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Abstract: This paper is concerned with a population model with prey refuge and a Holling type
III functional response in the presence of self-diffusion and cross-diffusion, and its Turing pattern
formation problem of Hopf bifurcating periodic solutions was studied. First, we discussed the stability
of periodic solutions for the ordinary differential equation model, and derived the first derivative
formula of periodic functions for the perturbed model. Second, applying the Floquet theory, we
gave the conditions of Turing patterns occurring at Hopf bifurcating periodic solutions. Additionally,
we determined the range of cross-diffusion coefficients for the diffusive population model to form
Turing patterns at the stable periodic solutions. Finally, our research was summarized and the relevant
conclusions were simulated numerically.
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1. Introduction

Since 1946, biologist Crombic proved the stability effect through experiments [1, 2] and more
and more scholars analyzed the refuge effect on the population model [3–9], mainly focused on the
self-diffusion effect on dynamic behavior of the population system. In addition to the effect of self-
diffusion, cross-diffusion also plays an important role during the population pattern formation. About
the predator-prey systems with diffusion terms, many scholars have studied the Turning instability and
Hopf bifurcation of its constant equilibrium [10–17]. At present, for the reaction-diffusion predator-
prey system, most literatures [18–25] focus on Turing instability of the constant equilibrium, but there
are few research results on the stability of the periodic solutions. Therefore, it is significant to study
the Turing pattern formation of Hopf bifurcating periodic solutions for the cross-diffusion population
model with prey refuge and the Holling III functional response.

In 2015, Yang et al. [9] studied a diffusive prey-predator system in Holling type III with a prey
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refuge: 
∂u(x,t)
∂t = D1∆u + au − ru2 −

α(1−m)2u2v
β2+(1−m)2u2 , x ∈ Ω, t > 0,

∂v(x,t)
∂t = D2∆v − cv +

kα(1−m)2u2v
β2+(1−m)2u2 , x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0.

(1.1)

Here, u, v indicates the quantity of prey and predator respectively; α, β, a, r, c, k are all positive; a is
the intrinsic growth rate of the prey; a/r represents the maximum carrying capacity of the environment
on the prey; c is the mortality rate of the predator; k represents the conversion rate after the predator
eating the prey; m ∈ [0, 1) indicates the refuge coefficient, i.e., the proportion of the protected prey.
Only (1 −m)u can be caught by the predator. In the real world, the mobility of each species is affected
not only by itself but also by the density of other species. Therefore, on the basis of (1.1), we introduce
the cross-diffusion terms and establish the population model as follows:

∂u(x,t)
∂t = D11∆u + D12∆v + au − ru2 −

α(1−m)2u2v
β2+(1−m)2u2 , x ∈ Ω, t > 0,

∂v(x,t)
∂t = D21∆u + D22∆v − cv +

kα(1−m)2u2v
β2+(1−m)2u2 , x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

(1.2)

where Ω = (0, lπ) is a bounded domain with smooth boundary ∂Ω in Rn and D11,D22 and D12,D21 are
the self-diffusivity and cross-diffusivity of u and v. We assume that the diffusion coefficients satisfy
D11D22 − D12D21 > 0.

The organizational structure of the rest is as follows: In section two, we study the stability of
Hopf bifurcating periodic solutions for the ordinary differential population model and derive the first
derivative formula of the periodic function for the corresponding perturbed model. In section three,
we give the conditions of Turing patterns occurring at Hopf bifurcating periodic solutions in the
reaction-diffusion population system. In section four, we give a brief conclusion. Finally, the relevant
conclusions are verified by numerical simulations.

2. Dynamics of the zero-dimensional population model

In order to research conveniently, we nondimensionalize model (1.2). Let û = u
β
, v̂ = v

kβ , t̂ = at, and
we still replace û, v̂, t̂ with u, v, t, then model (1.2) becomes

∂u
∂t = d11∆u + d12∆v + u − pu2 −

s(1−m)2u2v
1+(1−m)2u2 , x ∈ Ω, t > 0,

∂v
∂t = d21∆u + d22∆v − θv +

s(1−m)2u2v
1+(1−m)2u2 , x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

(2.1)

where, d11 = D11
a , d12 = D12

a , d21 = D21
a , d22 = D22

a , θ = c
a and p =

rβ
a , s = kα

a .

