;, and K,, are hydraulic conductivities of the first and second
zones in the x direction [L/T]; K;, and Kj, are hydraulic conductivities in the y direction [L/T];
and 6, is the slope angle in the x direction.

Considering the inflow and outflow through the vertical section and the existence of source, the
mass balance equation can be written as follows:

0q1x |, 941y 6_h —
- T 3y + 5,1 Pl r(t) (5)
0d2x | 942y a_h —

0 T 3y + 5y, Pl r(t) (6)

in which S,; and S,, are the specific yields of the first and second zones; h, is the initial
groundwater table; and t is time. Recharge r(t) is a temporal variable that can be expressed as
follows:

r(t) = Yioy Melult — ty—q) —ut — tp)] (7)

where u(—) denotes a unit step function; 73, is the jt" digital value of collected data within time step
At = t}, — tx_4; and P denotes the total number of increments over time.

By substituting (1)—(4) into (5) and (6), the nonlinear 2D Boussinesq equation can be obtained to
represent groundwater flow in heterogeneous aquifers.

2 2

K, cos? 0, (h% + tané, Z—Z) + KlthTZ +7(t) =Sy, % (8)
2 2

K,, cos? 8, (hZTZ + tanéd, 3—2) + szhZ—yZ +7(t) =S, % 9)

Before analytically solving governing equations (8) and (9), a linearized parameter h is
introduced. Therefore, the linearized boundary—value problem can be expressed as

7 0%h dh 7 0%h oh
K, cos? 0, (hﬁ + tané, 5) + K1yhﬁ +7(t) =S5, a (10)
7 0%h on 7 0%h oh
K,, cos? 6, (hﬁ + tan6, 5) + Kthﬁ +7(t) =S, ot (11)

1.C.:

AIMS Mathematics Volume 8, Issue 12, 30120-30141.



30125

h=00<x<L,0<y<L,t=0 (12)
B.C.:

h=0, x=0,y>0,t>0 (13)
h(x =L ) =h(x=Ls"),y>0,t>0 (14)
Ky ) _KZx—‘”‘(’; L) 5 06>0 (15)

— dh
ha+htan9x =0, x=L,y>0,t>0 (16)
h=0,x>0,y=0,t>0 (17)
M0, x>0,y=L,t>0 18
6y_ y X 'y_ y ( )

The linearized parameter h must be evaluated using a suitable technique to ensure its validity
over space and time. Brutsaert [23] replaced h by the product of aquifer depth d and the calibration
(linearization) parameter p, treating h as a constant for convenient and rapid linearization. The
present study employed the iterative formula h = @ presented in [24], in which h; is the variable

groundwater level at the end of time t.
h—

By introducing the dimensionless variables X ==, ¥ =<, H = R=2r and T==
Ly Ly ho ho tp

(where tp is the recharging duration) for the aforementioned problem, (10)—(18) can be transformed
to the following:

leﬁtp 2 Kly’_"tD az_H letD kel -
sylez Hx X2 " 511, 972 +— SyiL cos? 6, tan 0, + h05y1 R(T) = (19)
Koxhtp 2 o 9°H | Kayhtp 02H | Kpxtp oH
502 0s“ 6, X + 5oL, 72 + == 5o cos? 0, tan Gx X "4 h05y2 R(T) = P (20)
1.C.
H=00<X<10<Y<1,T=0 21)
B.C.:
H=0 X=0Y>0T>0 (22)
Hlx=r 1~ = Hlx=LS/Lx+, Y>0T>0 (23)
oH Koy OH
— = 22— ,Y>0T>0 24
0Xlx=p,/L,~ Kix0Xlx=p /1, * 24
R 0H
L.3x + Htanf, = —tanf,, X =1,Y >0,T >0 (25)
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H=0,X>0Y=0T>0 (26)
2=0X>0Y=1T>0 27)

with the following change-of-variable technique:
HX,Y,T) = e ixXe Vil H (X,Y,T) (28)
H(X,Y,T) = e VaxXe VatTH (X,Y,T) (29)

