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1. Introduction

COVID-19 is a contagious disease that can be easily transmitted from one person to another. At
the end of 2019, Wuhan, China, was the site of this terrible infection for the first time. Later, this
disease gave rise to a worldwide outbreak, which the World Health Organization (WHO) notified in
the first quarter of 2020 [1]. Almost all of the countries of the world have experienced widespread
transmission of this virus. The aforementioned sickness has currently claimed the lives of almost 50
billion people. COVID-19 has affected more than 500 million people worldwide. We cite [2, 3] for
a detailed explanation of how diseases are contracted and spread. Because the pandemic has affected
the entire world, every nation has implemented its own policies. Some nations have implemented
lockdowns, while others have issued laws requiring strict safety measures like wearing face masks and
avoiding large gatherings, etc. The countries most impacted by the disease are Brazil, Italy, India,
Iran, Spain, USA and the UK. Earlier research suggested that the virus originated in animals, but later
research showed that it may also transfer from person to person [4, 5].

Numerous infectious diseases are being investigated for potential treatments, controls, cures,
etc. Since epidemiology is an important field of medical science, one of the key subfields from
this viewpoint is mathematical biology. In contrast to earlier times, researchers are now becoming
increasingly interested in biomathematics and bio-math engineering. In order to give a framework
for comprehending the dynamics of diverse infectious diseases, mathematical models have been
utilized. The most effective tools for studying different diseases are mathematical models [6–8].
We can create numerous predictions, regulating strategies, etc [9–11], for a disease in a community
by using mathematical models. Considering these factors, researchers have shown a strong interest
in the aforementioned subject, we refer the reader to [12–15]. Many mathematical models have
recently been developed by researchers for COVID-19 as well; we provide e.g., see [16–19]. Major
public health difficulties and an economic catastrophe are being faced internationally as a result of the
aforementioned disease’s recent pandemic status and quick global spread.

In order to theoretically improve existing mathematical models for the aforementioned disease, it
is necessary to evaluate the influence of recently developed vaccinations with known high efficacy
that have weak transmission-controlling measures. For example, Pearson et al. [20] studied COVID-
19 immunization in low as well as middle-income countries. they found it to be very cost-effective,
according to recent research [21], if a vaccination with high efficacy and low cost is available. This
will have a big impact on disease eradication. Prior to pharmaceutical interventions like treatment
and immunization, non-pharmaceutical precautionary measures like the self-quarantining of confirmed
cases, isolation, using of face masks, hand washing, social distancing, lockdowns, avoiding gatherings,
and closing schools have been employed. This, however, is not a permanent solution. The best strategy
will thus be to develop a suitable immunization and make it broadly accessible in every civilization at
a fair price. Investigation of COVID-19, various researchers have developed many models. In order
to do this, we have aimed to develop a mathematical model with a class of people who have received
vaccinations and qualitatively analyze it while considering the therapeutic choices, immunization of
those who are susceptible, and healthcare for infected/hospitalized people. Our model takes into
account certain important biological and epidemiological elements of the disease under study, such
as the disease’s inhibitory effect, mortality rates from infections and natural causes, birth rate, and
various vaccination rates.
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Here, we build the dynamical model for COVID-19. Additionally, we depict the interactions
between several model compartments in flow charts in Figure 1. Consequently, we first explain our
model as follows: 

dS
dt = B − kSI

1+βI − (VS + d0 + qS)S
dE
dt = kSI

1+βI − (α + d0 + qE + vE)E
dI
dt = αE − (d0 + µ + vI + qI)I
dQ
dt = qSS + qEE + qII − (d0 + vQ)Q
dV
dt = vSS + vEE + vII + vQQ − d0V.

(1.1)

S

I

E

V
Q

vS

qS

Figure 1. Schematic diagram of the model (1.1).

Table 1. The parameters of the model (1.1).

Parameters Physical meaning and representation
S Susceptible compartment
E Exposed compartment
I Infected compartment
Q Quarantine compartment
V Vaccinated compartment
B Birth rate
µ COVID death rate
d0 Natural death rate
β inhibitory effect rate
k Saturation constant
α Infection rate from exposed class
qS Quarantine from susceptible class
qE Quarantine from exposed class
qI Quarantine from infected class
vS Vaccination rate of susceptible
vE Vaccination rate of exposed
vI Vaccination rate of infected
vQ Vaccination rate of quarantine
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In Figure 1, the model is presented as a flowchart. Epidemiological models have been examined
using difference equations or classical order derivatives. Some references are cited as [22, 23]. The
aforementioned operators cannot generate the phenomenon’s global dynamical behavior because of
their local nature [24–27]. As a result, academics have now taken the majority of models into
account when considering fractional order derivatives [28–31]. The growth of the aforementioned
field is attributable to its numerous applications to practical issues, particularly in the fields of
mathematical biology and dynamical analysis [32–36]. As far as we are aware, fractional calculus
is being used to describe an increasing number of real-world scenarios; we refer the reader to [37–43].
Additionally, the idea of fractional calculus has been applied in a number of scientific and technological
fields [44–46]. Because of its global nature and memory-preserving methodology, the theory of
fractional calculus has been widely used in the mathematical modeling of numerous diseases for further
information, see [47–49]. The conventional analytical and numerical approaches have been upgraded
to handle situations with fractional order derivatives (see references [50, 51]). To examine diverse
dynamical issues involving fractional order derivatives, the classical decomposition, perturbation, and
transformation methods, for instance, have been expanded (some references are cited as [52, 53]).
Traditional numerical techniques, such as RKM tools, Euler and Taylor methods, the Adams-Bashforth
method, etc., have been upgraded more and more to cope with fractional order problems (see [54,55]).
Recently, a novel idea has been identified that describes the crossover behavior of the dynamics,
because the states of multiple evolution processes frequently change suddenly. Due to these effects,
typical derivatives, whether classical or fractional, cannot be used to appropriately address the relevant
multi-phase behaviors. Therefore, scholars [56–61] have suggested this idea, which has the potential
to appropriately address the aforementioned behavior to a certain extent. As a result, we also
attempt at numerical analysis for our studied mathematical model by looking at multi-phase behaviors
under various fractional orders by utilizing some numerical technique based on Newton interpolation
polynomials. Discussion and a graphic presentation versus some actual facts are offered.