2.1. Stability of periodic solutions of the ordinary differential population model

The ordinary differential equations corresponding to the reaction-diffusion population model (2.1)
are 

du
dt

= u − pu2 −
s(1 − m)2u2v

1 + (1 − m)2u2
, t > 0,

dv
dt

= −θv +
s(1 − m)2u2v

1 + (1 − m)2u2
, t > 0.

(2.2)
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By calculation, four equilibria of model (2.2) are P0 = (0, 0), P1 = (1/p, 0), P+ = (κ, vκ) , P− = (u−, v−)
with

κ = 1
1−m

√
θ

s−θ , vκ = κ
θ

(1 − pκ) , u− = −κ, v− = −
(1+pκ)(1+(1−m)2κ2)

s(1−m)2κ
.

Clearly, the equilibrium P− = (u−, v−) has no biological significance, so we do not study its dynamic
behavior. Let’s make the following assumptions:
(A1) s > θ, 0 ≤ κ < 1

p ;
(A2) s < 2θ, 2θ−s

2θp < κ < 1
p ;

(A3) s ≥ 2θ,
√

θ
s−θ < κ <

1
p ;

(A4) θ < s < 2θ,
√

θ
s−θ < κ <

2θ−s
2θp .

Theorem 2.1. Let κ0 = 2θ−s
2θp and assume that (A1) satisfies. The following results are true for

model (2.2).

(1) If (A2) (or (A3)) holds, then the positive equilibrium P+ = (κ, vκ) is locally asymptotically stable.
If (A4) holds, then the positive equilibrium P+ = (κ, vκ) is unstable.

(2) If (A3) holds, the positive equilibrium P+ = (κ, vκ) is locally asymptotically stable for κ ∈
(
κ0,

1
p

)
,

while unstable for κ ∈
(√

θ
s−θ , κ0

)
. When κ = κ0, the model undergoes a supercritical Hopf

bifurcation at P+ = (κ, vκ), a family of periodic solutions
(
uT (t), vT (t)

)
bifurcate from P+ = (κ, vκ)

and the bifurcating periodic solutions are stable.

Proof. If (A1) holds, then P+ = (κ, vκ) is a unique positive equilibrium of (2.2). Setting the Jacobi
matrix of (2.2) at (κ, vκ) is

J (κ) :=
(
a (κ) , b (κ)
c (κ) , 0

)
,

where, a(κ) = 2θ
s (1 − pκ) − 1, b(κ) = −θ and c(κ) =

2(s−θ)
s (1 − pκ). The characteristic equation of J (κ)

is
λ2 − T (κ) λ + D (κ) = 0, (2.3)

with
T (κ) =

2θ
s

(1 − pκ) − 1, D (κ) =
2θ(s − θ)

s
(1 − pκ) .

then the roots of Eq (2.3) are

λ1,2 =
1
2

[
T (κ) ±

√
T 2(κ) − 4D(κ)

]
.

If (A2) (or (A3)) satisfies, then all the eigenvalues of J (κ) have strictly negative real parts according
to the stability theory, and P+ = (κ, vκ) is locally asymptotically stable. If (A4) is true, then all the
eigenvalues of J (κ) have positive real parts, hence, P+ = (κ, vκ) is unstable. For an arbitrary κ ∈(√

θ
s−θ , κ0

)
, model (2.2) is unstable at P+ = (κ, vκ), and for an arbitrary κ ∈

(
κ0,

1
p

)
, P+ = (κ, vκ) (2.2)

is locally asymptotically stable. When κ = κ0, J (κ0) has a pair of pure imaginary roots λ = ±iω0 with
ω0 = (s − θ)

1
2 . Let λ (κ) = β (κ) ± iω (κ) be the roots of Eq (2.3) near κ = κ0, then we have

β (κ) =
θ

s
(1 − pκ) −

1
2
,

dβ (κ)
dκ

∣∣∣∣∣
κ=κ0

= −
pθ
s
< 0.
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According to the Poincaré-Andronov-Hopf bifurcation theorem, system (2.1) undergoes Hopf
bifurcation at κ = κ0. Let the eigenvectors of J (κ0) and J∗ (κ0) corresponding to the eigenvalues
iω0 and −iω0 be q = (1, b0)T , q∗ =

(
a∗0, b

∗
0

)T
, satisfying < q∗, q >= 1 and < q∗, q̄ >= 0, where

b0 = −ω0
θ

i, a∗0 = 1
2lπ , b∗0 = − θ

2lπω0
. Denote

f (κ, u, v) = u + κ − p(u + κ)2
−

s(1 − m)2(u + κ)2 (v + vκ)
1 + (1 − m)2(u + κ)2 ,

g(κ, u, v) = −θ (v + vκ) +
s(1 − m)2(u + κ)2 (v + vκ)