The first-order spatial differential terms in (19) and (20) were eliminated, and (19)—(27) were
transformed into:

1 0H, _ 982H,

A 0T ox? +D1y pe +D relex VltTR(T) (30)
1 0H, 09%H, 0? HU
A_zxﬁ = Ix2 + D2y + DZreVZXX VZtTR(T) (31)
I.C.:
H,=0,0<X<10<Y<L1T=0 (32)
B.C.:
H,=0 X=0Y>0T>0 (33)
Hle:LS/Lx_ = eLS/Lx(le_sz)eT(Vlt_VZt)HUIX:LS/Lx+' Y>O0T (34)
Ls
0H, — V. H, | — Kox Va0 o TWVie—Var) (3Hv -V, H, ) L+, Y >0T>0 (35)
ox Lx 1x g X:ﬁ
h oH, _ Vox pVorT
Lox + (tan6, — V,,)H, = —tanf,e"2xe"2t" )Y > 0,T > 0 (36)
0H,
ay=0,X>0,Y=1,T>0 (37)
__ Kixhtp Kaxhtp _ KiyLy® _ Kyyly®
where A, = —syle cos? 8, , Ay = 5oLt 222 cos? 0, , D,y = —leLyz v D,,, = —szLyzcosz o
_ Ly? _ Ly? _ _ Lytanfy __ KixtpsinZ 6, _
Dy = Ki,c0s2O0,htp Doy = Ky, cos2 O,htp Vie = Vox = 2h ’ 1 = 4hSy, > Vae =

Koxtp sin? 8,
4hSy,

The following conversion formula was introduced to homogenize the boundary condition (X = 1):

with
_ —tanf,eV2xeV2tT tanex Vox
FX,T) = =220 = |exp (L, 2220 x) + 1 (39)
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Accordingly, (30)—(37) are transformed to the following:

Ailx% = Z;T + Dy, 68 2 4 Dy eVixXeViTR(T) — VZt F(X T) — tanf, ( ) (tanf, —

V )eV2x+V2tTeL (taan VZX)X (40)

1 0H, 9%H, 02 Hr v
o = T Dy T+ Dyye XV TR(T) — S F(X,T) — tand, ( ) (tan6, —
V )eV2x+V2tTeL (tanex VZX)X (41)
I.C.:
_ tan@,eV2x . tanf,—V,,
T——tangx_vzx[exp( Ly ) +1],0 <X <1,0<Y <1L,T=0 (42)
B.C.:
H.=0,X=0Y>0T>0 (43)
[Hy + Fllx=p,p,~ = ets/xVixmVad TVl [H 4 F]|,_, ) +,Y > 0,T >0 (44)
aH L Vx+V T— M KZ 74_(1/ -V )T
oy~ VaxHy + tanby };‘ 2xtlat n Klz eLxVix—Va) ' - 17728
Ls(tanO@x—V3y)
(aa’;’( V,H, + tand, _" g Vax Vo T =25 ),Y >0,T>0 (45)
h 0H,
. 9% + (tan6, —V,,)H, =0, X=1,Y >0,T >0 (46)
2 =0, X>0Y=1T>0 (47)
The solution for H, in (40)—(41) can be derived by separating the variables as follows:
H(X,Y,T) = ¢ () (T) (48)

thereby satisfying the following eigenvalue problems:
A 22 dXZ +a’p =0
AyDy, 20 — Y+ p2Y =0, 0<X <Lg/L, (49)
(E—(a2+ﬂz)l“= 0
((Ailrazp=0
QAZxDZydyz'i_ﬁ ll’_ol‘s/l‘ =X=<1 (50)