The provided model (1.1) can be stated as follows in the sense of the new derivative:

PWCDφ
+0(S)(t) = B −

kSI
1 + βI

− (VS + d0 + qS)S

PWCDφ
+0(E)(t) =

kSI
1 + βI

− (α + d0 + qE + vE)E

PWCDφ
+0(I)(t) = αE − (d0 + µ + vI + qI)I

PWCDφ
+0(Q)(t) = qSS + qEE + qII − (d0 + vQ)Q

PWCDφ
+0(V)(t) = vSS + vEE + vII + vQQ − d0V,

(1.2)

where PWCD+0 denotes piecewise classical or Caputo derivative with two sub-intervals in [0,T ].
For further clarification, we respectively express the left hand sides of (1.2) as follows:

PWCDφ
+0(S)(t) =


D+0[S(t)], 0 < t ≤ t1,

CDφ
+0(S)(t) =

1
Γ(1 − φ)

∫ t2

t1
(t − η)−φ

dS(η)
dη

dη, t1 < t ≤ T,
,

PWCDφ
+0(E)(t) =


D+0[E(t)], 0 < t ≤ t1,

CDφ
+0(E)(t) =

1
Γ(1 − φ)

∫ t2

t1
(t − η)−φ

dE(η)
dη

dη, t1 < t ≤ T,
,
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PWCDφ
+0(I)(t) =


D+0[I(t)], 0 < t ≤ t1,

CDφ
+0(I)(t) =

1
Γ(1 − δ)

∫ t2

t1
(t − η)−δ

dI(η)
dη

dη, t1 < t ≤ T,
,

PWCDφ
+0(Q)(t) =


D+0[Q(t)], 0 < t ≤ t1,

CDφ
+0(Q)(t) =

1
Γ(1 − δ)

∫ t2

t1
(t − η)−δ

dQ(η)
dη

dη, t1 < t ≤ T,
,

PWCDφ
+0(V)(t) =


D+0[V(t)], 0 < t ≤ t1,

CDφ
+0(V)(t) =

1
Γ(1 − δ)

∫ t2

t1
(t − η)−δ

dV(η)
dη

(η)dη, t1 < t ≤ T,
, (1.3)

where D+0 and CDφ
+0 are classical and Caputo derivatives, respectively.

Our manuscript is structured as follows: In the first section, we give introduction. In the Section 2,
we give basic results. Stability results are given in the Section 3. Numerical results are given in the
Section 4. In the Section 5, the fractional order form of the proposed model is investigated. In the
Section 6, we given conclusion.

2. Basic results

We recollect some fundamental results of fractional calculus.

Definition 2.1. [43] Let ϖ > 0, then, the non-integer order integral of a function S : [0,∞) → R is
defined as

Iφ
+0S(t) =

1
Γ(φ)

∫ t

0

S(η)
(t − η)1−φdη,

provided that right-hand side exists. Also, derivative in the Caputo sense is defined as

Dφ0+S(t) =


1

Γ(1 − φ)

∫ t

0
(t − η)−φS

′

(η)dη, 0 < φ < 1,

dS
dt
, φ = 1.

Lemma 2.2. [43] Let h ∈ L[0,∞), then, the solution of

Dφ0+S(t) = h(t), φ ∈ (0, 1],
S(0) = S0

is given by

S(t) = S0 +
1
Γ(φ)

∫ t

0

h(η)
(t − η)1−φdη.

Here, we recollect the piecewise definitions of the fractional order derivative and integral.
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Definition 2.3. [61] If h(t) is a differentiable function, then the definition of the classical, and
fractional piecewise derivative is

PWC
0 Dφt h(t) =

h′(t), 0 < t ≤ t1,

Dφ0+h(t) t1 < t ≤ t2,

such that PWC
0 Dφt is the classical derivative for 0 < t ≤ t1 and fractional derivative for t1 < t ≤ t2.

Definition 2.4. [61] Let h be a differentiable function, then, the classical, and fractional order
piecewise integration is given as

PWIφ0+h(t) =


∫ t

0
h(η)dη, 0 < t ≤ t1,

1
Γ(φ)

∫ t

t1
(t − η)φ−1h(η)d(η) t1 < t ≤ t2,

such that PFI+0φ(t) denotes the classical integration for 0 < t ≤ t1, and Reimann-Liouville integration
for t1 < t ≤ t2.

Lemma 2.5. [61] Consider the problem with the piecewise fractional order derivative

PFC
0 Dφt h(t) = F (t, h(t)), 0 < φ ≤ 1,

whose solution is given by

h(t) =


h0 +

∫ t

0
h(η)dη, 0 < t ≤ t1;

h(t1) +
1
Γ(φ)

∫ t

t1
(t − η)φ−1h(η)d(η) t1 < t ≤ t2.

Here, we define the Taylor series from [59]; consider

D
φ
t x(t) = F (t, x(t)),
x(0) = x0, (2.1)

where F : [0,∞) × R→ R. The generalized Taylor series is thus given by

x(t + h) = x(t) +
hφ

γ(φ + 1)
D
φ
t x(t) +

h2φ

γ(2φ + 1)
D

2φ
t x(t) + ... (2.2)

The outcomes of fractional calculus are used here. D2φ
t x = Dφt F (t, x(t)) +F (t, x(t))DφxF (t, x(t)).

By using (2.2), after rearranging the terms, we obtain the general formula shown below.

x(t + h) = x(t) +
hφ

γ(φ + 1)
F (t, x(t)) +

hφ

2Γ(φ + 1)

[
K1 +K2

]
, (2.3)

where

K1 = F (ti, xi(ti)), K2 = F
(
ti +

2hφΓ(φ + 1)
Γ(2φ + 1)

, x(ti) +
2hφΓ(φ + 1)
Γ(2φ + 1)

F(ti, xi(ti))
)
. (2.4)

Assume that φ = 1; the standard method described by (4.2).
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3. Stability analysis

We initially examine our model’s feasibility in this part. In order to achieve this, we add each
equation in the model (1.1) under the condition that

N(t) = S(t) + E(t) + I(t) + Q(t) +V(t),

one has
dN
dt
= B − d0N − µI. (3.1)

From (3.1), we have
lim
t→∞

supN ≤ N0.

Then, limt→∞ supN = N0 if and only if limt→∞ supI = 0.
In the system (1.1), the first equation yields

0 ≤ lim
t→∞

sup S ≤ S0.

Similarly, the second equation of the model (1.1) yields

0 ≤ lim
t→∞

supE ≤ E0.

From above, we conclude that dN
dt < 0 if N > N0. Additionally, we have

χ =
{
(S,E,I,Q,V) ∈ R5

+ : N ≤ N0 ≤
B
d0

}
. (3.2)

Disease free equilibrium points: We analyze whether the system (1.1) has an equilibrium point.
E0 = (S0, 0, 0, 0) =

(
B
do
, 0, 0, 0

)
is a representation of the model (1.1) disease-free equilibrium.