1 + (1 − m)2(u + κ)2

by [26], and we give the expression of the cubic coefficient c1(κ0) in normal form. Calculating Qqq,
Qqq̄ and Cqqq̄,

Qqq =

(
c0

d0

)
,Qqq̄ =

(
e0

f0

)
,Cqqq̄ =

(
g0

h0

)
,

with
c0 = −

2p(2s3−9s2θ+14sθ2−8θ3+4is(s−θ)θω0)
s2(s−2θ) , d0 =

2p(s−θ)(s2−6sθ+8θ2+4isθω0)
s2(s−2θ) ,

e0 = −
2p(2s2−5sθ+4θ2)

s2 , f0 =
2p(s2−5sθ+4θ2)

s2 ,

g0 =
8p2(s−θ)θ2(−6(s−2θ)2+is(s−4θ)ω0)

s3(s−2θ)2 , h0 =
8p2(s−θ)θ2(6(s−2θ)2−is(s−4θ)ω0)

s3(s−2θ)2 ,

as well as

< q∗,Qqq > =
−i

s2(s − 2θ)ω0
p
(
θ
(
s3 − 7s2θ +14sθ2 − 8θ3

)
+ 4s(s − θ)θω2

0

)
+

1
s2(s − 2θ)ω0

p
(
−2s3 + s2θ(9 + 4θ) + 8θ3 −2sθ2(7 + 2θ)

)
ω0,

< q∗,Cqqq̄ > =
4p2(s − θ)θ2 (θ + iω0)

(
6i(s − 2θ)2 + s(s − 4θ)ω0

)
s3(s − 2θ)2ω0

=
4p2(s − θ)θ2

s3(s − 2θ)2

(
sθ(s − 4θ) − 6(s − 2θ)2

)
+

4p2(s − θ)θ2

s3(s − 2θ)2ω0

(
6θ(s − 2θ)2 + s(s − 4θ)ω0

2
)

i,

< q∗,Qqq > =
i

s2(s − 2θ)ω0

(
pθ

(
s3 − 7s2θ +14sθ2 − 8θ3

)
− 4s(s − θ)θω2

0

)
+

1
s2(s − 2θ)ω0

(
−2s3 + s2(9 − 4θ)θ + 8θ3 +2sθ2(−7 + 2θ)

)
,

< q∗,Qqq̄ > = p
(
iθ

(
s2 − 5sθ + 4θ2

)
+

(
−2s2 + 5sθ − 4θ2

)
ω0

)
.

Then, we can obtain

H20 =

(
c0

d0

)
− < q∗,Qqq >

(
1
b0

)
− < q∗,Qqq >

(
1
b0

)
= 0,

H11 =

(
e0

f0

)
− < q∗,Qqq̄ >

(
1
b0

)
− < q∗,Qqq̄ >

(
1
b̄0

)
= 0,
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so
c1(κ0) =

i
2ω0

< q∗,Qqq > · < q∗,Qqq̄ > +
1
2
< q̄∗,Cqqq̄ > . (2.4)

Its real and imaginary parts are

Re (c1 (κ0)) =
p

2s2(s − 2θ)ω0
2

(
−2s3 + s2(9 − 4θ)θ + 8θ3 +2sθ2(−7 + 2θ)

)
θ
(
s2 − 5sθ + 4θ2

)
−

p
2s2(s − 2θ)ω0

(
pθ

(
s3 − 7s2θ +14sθ2 − 8θ3

)
− 4s(s − θ)θω2

0

) (
−2s2 + 5sθ − 4θ2

)
+

2p2(s − θ)θ2

s3(s − 2θ)2

(
sθ(s − 4θ) − 6(s − 2θ)2

) (2.5)

and

Im (c1 (κ0)) =
p

2s2(s − 2θ)ω0

(
−2s3 + s2(9 − 4θ)θ + 8θ3 +2sθ2(−7 + 2θ)

) (
−2s2 + 5sθ − 4θ2

)
−

p
2s2(s − 2θ)ω0

2

(
pθ

(
s3 − 7s2θ +14sθ2 − 8θ3

)
− 4s(s − θ)θω2

0

)
θ
(
s2 − 5sθ + 4θ2

)
+

2p2(s − θ)θ2

s3(s − 2θ)2ω0

(
6θ(s − 2θ)2 + s(s − 4θ)ω0

2
)
.