E—((X +ﬁ2)F=0
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PX)=0,X=0,T>0 (51)
¢(X = Lg/L,") = els/l=0iVad (X = Lo /L"), T >0 (52)

do Koy _ do
—~ Vi@ = KLHeLs/Lx(Vu Vax) (d_X — V2x¢) T>0 (53)
%% + (tanf, —V, ) =0, X=1, T >0 (54)
W(¥)=0Y=0,T>0 (55)
WO —0,y=1T>0 (56)

dy

The general solution for (49) and (50) in the X direction is
¢(X) = c¢; sin(aX) + c,cos(aX), 0< X <L,/L, (57)
¢(X) = c3sin(aX) + c,cos(aX), Ly/L, <X <1 (58)

Next, (57) and (55) were substituted into (51)—(54) to get

c; =0 (59)
¢y sin (a f—z) = els/Lx(V1x~V2x) [63 sin (a i—;) + ¢, cos (a 2—2)] (60)
C1 [a cos (a i—i) — Vi, sin (a i—i) = % eLs/Lx(Vix—Vax)
[Cg (a cos (a f—i) -V, sin (a Z—i)) —Cy (a sin (a 2—;) + V,, cos (a i—i))] (61)

C3 [Lia cos(a) + (tanf, — V,,) sin(a)] —Cy [Lia sin(a) — (tanf, — V,,) cos(a)] =0 (62)

Because (60)—(62) must have solutions other than (0,0,0), the following relation exists:

A11 A12 A13
Ay Ay Axz[=0 (63)

0 Az, Az

where
. Lg
A4 = sin (a Z) (64)
A12 — _eLs/Lx(le_sz) sin (a_/ 2—S> (65)
Az = —elLs/Lx(Vix=V2x) cog (OI i'—s) (66)
Lg . Lg

A, = acos (a Z) — Vi, sin (OZ Z) (67)
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Ayy = — % els/Llx(Vix=Vax) (a cos (a Z—i) — V,, sin (a z—i)) (68)

Ays = %’; els/Lx(V1x=Vax) (a sin (a 2—2) + Vyy COS (a ]L“—;)) (69)

Az =0 (70)

As, = Li_xa cos(a) + (tanb, — V,,) sin(a) (71)

Azz = — [L—Exa sin(a) — (tan6, — V,,) cos(a)] (72)

The eigenvalue a,, (m € Natural number) can be determined as the positive root of (63), and
the eigen function ¢ (X, a,,) = ¢,,(X) can thus be obtained.
The eigen function in the y direction is as follows:

Y, Br) =P (Y) = V2sin BnY (73)

with eigenvalue f3,, = %, n € Natural number.

Next, (A8) and (A9) are integrated to give

e_(Alxamz"'AlxDlyﬁnz)T [HT* + fOT e(AlxamZ"'AlxDlanz)T,Rmn* (T’)dT’]

,0<X<L,/L
r(r) = o pEml (74)
e_(AZxam +A2xD2yBn )T [HT* + fO e(AZxam +4A2xD2yBn )T Rmn (T’)dT’]
/Ly <X <1
The eigenfunction expansions for R and H, are shown in Appendix A.
Substituting ¢,,,(X), ¥, (Y) and (74) into (48) results in
( Tinm Dy €~ (Dbl g (XY (Y)
[Hr* + fOT e(A1x0-’m2+A1xD1yﬁn2)T’Rmn* (T/)dTI] ) 0<X< Lm/Lx
H.(X,Y,T) = (75)

[o's} o — 2 2
| St Bitey e (e Ao o (X (1)
[ + 7 Vst sasaDes )T R * (TYAT |, Ly /L < X < 1

Substituting (75) into (38), (28) and (29) yields

—tanf,eV2xeV2tT

tanf, -V,

tanf,—V,y

H(X,Y,T) = [exp (—Lx TX) + 1] +

(et T B B ot 0B g 01
[Hr* n foT e(Alxam2+A1xD1yﬂn2)T’Rmn* (T')dT'] ,0<X<L,/L,
e VexX p=VarT 2;?:1 Z%ozl 6_(A2xam2+A2xD2an2)T¢m (X)lpn (Y)

[, + [ eltocen® asPmaBi T R (AT Ly < X < 1

(76)
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3. Results

Verification of the presented mathematical model is essential. The linear analytical solution is
compared with a nonlinear numerical solution for groundwater level fluctuations under three
hypothetical scenarios of heterogeneous aquifers. The H — X profile is cut at ¥ = 0.5 to simulate
the groundwater table distribution in heterogeneous aquifers with distinct soil compositions under
recharge (Figure 2). The geographical parameters for clay, silt, loam and sand compositions are listed
in Table 1.