S0 =
B

vS + d0 + qS

Q0 =
S0

d0 + vQ

V0 =
vSS0 + vQQ0

d0
.

Endemic equilibrium: From (1.1), lets assume that dS
dt = 0, dE

dt = 0, dI
dt = 0, dQ

dt = 0 and dV
dt = 0; then,

by simple calculation one can find the endemic equilibrium to be as follows:

S∗(t) =
(α + d0 + qE + vE)(d0 + µ + vI + qI)(1 + βI∗)

αk

E∗(t) =
(d0 + µ + vI + qI)I∗

α

I∗(t) =
αkβ − (vS + d0 + qS)(α + d0 + qE + vE)(d0 + µ + vI + qI)
(α + d0 + qE + vE)(d0 + µ + vI + qI) (k + β(vS + d0 + qS))

Q∗(t) =
qSS∗ + qEE∗ + qII∗

d0 + vQ

V∗(t) =
vSS∗ + vQQ∗ + vII∗

d0
.
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3.1. Expression for R0

In epidemiology, the idea of the fundamental reproduction number, or R0, outlines how illnesses
spread and are treated. Both the frequency of the illness in the populace and the best countermeasures
to protect the neighborhood’s residents from the deadly virus are disclosed by R0. The most recent
method for determining R0 is as follows. If we set χ = (E,I), we have from the system (1.1) the
following

dχ
dt
= H − F,

where

H =
( kSI

1+βI

0

)
and

F =
(

(α + d0 + qE + vE)E
−αE(t) + (d0 + µ + vI + qI)I

)
.

The Jacobian of H for the disease-free equilibrium is

H =
(

0 kS0

0 0

)
,

and for the disease-free equilibrium, the Jacobian of F is given by

F =
(
α + d0 + qE + vE 0

−α d0 + µ + qI + vI

)
.

Hence

F−1 =
1

(α + d0 + qE + vE)(d0 + µ + vI + qI)

(
d0 + µ + vI + qI 0

α α + d0 + qE + vE.

)
.

We have

HF−1 =
1

(α + d0 + qE + vE)(d0 + µ + vI + qI)

(
αkS0 0

0 0

)
.

Hence, the required R0 is given by

R0 =
kαB

(α + d0 + vE + qE)(vS + d0 + qS)(d0 + µ + qI + vI)
. (3.3)

If and only if the reproduction number meets the requirement that R0 < 1, then we may state that
the disease-free equilibrium is stable and the population is disease-free. You can halt the spread of
an epidemic by exercising prudence. By sitting the numerical values of the variables above, R0 =

0.98347. This number shows that the spread of COVID-19 in the locality is well managed.
On the basis of R0, we established the following theorem.
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Theorem 3.1. (i) If R0 ≤ 1, then positive equilibria for system (1.1) are not possible.
(ii) If R0 > 1, then there is an endemic equilibrium, often known as a distinct positive (unique)
equilibrium E∗ = (S∗,I∗,Q∗,V∗).

Some further results on equilibrium point with global and local stability are presented here for
system (1.1).

Theorem 3.2. The disease-free equilibrium E0 is locally asymptotically stable, if R0 ≤ 1, and unstable
if R0 > 1.

Proof. The Jacobian matrix at E0 is given below:

M0 =


−(vS + d0 + qS) 0 −kB

vS+d0+qS
0 0

0 −(α + d0 + qE + vE) −kB
vS+d0+qS

0 0
0 α −(d0 + µ + vI + qI) 0 0
qS qE qI −(d0 + vQ)0 0
vS vE vI vQ −d0


.

From a simple straightforward calculation M0 has three eigenvalues which are negative; Λ1 =

−(vS + d0 + qS), Λ2 = −(d0 + vQ) and Λ3 = −d0. The next eigenvalues of M0 are derived from

Λ2 + (2d0 + α + µ + vI + qI + qE + vE)Λ + (α + d0 + qE + vE)(d0 + µ + vI + qI)

−
kαB

vS + d0 + qS
= 0.

(3.4)

If R0 > 1, then,

(α + d0 + qE + vE)(d0 + µ + vI + qI) −
kαB

vS + d0 + qS
< 0,

which means that (3.4) has two roots,i.e., one positive root and one negative root. Therefore, the
disease-free equilibrium E0 has an unstable saddle point. When R0 = 1, to get the result for the
disease-free equilibrium E0 that is globally asymptotically stable, we consider the function called the
Lyapunov function.

L(E,I) = αE + (α + d0 + qE + vE)I.

Taking the derivative of L(E,I) with respect to time t gives

dL(E,I)
dt

=

[
kαS

1 + αI
− (α + d0 + qE + vE)(d0 + µ + vI + qI)

]
I

≤ [kαS − (α + d0 + qE + vE)(d0 + µ + vI + qI)]I

≤
αkS0

R0

(
R0S

S0
− 1

)
≤ 0.

(3.5)

Suppose that I = 0 implies that dL(E,I)
dt = 0. Furthermore, when R0 = 1, which implies that E0 is

globally asymptotically stable in Φ. □
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In the next theorem, we study the stability at point E∗.

Theorem 3.3. If R0 > 1, the endemic equilibrium E∗ is globally asymptotically stable.

Proof. For the system (1.1), the Jacobian matrix is

M =


− kI∗

1+βI∗ − (vS + d0 + vS ) 0 kS∗
(1+βI∗)2 0 0

kI∗
1+βI∗ −(α + d0 + qE + vE) kS∗

(1+βI∗)2 0 0
0 α (d0 + µ + vI + qI) 0 0
qS qE qI −(d0 + vQ) 0
vS vE vI vQ −d0


.

We see that the eigen values of M’ i.e., Λ1 = −d0 and Λ2 = −(d0 + vQ) are negative. Also, we have

Λ3 + A1Λ
2 + A2Λ + A3 = 0,

where

A1 =
kI∗

1 + βI∗
+ 3d0 + vS + vE + µ + vI + qI + qE + qS > 0

A2 =

(
kI∗

1 + βI∗
+ vS + d0 + qS

)
(2d0 + α + µ + vI + qI + vE + qE)

+ (α + d0 + qE + vE)(d0 + µ + vI + qI) −
αkS∗

(1 + βI∗)2 > 0

>

(
kI∗

1 + βI∗
+ vS + d0 + qS

)
(2d0 + α + µ + vI + qI + vE + qE) > 0

A3 =

(
kI∗

1 + βI∗
+ vS + d0 + qS

) [
(α + d0 + vE + qE)(d0 + µ + vI + qI) −

αkS∗

(1 + βI∗)2

]
+
αkI∗

(1 + βI∗)
.
αkS∗

(1 + βI∗)2 > 0.