(2.6)

If Re (c1 (κ0)) < 0 (> 0), then the Hopf bifurcation is backward (forward) and the bifurcating periodic
solutions

(
uT (t), vT (t)

)
are stable (unstable). �

2.2. Dynamics of the perturbed population model

In this subsection, for the perturbed population model, we derive the first derivative formula of the
periodic function about the perturbation coefficients. On the basis of model (2.1), we introduce the

perturbation term τ and coefficients
(
k11 k12

k21 k22

)
. The corresponding perturbed population model is

(
I + τ

(
k11 k12

k21 k22

)) ( du
dt
dv
dt

)
=

u − pu2 −
s(1−m)2u2v
1+(1−m)2u2

−θv +
s(1−m)2u2v
1+(1−m)2u2

 , (2.7)

where τ is sufficiently small such that
(
1 + τk11 τk12

τk21 1 + τk22

)
is reversible, then (2.7) can be reduced to

( du
dt
dv
dt

)
=

1
K(τ)

(
1 + k22τ −k12τ

−k21τ 1 + k11τ

) u − pu2 −
s(1−m)2u2v
1+(1−m)2u2

−θv +
s(1−m)2u2v
1+(1−m)2u2

 , (2.8)

where

K(τ) :=

∣∣∣∣∣∣
(
1 + τk11 τk12

τk21 1 + τk22

)∣∣∣∣∣∣ = (k11k22 − k12k21) τ2 + (k11 + k22) τ + 1 > 0.

At P+ = (κ, vκ), the Jacobian matrix of (2.8) is

J(κ, τ) :=
1

K(τ)

(
J11(κ, τ) J12(κ, τ)
J21(κ, τ) J22(κ, τ)

)
, (2.9)
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where,
J11(κ, τ) := (1 + k22τ) a (κ) − k12c (κ) τ, J12(κ, τ) := (1 + k22τ) b (κ) ,
J21(κ, τ) := (1 + k11τ) c (κ) − k21a (κ) τ, J22(κ, τ) := −k21b (κ) τ,

a(κ) =
2θ
s

(1 − pκ) − 1, b(κ) = −θ, c(κ) =
2(s − θ)

s
(1 − pκ) .

(2.10)

Let the characteristic equation corresponding to J(κ, τ) be

λ2 − H(κ, τ)λ + D(κ, τ) = 0, (2.11)

where
H(κ, τ) =

1
K(τ)

τ · (k22a(κ) − k12c(κ) − k21b(κ)) +
1

K(τ)
a(κ),

D(κ, τ) =
1

K(τ)
2θ(s − θ)

s
(1 − pκ) .

(2.12)

When κ → κτ, let β̄(κτ) ± iω̄(κτ) be the roots of the characteristic Eq (2.11), then

β̄(κτ) =
1
2

H(κ, τ), ω̄(κτ) =
1
2

√
4D(κ, τ) − H2(κ, τ). (2.13)

Lemma 2.1. (See [26]) When κ → κ0, the population model (2.2) has a stable periodic solution(
uT (t), vT (t)

)
bifurcating from P+ = (κ, vκ) and T is the minimum positive period of

(
uT (t), vT (t)

)
. Then

there is a positive number τ1 such that for any τ ∈ (−τ1, τ1), the perturbed population model (2.7) has a
periodic solution

(
uT (t, τ), vT (t, τ)

)
depending on if τ, T (τ) is the minimum positive periodic function.

When τ→ 0,
(
uT (t, τ), vT (t, τ)

)
→

(
uT (t), vT (t)

)
and T (τ)→ T, then

T (τ) =
2π

ω̄ (κτ)

(
1 +

(
β̄′ (κτ) Im (c1 (κτ))
ω̄ (κτ) Re (c1 (κτ))

−
ω̄′ (κτ)
ω̄ (κτ)

)
(κ − κτ) + O

(
(κ − κτ)2

)
, κ → κτ,

c1 (κτ) :=
i

2ω̄ (κτ)

(
g20(τ)g11(τ) − 2|g11(τ)|2 −

1
3
|g02(τ)|2

)
+

g21(τ)
2

.

Re (c1 (κτ)) and Im (c1 (κτ)) are the real and imaginary parts of c1 (κτ), and β̄ (κτ) and ω̄ (κτ) are defined
by (2.13).