08

06

04
e (DA IC2] 504 analytecal sol.
R mumenical sol 02 - == =« punencal sol.
3 O lnearized numerical sol O O 0 liscarized numerical sol
0 T T T T T 0 T T T T Y
I 1 | | | | I | | | | |
0 02 04 06 08 1 0 (2 04 06 08 !

LR

04

0.2 - —A08lVOCH] SO 02 —_— analytical 30l
..... nwmencal 50l % - - == numercal sol,
N » © 0 linearized numenical sol 0 O 0 lnearized numencal sol
v —T T T T ‘YT 71T 1 1
L 02 04 06 0x | { 02 04 06 0= 1
X X
(c) Zone I: loam; Zone II: silty loam (d) Zone I: silty loam; Zone II: loam

0. anutytical sol . 01 * analytscal sol,
----- numerical sol " - - - - aneocal sel.
7 linearceed numerncal $o1 5 O 0 liscanized namerical sol
" 1T 1 17T 17 r~1T+r 1 vl
{0 0z 04 0. 08 1 O 02 04 0.6 0x 1
X X
(e) Zone I: silty loam; Zone II: sandy loam (f) Zone I: sandy loam; Zone II: silty loam

Figure 2. Comparison of the present solutions and the linear/nonlinear numerical solutions
for groundwater levels in heterogeneous aquifers. (6, = 0°,7 = 20 mm/h).
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Table 1. The hydraulic conductivity and specific yield for different soils.

clayey loam silty loam loam sandy loam
K, 3.28 m/d 8.53 m/d 12.9 m/d 23.4 m/d
Sy 0.11 0.21 0.25 0.39

For clayey loam with poor permeability, the discrepancy between analytical solutions and linear
numerical solutions is slight, confirming the correctness of the linearization assumption (Figure 2).
However, the discrepancy between analytical solutions and nonlinear numerical solutions is obvious
near both boundaries (X = 0 and X = 1), indicating that the influence of the nonlinear term of the
governing equation is significant near the boundaries. However, the overall groundwater level and the
groundwater level at the heterogeneous junction do not substantially differ. Furthermore, as soil
permeability increases, the difference between these solutions decreases.

Due to gravity, the groundwater flows toward X = 0, where it accumulates (Figure 3). The
groundwater flow velocity is positively correlated with the aquifer slope and affects groundwater level.
When flowing from a high-permeability to a low-permeability soil zone, the groundwater flow is
inhibited near the heterogeneous interface. Increasing the slope angle from 10° to 15° does not
significantly affect the groundwater level in the high-permeability soil zone, indicating that increasing
the slope angle is not sufficient for the groundwater to overcome the obstruction of the heterogeneous
interface. Conversely, when flowing from a low- permeability to a high-permeability soil zone, the
groundwater flow is relatively smooth (Figure 3b). Groundwater slightly accumulates before the
interface in the low- permeability soil zone. When the groundwater passes through the interface, the
water level drops rapidly and rises again near the boundary.

N P P

0

(a) Zone I: silty loam; Zone II: sandy loam (b) Zone I: sandy loam; Zone II: silty loam

Figure 3. Distribution of groundwater levels under surface recharge in sloping
heterogeneous aquifers.