Consider the following equation

αkS∗

(1 + βI∗)
= (α + d0 + qE + vI)(d0 + µ + qI).

Using the Routh-Hurwitz theorem, we have that A1.A2−A3 > 0 by a simple direct calculation which
shows that E∗ is locally asymptotically stable. This completes the proof. □

4. Numerical simulation and discussion

Using the parameters from Table 2, we conducted the numerical simulations for model (1.1), we
describe them in this section. Here, we describe how we simulate our system (1.1) by using the second-
order Runge-Kutta (RK2) method as implemented in [64]. For this, we took into consideration

d§(t)
dt
= Ψ(t, §(t)). (4.1)
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Here § = (S,E,I,Q,V). The suggested approach allows us to express the relevant iterative formula
as

xi+1 = xi +
h
2
Ψ

(
ti +

h
2
, xi(ti) +

K1

2

)
. (4.2)

Here, K1 = hF (ti, xi(ti)), also, h = ti+1 − ti. We simulated our results by using the numerical
approach described in (4.2) and use the numbers from Table 2 in order to evaluate with our built-in
model (1.1). We use the results of the numerical simulations to demonstrate our theoretical results. The
parameter values and their descriptions for the numerical simulations are listed in Table 2. However,
some parameter values that are unknown have been assumed for the sake of illustration.

Table 2. The model’s (1.1) parameters and their corresponding values.

Parameters Physical meaning and representation Numerical value
S Susceptible compartment 222.6 million [65]
E Exposed compartment 120million [65–67]
I Infected compartment 1.30 [65]
Q Quarantine compartment 1.30 [65]
V Vaccinated compartment 100 millions [66]
B Birth rate 10000

59×365 [67]
µ COVID death rate 0.018 [67]
d0 Natural death rate 1

59×365 [67]
β inhibitory effect rate 0.0701 [65, 67]
k Saturation constant 0.00019 [66, 67]
α Infection rate from exposed class 0.0833 [65, 67]
qS Quarantine from susceptible class 0.0701 [65–67]
qE Quarantine from exposed class 0.13 [65, 67, 68]
qI Quarantine from infected class 0.0701 [67]
vS Vaccination rate of susceptible 0.0001 [65, 67]

vE Vaccination rate of exposed 0.4 [65, 67]
vI Vaccination rate of infected 0.00001 [65, 67]

vQ Vaccination rate of quarantine 0.0999 [65, 67]

We applied 300 days of the actual data from Pakistan. The overall population of the nation is
approximately equal to 222.60 million, according to the data in [65, 67]. Nearly 47% of the nation’s
population was fully vaccinated during the past nine months, while 57% was partially vaccinated. In
order to analyze the dynamics of disease propagation and the impact of the vaccination on its cure,
we simulated the outcomes for 300 days as shown in Figures 2–6, respectively by using the numerical
approach described by (4.2) of RK2 type. Here, we describe the model (1.1) .

Figures 2 through 6 depict the spread of the disease over a 300-day period at the specified speeds.
The exposed class and the susceptible class as shown by the actual data that were employed. The
infection spread relatively quickly in less than 50 days. As a result, there were also more persons under
quarantine. More people had full or partial vaccinations during this time. We can notice that there were
more persons who had received vaccinations.
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Figure 2. Susceptible compartment’s density over the specified time for the model (1.1).
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Figure 3. Exposed compartment’s density over the specified time for the model (1.1).
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Figure 4. Infected compartment’s density over the specified time for the model (1.1).
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Figure 5. Quarantine compartment’s density over the specified time for the model (1.1).
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Figure 6. Vaccinated compartment’s density over the specified time for the model (1.1).

5. Some numerical treatment via fractional calculus

Here, we develop a numerical scheme based on RK2 method for the model (1.2) as expressed in
terms of (1.3). We have developed a numerical method for the two sub-intervals of [0,T ]. We express
the system (1.2) in terms of 1.3 by using (x) = (S,E,I,Q,V) as follows:

PWCDφ
+0(S)(t) =

D+0[S(t)] = Ψ1(t, (x)), 0 < t ≤ t1,
CDφ
+0(S)(t) = Ψ1(t, (x)), t1 < t ≤ T,

,

PWCDφ
+0(E)(t) =

D+0[E(t)] = Ψ2(t, (x)), , 0 < t ≤ t1,
CDφ
+0(E)(t) = Ψ2(t, (x)), , t1 < t ≤ T,

,

PWCDφ
+0(I)(t) =

D+0[I(t)] = Ψ3(t, (x)), , 0 < t ≤ t1,
CDφ
+0(I)(t) = Ψ3(t, (x)), , t1 < t ≤ T,

,

PWCDφ
+0(Q)(t) =

D+0[Q(t)] = Ψ4(t, (x)), , 0 < t ≤ t1,
CDφ
+0(Q)(t) = Ψ4(t, (x)), , t1 < t ≤ T,

,
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PWCDφ
+0(V)(t) =

D+0[V(t)] = Ψ5(t, (x)), , 0 < t ≤ t1,
CDφ
+0(V)(t) = Ψ5(t, (x)), t1 < t ≤ T.

(5.1)

We may write the aforesaid system (5.1) by using (4.2) for classical order derivative when 0 < t < t1

and (2.3) with the (2.4) for the fractional order Caputo derivative with t1 < t < T . Hence, we can write
the first equation of the system (5.1) as follows:

S(ti+1)) =


Si−1(ti−1) +

h
2
Ψ1

[
ti−1 +

h
2
, xi−1(ti−1) +

K1

2

]
, 0 < t ≤ t1

Si(ti) +
hφ

γ(φ + 1)
Ψ1(ti, xi(ti)) +

hφ

2Γ(φ + 1)

[
K2 +K3

]
, t1 < t ≤ T,

(5.2)

where h = ti+1 − ti, and

K1 = Ψ1(ti−1, xi−1(ti−1)), K2 = Ψ1(ti, xi(ti)),

K3 = Ψ1

(
ti +

2hφΓ(φ + 1)
Γ(2φ + 1)

, x(ti) +
2hφΓ(φ + 1)
Γ(2φ + 1)