Theorem 2.2. When κ → κ0 for the perturbed population model (2.7), the first-order derivative formula
of the periodic function, with respect to the perturbation coefficients, is

T ′(0) =
√

D(κ0)k11 +
√

D(κ0)k22 −
Im (c1(κ0))
Re (c1(κ0))

c(κ0)k12 −
Im (c1(κ0))
Re (c1(κ0))

b(κ0)k21,

where b(κ0) = −θ, c(κ0) = s−θ
θ
,D(κ0) = s − θ. Re (c1 (κ0)) and Im (c1 (κ0)) are defined in (2.5) and (2.6).

Proof. By Lemma 2.1, differentiating the periodic function T (τ), we have

T ′(τ) = −
2π

ω̄2 (κτ)
dω̄ (κτ)

dτ
−

2π
ω̄ (κτ)

(
β̄′ (κτ) Im (c1 (κτ))
ω̄ (κτ) Re (c1 (κτ))

−
ω̄′ (κτ)
ω̄ (κτ)

)
dκτ
dτ

+ O (κ − κτ) .

If κ → κτ, then O (κ − κτ)→ 0, and setting τ = 0, then ω̄ (κ0) = ω(κ0) =
√

D(κ0).
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We first compute dκτ
dτ

∣∣∣
τ=0

. At κ = κτ, by the expression of H(κ, τ) defined in (2.12), we can gain

τ (k22a(κτ) − k12c(κτ) − k21b(κτ)) + a(κτ) = 0. (2.14)

Differentiating (2.14) with respect to τ, we obtain

(k22a(κτ) − k12c(κτ) − k21b(κτ)) + a′(κτ)
dκτ
dτ

= 0, (2.15)

and setting τ = 0, we have
dκτ
dτ

∣∣∣∣∣
τ=0

=
k12c(κ0) + k21b(κ0)

a′(κ0)
, (2.16)

with
b(κ0) = −θ, c(κ0) =

s − θ
θ

, a′(κ0) = −
2θp

s
.

Second, we calculate ω̄′ (κ0). When κ → κτ, we derive

ω̄(κ) =
1
2

√
4D(κ, τ) − H2(κ, τ),

thereby,

ω̄′(κ) =
∂κD(κ, τ) − 1

2 H(κ, τ)∂κH(κ, τ)√
4D(κ, τ) − H2(κ, τ)

.

Since H (κτ, τ) = 0 and ∂κD (κτ, τ) = 1
K(τ) D

′ (κτ), we have

ω̄′ (κ0) =
∂κD (κτ, τ)

2
√

D (κτ, τ)

∣∣∣∣∣∣
τ=0

=
D′ (κτ)

2
√

K(τ)D (κτ)

∣∣∣∣∣∣
τ=0

=
D′(κ0)

2
√

D(κ0)
. (2.17)

At last, we calculate d
dτ (ω̄ (κτ))

∣∣∣
τ=0

. By ω̄ (κτ) =
√

D (κτ, τ), we can get

d
dτ

(ω̄ (κτ)) =
1

2
√

D (κτ, τ)
d
dτ

(D (κτ, τ)) . (2.18)

According to D (κτ, τ) =
D(κτ)
K(τ) , we have

d
dτ

(D (κτ, τ)) = −
K′(τ)
K2(τ)

D (κτ) +
d
dτ

(D (κτ))
1

K(τ)
. (2.19)

Setting τ = 0, we can obtain

−
K′(τ)
K2(τ)

D (κ0) = − (k11 + k22) D (κ0) ,

d
dτ

(D (κτ))
1

K(τ)

∣∣∣∣∣
τ=0

= D′(κ0)
dκτ
dτ

(0).
(2.20)

Therefore, from (2.16) and (2.20), we have

d
dτ

(D (κτ, τ))
∣∣∣∣∣
τ=0

= − (k11 + k22) D(κ0) +
k12c(κ0) + k21b(κ0)

a′(κ0)
D′(κ0). (2.21)
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By (2.18) and (2.21), we obtain

d
dτ

(ω̄ (κτ))
∣∣∣∣∣
τ=0

=
1

2
√

D(κ0)

(
− (k11 + k22) D(κ0) +

k12c(κ0) + k21b(κ0)
a′(κ0)

D′(κ0)
)
. (2.22)

Again, by (2.16), (2.17) and (2.22), we can derive

T ′(0) =
√

D(κ0)k11 +
√

D(κ0)k22 −
Im (c1(κ0))
Re (c1(κ0))

c(κ0)k12 −
Im (c1(κ0))
Re (c1(κ0))

b(κ0)k21.