The number of eigenvalues required for the analytical solution to converge is shown in Figure 4.
When the soil is highly permeable, fewer eigenvalues are needed for the solution to converge (i.e.,
when soil permeability increases, the number of eigenvalues decreases). When convergence accuracy
is 1073, the numbers of eigenvalues are 60 (Figure 4a), 50 (Figure 4b), or 30 (Figure 4c).
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60

2y, o 40 —
g -,.“’-” ,'\" 20 5 0 .“ 10 20 10
> 0 0 nf %
4 ( number of a,, number of @,
(a) Zone I: clayey loam; Zone II: loam (b) Zone I: loam; Zone 1II: silty loam

[[u;

1) - = e 30
0,))6( 10 . = 20
r oX 10

number of a,,

(c) Zone I: silty loam; Zone II: sandy loam

Figure 4. The relationship between the number of eigenvalues required for the
convergence of the analytical solution for groundwater level.

The groundwater level is lower in a sloping aquifer than in a horizontal aquifer. Because
groundwater flows toward X = 0, a water mound forms near the boundary at X = 0 (Figure 5).
Groundwater flows smoothly from the high-permeability to the low-permeability soil zone;
groundwater flowing in the other direction is blocked, resulting in accumulation at the heterogeneity
interface. The permeability of the soil in Zone I is inversely correlated with the overall groundwater
level. In our simulation, increasing soil permeability in this zone reduces the water level by
approximately 15%.
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0.3 Y 5 n7s | 5 §
10 028 03 e o 10 028 0

Y X Y X

Y I o 023

X ¥ X
(g) Zone I: silty loam; Zone II: loam (6, =0°) (h) Zone I: silty loam; Zone II: loam (6, = 5°)

Figure 5. Variation of groundwater level in horizontal and sloping heterogeneous aquifers
under surface recharge.
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The total accumulative recharge is the same for all three examples (Figure 6). Under uniform
recharge, the groundwater level increases with time, and a steady level is reached as expected over the
whole space (Figure 6a). The average groundwater level in Zone I is approximately 81% of that in

Zone 2. Under

unimodal recharge, groundwater levels temporally vary with the recharge pattern

(Figure 6b). The average groundwater level in Zone I is approximately 76% of that in Zone II. Under
bimodal recharge, the groundwater level appears to be larger than that under unimodal recharge. The
second peak recharge is 150% of the first peak recharge, and the second peak water depth is
approximately 195% of the first peak (Figure 6¢). The average groundwater level in Zone I is
approximately 72% of that in Zone II. Because the bottom of the aquifer is horizontal, the change in
the groundwater level is mainly affected by the recharge pattern. The results show that the greater the
change in the recharge rate, the more obvious the change in the groundwater level.
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The average groundwater level in Zone I is approximately 91% of that in Zone I because the fluidity
of groundwater in Zone I is low, and when the groundwater flows from Zone II to Zone I, it slows down
and slightly accumulates at the interface (Figure 7a). Both the pattern of surface recharge and aquifer
heterogeneity affect the groundwater level. The average groundwater level in Zone Il is approximately
86% of that in Zone I (Figure 7b). The variation of the groundwater level under bimodal recharge is more
significant than that under unimodal recharge. The second peak recharge is 150% of the first peak
recharge, and the second peak of water depth is approximately 186% of the first peak (Figure 7¢). The
average groundwater depth in Zone II aquifer is approximately 82% of that in Zone I. For 8, = 5°, the
change in the groundwater level is mostly affected by the recharge pattern and soil alignment. The
groundwater flows toward X = 0 due to gravity. However, the mobility of groundwater in Zone I is
low, and the groundwater flow is inhibited at the heterogeneous interface. When the total recharge
amount is the same, the groundwater level in Figure 7 is higher than that in Figure 6.
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Figure 7. Variations of groundwater levels under different surface recharge patterns for
0, = 5° (Zone I: silty loam; Zone II: loam).
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In Figure 8, when the slope angle is 8, = 5°, water gradually flows toward X = 0, (i.e., from
sandy loam to loam), resulting in negative flow discharge. Because the soil in Zone I is less permeable
than that in Zone II, the groundwater flow is inhibited. Therefore, the flow rate decreases within X =
0.35 — 0.5. In Figure 9, when the slope angle is 8, = —5°, water flows toward X =1 (i.e., from
loam to sandy loam), resulting in positive flow discharge. Because the soil in Zone II is more permeable
than that in Zone I, groundwater flow at X = 0.5 — 0.65 slows down slightly and then rises sharply
when water flows through the interface.
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Figure 8. Variation of groundwater flow for a sloping heterogeneous aquifer with 8, =
5° (Zone I: loam; Zone II: sandy loam; r = 20mm/h).
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Figure 9. Variation of groundwater flow for a sloping heterogeneous aquifer with 8, =
—5° (Zone I: loam; Zone II: sandy loam; r = 20mm/h).