Ψ1(ti, xi(ti))
)
. (5.3)

Similarly, the equations for the other compartments can be written as follows:

E(ti+1)) =


Ei−1(ti−1) +

h
2
Ψ2

[
ti−1 +

h
2
, xi−1(ti−1) +

K1

2

]
, 0 < t ≤ t1

Ei(ti) +
hφ

γ(φ + 1)
Ψ2(ti, xi(ti)) +

hφ

2Γ(φ + 1)

[
K2 +K3

]
, t1 < t ≤ T,

(5.4)

I(ti+1)) =


Ii−1(ti−1) +

h
2
Ψ3

[
ti−1 +

h
2
, xi−1(ti−1) +

K1

2

]
, 0 < t ≤ t1

Ii(ti) +
hφ

γ(φ + 1)
Ψ3(ti, xi(ti)) +

hφ

2Γ(φ + 1)

[
K2 +K3

]
, t1 < t ≤ T,

(5.5)

Q(ti+1)) =


Qi−1(ti−1) +

h
2
Ψ4

[
ti−1 +

h
2
, xi−1(ti−1) +

K1

2

]
, 0 < t ≤ t1

Qi(ti) +
hφ

γ(φ + 1)
Ψ4(ti, xi(ti)) +

hφ

2Γ(φ + 1)

[
K2 +K3

]
, t1 < t ≤ T,

(5.6)

and

V(ti+1)) =


Vi−1(ti−1) +

h
2
Ψ5

[
ti−1 +

h
2
, xi−1(ti−1) +

K1

2

]
, 0 < t ≤ t1

Vi(ti) +
hφ

γ(φ + 1)
Ψ5(ti, xi(ti)) +

hφ

2Γ(φ + 1)

[
K2 +K3

]
, t1 < t ≤ T.

(5.7)

Here, we plot the approximated results for two sets of fractional orders in two cases.
Case I: When 0 < φ ≤ 0.6, the corresponding solutions exhibiting crossover behavior were obtained
as in Figures 7–11 for different fractional orders.
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Figure 7. Graphical representations of the density of the susceptible compartment in the
model (1.3) during the selected period for corresponding values of different fractional orders.
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Figure 8. Graphical representations of the density of the exposed compartment in the model
(1.3) during the selected period for different fractional orders.
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Figure 9. Graphical representations of the density of the infected compartment in the model
(1.3) during the selected period for different fractional orders.
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Figure 10. Graphical representations of the density of the quarantining compartment in the
model (1.3) during the selected period for different fractional orders.

Figure 11. Graphical representations of the density of the vaccinated compartment in the
model (1.3) during the selected period for different fractional orders.

Case II: Now we present the numerical results corresponding to different fractional orders such
that 0.6 < φ < 1 in Figures 12–16, respectively which show the crossover behaviors of different
compartments.
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Figure 12. Density of the susceptible compartment in the model (1.3) during the specified
period for various fractional orders.
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Figure 13. Density of the exposed compartment in the model (1.3) during the specified
period for various fractional orders.
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Figure 14. Density of the infected compartment in the model (1.3) during the specified
period for various fractional orders.
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Figure 15. Density of the quarantined compartment in the model (1.3) during the specified
period for various fractional orders.
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Figure 16. Density of the vaccinated compartment in the model (1.3) during the specified
period for various fractional orders.

Here, we discuss the results of modeling of the piecewise derivative shown in Figures 7–16.
We observed a the sudden change after 150 days. So, for various fractional orders in [0, 50) and
[50, 300], we have plotted the numerical findings for systems (1.3) and (5.1). It is possible to see the
declines and rises in several compartments with obvious crossover behavior. This novel idea makes a
significant contribution to the understanding of how a system that experiences sudden changes in its
dynamics behaves. Additionally, the fractional order derivative is a global operator that furthers our
comprehension of the phenomenon. In Figure 17, we have compared some real data of infected cases
with the simulated results at given fractional orders. Data applied here were taken from Pakistan from
January 1, 2021 to January 30, 2021 (see [65]). We see that the simulated results were very similar to
the real data which confirm the authentication of the fractional order model that we have considered.

Also, we have compared the simulated data for the vaccinated class for the period of 11 days i.e.,
March 1, 2022 to March 11, 2022 (see [67]) in Figure 18.
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Figure 17. Comparison of real and the simulated data plots at the given fractional orders for
infected class.
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Figure 18. Comparison of real and the simulated data plots at the given fractional orders for
vaccinated class.

6. Conclusions

Here, a dynamical system for the COVID-19 disease has been examined. The traditional method
for determining the conditions for both local and global stability, as well as for computing R0 at
equilibrium locations, is to employ classical analysis. Additionally, the classical model scenario was
numerically simulated. We then developed a strong algorithm to carry out the numerical analysis of the
suggested model under the conditions of the new concept, extending the RK2 approach to piece-wise
derivative applications. Using actual data from Pakistan for the first 300 days by splitting into two sub
intervals , we have carried out a number of numerical simulations for various fractional orders. We have
found that fractional calculus that involves applying in terms of piecewise derivative is more effective
at clearly indicating the rapid changes in various model compartments. Crossover behavior is what we
call such behavior. In the aforementioned process, a system experiences a rapid change in its state of
dynamics and runs its crossover behavior is terminated. The aforementioned idea can be further refined
to encompass more complex dynamical systems with various types of fractional differential operators.
Also, in the future, we will combine stochastic type and fractals-fractional differential type operators
in piecewise form for various infectious disease models.

Use of AI tools declaration

The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

Acknowledgements

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad
Ibn Saud Islamic University (IMSIU) (Grant Number IMSIU- RG23124).

Conflict of interest

The authors declare that they have no competing interest.

AIMS Mathematics Volume 8, Issue 12, 29932–29955.



29951

References

1. Naming the coronavirus disease (COVID-19) and the virus that causes it,
Available from: World Health Organization (WHO), 2020, https://www.who.

int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/

naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.