�

3. Turing patterns of periodic solutions for the reaction-diffusion population model

With respect to the population model (1.2) and according to the theory expounded in [27], we study
the mathematical mechanisms of Turing patterns occurring at the stable periodic solution

(
uT (t), vT (t)

)
.

By the first derivative formula of the periodic function of the perturbed population model (2.7), we
give the following theorem.

Theorem 3.1. If hypothesis (A4) and Re (c1 (κ0)) < 0 hold, when κ → κ0, the stable spatially
homogeneous Hopf bifurcating periodic solution bifurcates

(
uT (t), vT (t)

)
from P+ = (κ, vκ). If the

domain Ω is large enough and√
D(κ0)d11 +

√
D(κ0)d22 −

Im (c1(κ0))
Re (c1(κ0))

c(κ0)d12 −
Im (c1(κ0))
Re (c1(κ0))

b(κ0)d21 < 0,

then the following conclusions are true:
(1) The reaction-diffusion population model (1.2) produces Turing patterns at the periodic solution(
uT (t), vT (t)

)
;

(2) If Im (c1 (κ0)) < 0 (> 0), then when k12 > M1 (k21 > M2), the reaction-diffusion population
model (1.2) produces Turing patterns. That is, Turing patterns occuring at the periodic solution are
determined by the cross-diffusion coefficients k12 (k21), where

b(κ0) = −θ, c(κ0) =
s − θ
θ

,D(κ0) = s − θ.

Re (c1 (κ0)) and Im (c1 (κ0)) from (2.5) and (2.6):

M1 :=

√
D(κ0)d11 +

√
D(κ0)d22 −

Im(c1(κ0))
Re(c1(κ0))b(κ0)d21

Im(c1(κ0))
Re(c1(κ0))c(κ0)

,

M2 :=

√
D(κ0)d11 +

√
D(κ0)d22 −

Im(c1(κ0))
Re(c1(κ0))c(κ0)d12

Im(c1(κ0))
Re(c1(κ0))b(κ0)

.

Proof. Let the linearized vector form of the population model (2.1) at
(
uT (t), vT (t)

)
be(

∂φ

∂t
,
∂ϕ

∂t

)T

= diag (D∆φ,D∆ϕ) + JT (t)(φ, ϕ)T ), (3.1)
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where,

JT (t) :=


1 − 2puT (t) − 2s(1−m)2uT (t)vT (t)(

1+(1−m)2(uT (t))2
)2 −

s(1−m)2(uT (t))2

1+(1−m)2(uT (t))2

2s(1−m)2uT (t)vT (t)(
1+(1−m)2(uT (t))2

)2 −θ +
s(1−m)2(uT (t))2

1+(1−m)2(uT (t))2


is the Jacobian matrix of model (2.1) at

(
uT (t), vT (t)

)
. D :=

(
d11 d12

d21 d22

)
, ∆ is the Laplace operator.

Let αn and ηn (x) be the eigenvalues and eigenfunctions of −∆ in region Ω, respectively, and (φ, ϕ)T =

(h(t), g(t))T
∞∑

n=0
knηn (x). For the sake of convenience, we set ς := αn ≥ 0, n ∈ N0 := {0}

⋃
N, then

(
dh (t)

dt
,

dg (t)
dt

)T

= −ςD
(

h (t)
g (t)

)
+ JT (t)

(
h (t)
g (t)

)
. (3.2)

If D = 0, then Eq (3.2) can be reduced to(
dh (t)

dt
,

dg (t)
dt

)T

= JT (t)(h (t) , g (t))T . (3.3)

Setting ρ(t) as the fundamental solution matrix of Eq (3.3), it satisfies ρ(0) = I2. Let λi, i = 1, 2 be the
eigenvalues of ρ(T ), the corresponding eigenfunctions are (ξi, ηi)T , i = 1, 2, i.e.,

ρ(T )(ξi, ηi)T = λi(ξi, ηi)T ,

where λ1 and λ2 are Floquet multipliers. Define

(φi(t), ψi(t))T := ρ(t)(ξi, ηi)T ,

clearly,
(φi(0), ψi(0))T = (ξi, ηi)T , ρ(T )(φi(0), ψi(0))T = λi(φi(0), ψi(0))T .