4. Conclusions
We simulated various scenarios of groundwater flow in a finite-domain heterogeneous aquifer
under surface recharge. Considering the influence of time-varying recharge, a 2D mathematical model

was established, and an analytical solution was derived through the change-of-variable technique and
the improved separation-of-variable method. The change in surface recharge over time is described by
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Heaviside function. The eigenfunction expansion employed in this study was similar to the Fourier
series expansion used in [10].

To achieve the convergence of the analytical solution of 2D problems, the number of eigenvalues
required for the groundwater level depends on hydrological and geological parameters. During the
simulation, if the composition of the heterogeneous aquifer was clayey loam and sandy loam, it was
difficult for the analytical solution to converge because of omitting seepage at the interface in this
study. Therefore, if aquifer heterogeneity is not large, the present analytical solutions can be adequately
applied to simulate the variation of groundwater flow. In summary, we found that even if the soil
composition of the aquifer is the same, the variation of the groundwater level and water flow is
considerable depending on the soil alignment, the bottom slope angle and the direction of water flow.

Variations in the soil texture and surface infiltration significantly affect groundwater level changes.
Because no observed data of surface recharge can be found in practice, how to accurately estimate
surface recharge is crucial. In the future, we hope to incorporate accurate recharge estimation methods
to simulate the impact of in situ rainfall on groundwater levels.

Appendix A: Mathematical derivation using the eigen function expansion

Considering the general conditions of recharge distribution, we expand R and H, with the
eigen functions ¢,,(X) and ¥, (V) as follows:

H.(X,Y,T =0) = Y51 Xn=1 Hy o (DY (V) (A2)
where

L4 i eVisX PUTR(X, ¥, T) b (X) (V) dX LY
Rmn*(T): I\; 1 1 VouX VorT (A3)

o Lo, € e TR(XY, TY i (X (V) dXaY
L el an0ee 2 oy (—L, 9V ) 1 1] 0 () () dXAY "
Hr* - an erZZ;C an Ad

e ] G e o =2 X) + 1] 9O, (1) dxay
and

Yo xe [ ¢ 2 (02 (V) dXdY
N(am' ﬂn) = 0 Oofolfol 2 2 (AS)
2w fy Jn, $m” QO (V) dXdY

Substituting (48), (A3), (A4) and (AS5) into (40) and (41) to get

a“¢m d“yn
Ay 28 4 T AiDiy S8 4 bt Ay Dy R (T) = i, 0 < X < Ly/Lye (A6)

d? ¢m d*Pn ar
FlpnAZx + Fd)mAZxDZy dy2 + (»bmlpnAZxDZr mn (T) ¢m¢n 5: Ls/Lx X< 1 (A7)
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A% m(X) d*YPn(Y)
d;(nZ and AlxDly d—;}z
respectively, so (A6) and (A7) can be rewritten as

can be replaced by —a,2¢ and —B,°yY

among them, A,

ar *
E + (Alxam2 + AlxDly.an)F - AlxDermn (T) = 0) 0<X< Ls/Lx (AS)

r *
+ (AZxafm2 + AZxDZyﬁnz)r - AZxDZrRmn (T) = Or Ls/Lx <X<1 (A9)

Appendix B: Numerical Solution of the Nonlinear Equation

The previous analytical expression is derived based on the linearized Boussinesq equation. The
MacCormack scheme is used to solve the numerical solution of the nonlinear Boussinesq equation to
examine the effectiveness and efficiency of the linearization technique employed in this study.
Numerical validation is performed for an aquifer domain of 100 m x 100 m. In the numerical model,
Ax = 0.2m, Ay = 0.2m and At = 0.1 d. The predicted value of h is obtained by replacing the
spatial and temporal derivatives with forward differences, for which Egs. (8) and (9) are rewritten as