2. S. Zhao, S. S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported
number of novel coronavirus (2019-nCoV) cases in China in the first half of January
2020, a data-driven modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388.
https://doi.org/10.3390/jcm9020388

3. I. Nesteruk, Statistics based predictions of coronavirus 2019-nCoV spreading in mainland China,
MedRxiv, 4 (2020), 1988–1989. https://doi.org/10.1101/2020.02.12.20021931

4. D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The
continuing 2019-nCoV epidemic threat of novel coronaviruses to global health–The latest
2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis., 91 (2020), 264–266.
https://doi.org/10.1016/j.ijid.2020.01.009

5. S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic
reproduction number of novel coronavirus (2019-nCoV) in China, Int. J. Infect. Dis., 92 (2020),
214–217. https://doi.org/10.1016/j.ijid.2020.01.050

6. K. Shah, R. Din, W. Deebani, P. Kumam, Z. Shah, On nonlinear classical and
fractional order dynamical system addressing COVID-19, Results Phys., 24 (2021), 104069.
https://doi.org/10.1016/j.rinp.2021.104069

7. A. J. Lotka, Contribution to the theory of periodic reactions, J. Phys. Chem., 14 (1910), 271–274.
https://doi.org/10.1021/j150111a004

8. N. S. Goel, S. C. MAITRA, E. W. MONTROLL, On the Volterra and other
nonlinear models of interacting populations, Rev. Mod. Phys., 43 (1971), 231.
https://doi.org/10.1103/RevModPhys.43.231

9. P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, et al., A pneumonia outbreak
associated with a new coronavirus of probable bat origin, Nature, 579 (2020), 270–273.
https://doi.org/10.1038/s41586-020-2012-7

10. Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in
Wuhan, China, of novel coronavirus infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–
1207. https://doi.org/10.1056/NEJMoa2001316

11. I. I. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M. U. G. Kraemer, K. Khan, Pneumonia of
unknown aetiology in Wuhan, China: potential for international spread via commercial air travel,
J. Travel Med., 27 (2020), taaa008. https://doi.org/10.1093/jtm/taaa008

12. C. Lu, H. Liu, D. Zhang, Dynamics and simulations of a second order stochastically perturbed
SEIQV epidemic model with saturated incidence rate, Chaos Soliton. Fract., 152 (2021), 111312.
https://doi.org/10.1016/j.chaos.2021.111312

AIMS Mathematics Volume 8, Issue 12, 29932–29955.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
http://dx.doi.org/https://doi.org/10.3390/jcm9020388
http://dx.doi.org/https://doi.org/10.1101/2020.02.12.20021931
http://dx.doi.org/https://doi.org/10.1016/j.ijid.2020.01.009
http://dx.doi.org/https://doi.org/10.1016/j.ijid.2020.01.050
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104069
http://dx.doi.org/https://doi.org/10.1021/j150111a004
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.43.231
http://dx.doi.org/https://doi.org/10.1038/s41586-020-2012-7
http://dx.doi.org/https://doi.org/10.1056/NEJMoa2001316
http://dx.doi.org/https://doi.org/10.1093/jtm/taaa008
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111312


29952

13. X. Liu, L. Yang, Stability analysis of a SEIQV epidemic model with saturated incidence rate,
Nonlinear Anal. Real, 13 (2012), 2671–2679. https://doi.org/10.1016/j.nonrwa.2012.03.010

14. A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, et al., Modelling
strategies for controlling SARS out breaks, Proc. R. Soc. Lond. B, 271 (2004), 2223–2232.
https://doi.org/10.1098/rspb.2004.2800

15. A. Atangana, S. I. Araz, Modeling third waves of Covid-19 spread with piecewise differential
and integral operators: Turkey, Spain and Czechia, Results Phys., 29 (2021), 104694.
https://doi.org/10.1016/j.rinp.2021.104694

16. Z. Zhang, A. Zeb, S. Hussain, E. Alzahrani, Dynamics of COVID-19 mathematical model with
stochastic perturbation, Adv. Differ. Equ., 2020 (2020), 451. https://doi.org/10.1186/s13662-020-
02909-1

17. A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and
South Africa: theory, methods, and applications, Adv. Differ. Equ., 2020 (2020), 659.
https://doi.org/10.1186/s13662-020-03095-w

18. N. H. Alharthi, M. B. Jeelani, A Fractional model of COVID-19 in the frame of environmental
transformation with caputo fractional derivative, Adv. Appl. Stat., 88 (2023), 225–244.
https://doi.org/10.17654/0972361723047

19. M. B. Jeelani, Stability and computational analysis of COVID-19 using a higher
order galerkin time discretization scheme, Adv. Appl. Stat., 86 (2023), 167–206.
https://doi.org/10.17654/0972361723022

20. C. A. B. Pearson, F. Bozzani, S. R. Procter, N. G. Davies, M. Huda, H. T. Jensen, et al., COVID-19
vaccination in Sindh Province, Pakistan: A modelling study of health impact and cost-effectiveness,
PLoS Med., 18 (2021), e1003815. https://doi.org/10.1371/journal.pmed.1003815

21. R. P. Curiel, H. G. Ramı́rez, Vaccination strategies against COVID-19 and the diffusion of anti-
vaccination views, Sci. Rep., 11 (2021), 6626. https://doi.org/10.1038/s41598-021-85555-1

22. J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and
international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study,
The Lancet, 395 (2020), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9

23. M. S. Arshad, D. Baleanu, M. B. Riaz, M. Abbas, A novel 2-stage fractional Runge-kutta method
for a time-fractional logistic growth model, Discrete Dyn. Nat. Soc., 2000 (2000), 1020472.
https://doi.org/10.1155/2020/1020472

24. T. Abdeljawad, Q. M. Al-Mdallal, F. Jarad, Fractional logistic models in the frame of fractional
operators generated by conformable derivatives, Chaos Soliton. Fract., 119 (2019), 94–101.
https://doi.org/10.1016/j.chaos.2018.12.015

25. O. A. Omar, R. A. Elbarkouky, H. M. Ahmed, Fractional stochastic modelling of COVID-19
under wide spread of vaccinations: Egyptian case study, Alex. Eng. J., 61 (2022), 8595–8609.
https://doi.org/10.1016/j.aej.2022.02.002

26. S. Saha, A. K. Saha, Modeling the dynamics of COVID-19 in the presence of Delta and Omicron
variants with vaccination and non-pharmaceutical interventions, Heliyon, 9 (2023), e17900.
https://doi.org/10.1016/j.heliyon.2023.e17900

AIMS Mathematics Volume 8, Issue 12, 29932–29955.

http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2012.03.010
http://dx.doi.org/https://doi.org/10.1098/rspb.2004.2800
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104694
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02909-1
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02909-1
http://dx.doi.org/https://doi.org/10.1186/s13662-020-03095-w
http://dx.doi.org/https://doi.org/10.17654/0972361723047
http://dx.doi.org/https://doi.org/10.17654/0972361723022
http://dx.doi.org/https://doi.org/10.1371/journal.pmed.1003815
http://dx.doi.org/https://doi.org/10.1038/s41598-021-85555-1
http://dx.doi.org/https://doi.org/10.1016/S0140-6736(20)30260-9
http://dx.doi.org/https://doi.org/10.1155/2020/1020472
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2018.12.015
http://dx.doi.org/https://doi.org/10.1016/j.aej.2022.02.002
http://dx.doi.org/https://doi.org/10.1016/j.heliyon.2023.e17900