Differentiating with respect to t in (2.2), we can obtain

u′′v′′

 =

1 − 2pu − 2s(1−m)2uv

(1+(1−m)2u2)2 −
s(1−m)2u2

1+(1−m)2u2

2s(1−m)2uv

(1+(1−m)2u2)2 −θ +
s(1−m)2u2

1+(1−m)2u2


(
du
dt
,

dv
dt

)T

,

then λ1 = 1 is the eigenvalue of ρ(T ) and the eigenvector is (φ1(t), ψ1(t))T =

(
duT (t)

dt

∣∣∣∣
t=0
, dvT (t)

dt

∣∣∣∣
t=0

)T
.

Since
(
uT (t), vT (t)

)
is stable, |λi| < 1. Let ρ(t, ς) be the fundamental solution matrix of Eq (3.2), then

we have
∂ρ(t, ς)
∂t

= −ςDρ(t, ς) + JT (t)ρ(t, ς)

and ρ(t, 0) = ρ(t). By the implicit function theorem, there is ς1 > 0, ς ∈ (−ς1, ς1) and continuous
differentiable functions δi(ς), ξi(ς), ηi(ς), such that

ρ(T, ς)(ξi(ς), ηi(ς))T = δi(ς)(ξi(ς), ηi(ς))T , (3.4)
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where δ1(ς) and δ2(ς) are Floquet multipliers. Make the following definition

(φi(t, ς), ψi(t, ς))T := ρ(t, ς)(ξi(ς), ηi(ς))T ; (3.5)

by ρ(0, ς) = I, we have
(φi(0, ς), ψi(0, ς))T = (ξi(ς), ηi(ς))T . (3.6)

From (3.4) and (3.6), we can gain

ρ(T, ς)(φi(0, ς), ψi(0, ς))T = δi(ς)(φi(0, ς), ψi(0, ς))T ,

and especially φi(t, 0)
ψi(t, 0)

 = ρ(t, 0)
ξi(0)
ηi(0)

 = ρ(t)
ξi

ηi

 = ρ(t)
φi(0)
ψi(0)

 =

φi(t)
ψi(t)

 .
Taking i = 1, by (3.5), we know

(φ1(t, ς), ψ1(t, ς))T := ρ(t, ς)(ξ1(ς), η1(ς))T .

Hence, we can derive(
∂φ1(t, ς)

∂t
,
∂ψ1(t, ς)

∂t

)T

= −ςD(φ1(t, ς), ψ1(t, ς))T + JT (t)(φ1(t, ς), ψ1(t, ς))T .

Differentiating the above equation with respect to ς and setting ς = 0, we obtain(
∂φ1ς(t, 0)

∂t
,
∂ψ1ς(t, 0)

∂t

)T

= −D(φ1(t), ψ1(t))T + JT (t)
(
φ1ς(t, 0), ψ1ς(t, 0)

)T , (3.7)

where, φ1ς := ∂ςφ1, ψ1ς := ∂ςψ1. On the other hand, from (3.4) and (3.5), we can get

(φ1(T, ς), ψ1(T, ς))T = δ1(ς)(φ1(0, ς), ψ1(0, ς))T .

Differentiating with respect to ς, we have(
φ1ς(T, ς), ψ1ς(T, ς)

)T
= δ′1(ς)(φ1(0, ς), ψ1(0, ς))T + δ1(ς)

(
φ1ς(0, ς), ψ1ς(0, ς)

)T .

Let ς = 0 by (3.6) and δ1(0) = λ1 = 1, and we can derive(
φ1ς(T, 0), ψ1ς(T, 0)

)T
= δ′1(0)(φ1(0), ψ1(0))T +

(
φ1ς(0, 0), ψ1ς(0, 0)

)T . (3.8)

According to Lemma 2.1,
(
uT (t, τ), vT (t, τ)

)
is the periodic solution of the perturbed population

model (2.7), i.e.,

(
1 + τd11 τd12

τd21 1 + τd22

) 
∂uT (t, τ)

∂t
∂uT (t, τ)

∂t

 =


uT (t, τ) − p

(
uT (t, τ)

)2
−

s(1−m)2(uT (t,τ))2
vT (t,τ)

1+(1−m)2(uT (t,τ))2

−θvT (t, τ) +
s(1−m)2(uT (t,τ))2

vT (t,τ)

1+(1−m)2(uT (t,τ))2

 .
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Differentiating with respect to τ and letting τ = 0, we haved
(
∂tuT (t, 0)

)
dτ

,
d
(
∂tvT (t, 0)

)
dτ


T

= −D(φ1(t), ψ1(t))T + JT (t)
(
duT (t, 0)

dτ
,

dvT (t, 0)
dτ

)T

, (3.9)

where ∂tuT (t, 0) = φ1(t), ∂tvT (t, 0) = ψ1(t). Since T (τ) is the minimum positive periodic solution of(
uT (t, τ), vT (t, τ)

)
, we have(

uT (t, τ), vT (t, τ)
)

=
(
uT (t + T (τ), τ), vT (t + T (τ), τ)

)
.