“ _ Kqixc0s? 0, At
Lierr = i+ = s (i (i = Riji) = (e = himgjp0] +

K1y cos 0, sinf, At K1y At
e Syf XE (hl+1] k— hi—1j, k) + — (Ay)z [hi,j+1,k(hi,j+1,k - hi,j,k) —hijrChyje —
ljlgy+ ~AL0<x <L, 0<y<lLy (B1)

" . Koy C0S% 0, At
Lierr = hijp+ == s (i (R e = i) = hijiCri e = hiea 0] +

Kyx cos O, sin 6, At Kzy At
T s, 2ix (hi+1, ke = hi-q, j,k) 5o S @y)2 [hi, j+1k (hi, j+ie — hy, j,k) hi j i (hijk

L]Mﬂ+ “At Ly <x <Ly0<y<L, (B2)

Next, the corrector is obtained by replacing the spatial derivative with the backward difference,
while the time derivative is still approximated by the forward difference. That is

Kixcos? 0, At

*ok _ * *
k1 = Rije + = L e [ ]k+1(h'l+1] k+1 hi,j,k+1) —hi g1 (i j ket hi—l,j,k+1)] +

KqxcosO,sinf, At K1y At "
= * = (h’l+1] k+1 — 1,j,k+1) + z TANZ [h iJ, k+1(hl]+1 k+1 h i,J, k+1)
2Ax 1 (Ay)
;'k,j—l,k+1(hl] k+1 h*] 1 k+1)] » At) 0<x< Ls: 0< y < Ly (B3)

Kyyc0s? 0, At

k% —_ * *
Pike1r = hijr+ — [h ]k+1(h1+11 Kk+1 hi,j,k+1) —hi_1jk+1(hijrea hi—l,j,k+1)] +
(Ax)

Sy2
K, cos B, sin 6, At Kyy At h %
- > szx (hl+1] k+1 1]k+1) + y(Ay)z [ iL,j, k+1(h11+1 k+1 —h; jk+1)
;'k,j—l,k+1(hlj k+1 h*] 1k+1)] + At Li<x<L,0<y< L, (B4)
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The final value of h is determined by the arithmetic mean of the predicted value h; ., and

k% :
the corrected value h;j 44, 1.€.,

1 Kix At .
hijks1 = {hl]k + R j s TS 1 (807 [ 1k+1(h1+1] k+1 hi,j,k+1) —hi 11 —

* le cos Bx sin6, At K1y At «
hi—l,j,k+1)] 2 Ax (hz+1] k+1 1] k+1) + (Ay)z [ i,j,k+1(hlj+1 k+1 — ],k+1) -

h:; 1k+1(hl] k+1 h;,j—l,k+1)]} + 5;_1At’ 0<x<L,0<y<lL, (B5)

1 * K2x At * *
hi,j,k+1 {hl] kKt h'l] k+1 + 2 (Ax )2 [ i,J, k+1(h'1+1] k+1 h i,], k+1) hl 1,j, k+1(h’l] k+1

* K, cos B, sin 6, At * K. At h* *
hi—l,j,k+1)] z—zAx (hl+1] k+1 h’l 1,j, k+1) + = (Ay)z [ i,j, k+1(h11+1 k+1 hi,j,k+1) -
i jasenn (B s = B ]| + 5  Ly < < L0 <y <L, (B6)

Since numerical solutions to the nonlinear two-dimensional Boussinesq equation is obtained
using the MacCormack method, the algorithm implements conservative dissipative steps to avoid
unphysical oscillations near strong gradients in the solution. By conducting numerical experiments on
different space and time discretizations, it is concluded that the calculation scheme that meets the
following criteria is stable:

Ky At
S 7 = 0.03 (B7)
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