29953

27. H. M. Ahmed, R. A. Elbarkouky, O. A. M. Omar, M. A. Ragusa, Models for
COVID-19 daily confirmed cases in different countries, Mathematics, 9 (2021), 659.
https://doi.org/10.3390/math9060659

28. F. Liu, K. Burrage, Novel techniques in parameter estimition for fractinal dynamical
models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833.
https://doi.org/10.1016/j.camwa.2011.03.002

29. M. T. Hoang, O. F. Egbelowo, Dynamics of a fractional-order hepatitis b epidemic model and
its solutions by nonstandard numerical schemes, In: Mathematical modelling and analysis of
infectious diseases, Cham: Springer, 2020, 127–153. https://doi.org/10.1007/978-3-030-49896-
2 5

30. A. Zeb, E. Alzahrani, V. S. Erturk, G. Zaman, Mathematical model for coronavirus disease
2019 (COVID-19) containing isolation class, BioMed Res. Int., 2020 (2020), 3452402.
https://doi.org/10.1155/2020/3452402

31. K. Shah, A. Ali, S. Zeb, A. Khan, M. A. Alqudah, T. Abdeljawad, Study of fractional
order dynamics of nonlinear mathematical model, Alex. Eng. J., 61 (2022), 11211–11224.
https://doi.org/10.1016/j.aej.2022.04.039

32. S. Boccaletti, W. Ditto, G. Mindlin, A. Atangana, Modeling and forecasting of epidemic
spreading: The case of Covid-19 and beyond, Chaos Soliton. Fract., 135 (2020), 109794.
https://doi.org/10.1016/j.chaos.2020.109794

33. E. Atangana, A. Atangana, Facemasks simple but powerful weapons to protect against
COVID-19 spread: Can they have sides effects, Results Phys., 19 (2020), 103425.
https://doi.org/10.1016/j.rinp.2020.103425

34. S. T. M. Thabet, M. S. Abdo, K. Shah, T. Abdeljawad, Study of transmission dynamics of COVID-
19 mathematical model under ABC fractional order derivative, Results Phys., 19 (2020), 103507.
https://doi.org/10.1016/j.rinp.2020.103507

35. A. Al Elaiw, F. Hafeez, M. B. Jeelani, M. Awadalla, K. Abuasbeh, Existence and uniqueness
results for mixed derivative involving fractional operators, AIMS Mathematics, 8 (2023), 7377–
7393. https://doi.org/10.3934/math.2023371

36. A. Moumen, R. Shafqat, A. Alsinai, H. Boulares, M. Cancan, M. B. Jeelani, Analysis of fractional
stochastic evolution equations by using Hilfer derivative of finite approximate controllability, AIMS
Mathematics, 8 (2023), 16094–16114. https://doi.org/10.3934/math.2023821

37. J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun.
Nonlinear Sci., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027

38. F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study,
Commun. Nonlinear Sci., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004

39. L. M. Richard, Fractional calculus in bioengineering, part 1, Critical Reviews in Biomedical
Engineering, 32 (2004), 104. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10

40. M. Dalir, M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4 (2010), 1021–1032.

AIMS Mathematics Volume 8, Issue 12, 29932–29955.

http://dx.doi.org/https://doi.org/10.3390/math9060659
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2011.03.002
http://dx.doi.org/https://doi.org/10.1007/978-3-030-49896-2_5
http://dx.doi.org/https://doi.org/10.1007/978-3-030-49896-2_5
http://dx.doi.org/https://doi.org/10.1155/2020/3452402
http://dx.doi.org/https://doi.org/10.1016/j.aej.2022.04.039
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.109794
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2020.103425
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2020.103507
http://dx.doi.org/https://doi.org/10.3934/math.2023371
http://dx.doi.org/https://doi.org/10.3934/math.2023821
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2010.05.027
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2009.05.004
http://dx.doi.org/https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10


29954

41. A. S. Alnahdi, M. B. Jeelani, H. A. Wahash, M. A. Abdulwasaa, A Detailed Mathematical Analysis
of the Vaccination Model for COVID-19, Computer Modeling in Engineering Sciences, 135 (2022),
1315–1343. https://doi.org/10.32604/cmes.2022.023694

42. K. Dehingia, M. B. Jeelani, A. Das, Artificial intelligence and machine learning: A smart science
approach for cancer control, In: Advances in deep learning for medical image analysis, Boca
Raton: CRC Press, 2022. https://doi.org/10.1201/9781003230540

43. M. B. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, N. H.
Alharthi, Qualitative analyses of fractional integro-differential equations with a variable
order under the Mittag-Leffler power law, J. Funct. Space., 2022 (2022), 6387351.
https://doi.org/10.1155/2022/6387351

44. R. L. Magin, Fractional calculus in bioengineering: A tool to model complex dynamics, In:
Proceedings of the 13th International Carpathian Control Conference (ICCC), High Tatras,
Slovakia, 2012, 464–469. https://doi.org/10.1109/CarpathianCC.2012.6228688

45. Y. A. Rossikhin, M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear
and nonlinear hereditary mechanics of solids, 50 (1997), 15–67. https://doi.org/10.1115/1.3101682

46. A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Vienna:
Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6

47. L. M. Richard, Fractional calculus models of complex dynamics in biological tissues, Comput.
Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039

48. M. Shimizu, W. Zhang, Fractional calculus approach to dynamic problems of viscoelastic
materials, JSME International Journal Series C Mechanical Systems, Machine Elements and
Manufacturing, 42 (1999), 825–837. https://doi.org/10.1299/jsmec.42.825

49. F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc.
Appl. Anal., 15 (2012), 712–717. https://doi.org/10.2478/s13540-012-0048-6

50. Z. Dai, Y. Peng, H. A. Mansy, R. H. Sandler, T. J. Royston, A model of lung parenchyma
stress relaxation using fractional viscoelasticity, Med. Eng. Phys., 37 (2015), 752–758.
https://doi.org/10.1016/j.medengphy.2015.05.003

51. M. A. Matlob, Y. Jamali, The concepts and applications of fractional order differential calculus in
modeling of viscoelastic systems, Critical Reviews in Biomedical Engineering, 47 (2019), 249–
276. https://doi.org/10.1615/CritRevBiomedEng.2018028368

52. W. Grzesikiewicz, A. Wakulicz, A. Zbiciak, Non-linear problems of fractional
calculus in modeling of mechanical systems, Int. J. Mech. Sci., 70 (2013), 90–98.
https://doi.org/10.1016/j.ijmecsci.2013.02.007

53. C. Celauro, C. Fecarotti, A. Pirrotta, A. C. Collop, Experimental validation of a fractional
model for creep/recovery testing of asphalt mixtures, Constr. Build. Mater., 36 (2012), 458–466.
https://doi.org/10.1016/j.conbuildmat.2012.04.028

54. W. Adel, A. Elsonbaty, A. Aldurayhim, A. El-Mesady, Investigating the dynamics of a novel
fractional-order monkeypox epidemic model with optimal control, Alex. Eng. J., 73 (2023), 519–
542. https://doi.org/10.1016/j.aej.2023.04.051

AIMS Mathematics Volume 8, Issue 12, 29932–29955.

http://dx.doi.org/https://doi.org/10.32604/cmes.2022.023694
http://dx.doi.org/https://doi.org/10.1201/9781003230540
http://dx.doi.org/https://doi.org/10.1155/2022/6387351
http://dx.doi.org/https://doi.org/10.1109/CarpathianCC.2012.6228688
http://dx.doi.org/https://doi.org/10.1115/1.3101682
http://dx.doi.org/https://doi.org/10.1007/978-3-7091-2664-6
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2009.08.039
http://dx.doi.org/https://doi.org/10.1299/jsmec.42.825
http://dx.doi.org/https://doi.org/10.2478/s13540-012-0048-6
http://dx.doi.org/https://doi.org/10.1016/j.medengphy.2015.05.003
http://dx.doi.org/https://doi.org/10.1615/CritRevBiomedEng.2018028368
http://dx.doi.org/https://doi.org/10.1016/j.ijmecsci.2013.02.007
http://dx.doi.org/ https://doi.org/10.1016/j.conbuildmat.2012.04.028
http://dx.doi.org/ https://doi.org/10.1016/j.conbuildmat.2012.04.028
http://dx.doi.org/https://doi.org/10.1016/j.aej.2023.04.051


29955

55. A. El-Mesady, A. Elsonbaty, W. Adel, On nonlinear dynamics of a fractional
order monkeypox virus model, Chaos Soliton. Fract., 164 (2022), 112716.
https://doi.org/10.1016/j.chaos.2022.112716

56. N. Ahmed, A. Elsonbaty, A. Raza, M. Rafiq, W. Adel, Numerical simulation and stability
analysis of a novel reaction-diffusion COVID-19 model, Nonlinear Dyn., 106 (2021), 1293–1310.
https://doi.org/10.1007/s11071-021-06623-9

57. A. M. R. Elsonbaty, Z. Sabir, R. Ramaswamy, W. Adel, Dynamical analysis of a
novel discrete fractional SITRS model for COVID-19, Fractals, 29 (2021), 2140035.
https://doi.org/10.1142/S0218348X21400351

58. A. El-Mesady, A. Waleed Adel, A. A. Elsadany, A. Elsonbaty, Stability analysis and optimal
control strategies of a fractional-order Monkeypox virus infection model, Phys. Scr., 98 (2023),
095256. https://doi.org/10.1088/1402-4896/acf16f

59. M. M. Khalsaraei, An improvement on the positivity results for 2-stage explicit Runge-Kutta
methods, J. Comput. Appl. Math., 235 (2010), 137–143. https://doi.org/10.1016/j.cam.2010.05.020

60. Z. J. Fu, Z. C. Tang, H. T. Zhao, P. W. Li, T. Rabczuk, Numerical solutions of the coupled unsteady
nonlinear convection-diffusion equations based on generalized finite difference method, Eur. Phys.
J. Plus, 134 (2019), 272. https://doi.org/10.1140/epjp/i2019-12786-7

61. A. Atangana, S. I. Araz, New concept in calculus: piecewise differential and integral operators,
Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638

62. Current information about COVID-19 in Pakistan, 2021, Available from: https://www.
worldometers.info.

63. Pakistan COVID-19 Corona tracker, 2021, Available from: https://www.coronatracker.com/
country/pakistan/.

64. F. Chamchod, N. F. Britton, On the dynamics of a two-strain influenza model with isolation, Math.
Model. Nat. Phenom., 7 (2012), 49–61. https://doi.org/10.1051/mmnp/20127305

65. Pakistan population, Available from: Worldometer, https://www.worldometers.info/
world-population/pakistan-population/.

66. S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order
mathematical modeling of COVID-19 transmission, Chaos Soliton. Fract., 139 (2020), 110256.
https://doi.org/10.1016/j.chaos.2020.110256

67. Vaccines, Available from: UNICEF Pakistan, https://www.unicef.org/pakistan/topics/
vaccines

68. S. Mwalili, M. Kimathi, V. Ojiambo, D. Gathungu, R. Mbogo, SEIR model for COVID-19
dynamics incorporating the environment and social distancing, BMC Res. Notes, 13 (2020), 352.
https://doi.org/10.1186/s13104-020-05192-1

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 12, 29932–29955.

http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.112716
http://dx.doi.org/https://doi.org/10.1007/s11071-021-06623-9
http://dx.doi.org/https://doi.org/10.1142/S0218348X21400351
http://dx.doi.org/https://doi.org/10.1088/1402-4896/acf16f
http://dx.doi.org/https://doi.org/10.1016/j.cam.2010.05.020
http://dx.doi.org/https://doi.org/10.1140/epjp/i2019-12786-7
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110638
https://www.worldometers.info
https://www.worldometers.info
https://www.coronatracker.com/country/pakistan/
https://www.coronatracker.com/country/pakistan/
http://dx.doi.org/ https://doi.org/10.1051/mmnp/20127305
https://www.worldometers.info/world-population/pakistan-population/
https://www.worldometers.info/world-population/pakistan-population/
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110256
https://www.unicef.org/pakistan/topics/vaccines
https://www.unicef.org/pakistan/topics/vaccines
http://dx.doi.org/https://doi.org/10.1186/s13104-020-05192-1
http://creativecommons.org/licenses/by/4.0

	Introduction
	Basic results
	Stability analysis
	Expression for R0

	Numerical simulation and discussion 
	Some numerical treatment via fractional calculus 
	Conclusions