Differentiating with respect to τ and letting τ = 0, t = 0, we can gain(
duT (T, 0)

dτ
,

dvT (T, 0)
dτ

)T

= −T ′(0)(φ1(0), ψ1(0))T +

(
duT (0, 0)

dτ
,

dvT (0, 0)
dτ

)T

, (3.10)

where uT (t, 0) = uT (t), vT (t, 0) = vT (t),T (0) = T . Define

Z(t) :=
(
φ1ς(t, 0), ψ1ς(t, 0)

)T
−

(
duT (t, 0)

dτ
,

dvT (t, 0)
dτ

)T

,

and by (3.7)–(3.10), we get
Z′(t) = JT (t)Z(t), (3.11)

Z(T ) − Z(0) =
(
δ′1(0) + T ′(0)

)
(φ1(0), ψ1(0))T . (3.12)

Let Z(t) = A(t)(Z1,Z2)T be the general solution of (3.11), where any vector (Z1,Z2)T
∈ R2. Since

(φ1(0), ψ1(0))T and (φ2(0), ψ2(0))T are linearly independent, there exits constants p1 and p2 such that

(Z1,Z2)T = p1(φ1(0), ψ1(0))T + p2(φ2(0), ψ2(0))T . (3.13)

Substituting (3.13) into (3.12), we get δ′1(0) + T ′(0) = 0. According to Theorem 2.2, if T ′(0) < 0,
then δ′1(0) > 0. Assuming that Ω is sufficiently large, then there is at least one eigenvalue αn of −∆

so that δ1(ς) = δ1 (αn) > 1. Therefore, the population model (1.2) appears to have Turing patterns at(
uT (t), vT (t)

)
. When T ′(0) < 0 by Theorem 2.2, we have

√
D(κ0)d11 +

√
D(κ0)d22 −

Im (c1(κ0))
Re (c1(κ0))

c(κ0)d12 −
Im (c1(κ0))
Re (c1(κ0))

b(κ0)d21 < 0. (3.14)

Since (A3) is true, we can obtain b(κ0) = −θ < 0, c(κ0) = s−θ
θ
> 0. If Re (c1 (κ0)) < 0, then when

Im (c1(κ0)) < 0,
Im (c1(κ0))
Re (c1(κ0))

c(κ0) > 0,
Im (c1(κ0))
Re (c1(κ0))

b(κ0) < 0.

From (3.14), we gain

d12 >

√
D(κ0)d11 +

√
D(κ0)d22 −

Im(c1(κ0))
Re(c1(κ0))b(κ0)d21

Im(c1(κ0))
Re(c1(κ0))c(κ0)

:= M1.
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When the cross-diffusion coefficient d12 > M1, the cross-diffusion population model (1.2) generates
Turing patterns at the periodic solution

(
uT (t), vT (t)

)
. Similarly, if Im (c1(κ0)) > 0, then

Im (c1(κ0))
Re (c1(κ0))

c(κ0) < 0,
Im (c1(κ0))
Re (c1(κ0))

b(κ0) > 0,

so

d21 >

√
D(κ0)d11 +

√
D(κ0)d22 −

Im(c1(κ0))
Re(c1(κ0))c(κ0)d12

Im(c1(κ0))
Re(c1(κ0))b(κ0)

:= M2.

When the cross-diffusion coefficient d21 > M2, the cross-diffusion population model (1.2) produces
Turing patterns at the periodic solution

(
uT (t), vT (t)

)
. �

4. Numerical simulations

We shall conduct numerical simulations in three cases to verify the relevant conclusions: The
diffusive population model forms Turing patterns at the periodic solutions. Fix the parameters in
model (2.1):

m = 0.6, s = 0.1, θ = 0.09, p = 0.0592, x ∈ Ω = (0, 30) ,

then (κ, vκ) = (7.5, 46.3) is a unique positive equilibrium. By calculation, κ0 = 7.505. According to
Theorem 2.1, when κ → κ0, b(κ0) = −0.09, c(κ0) = 1

9 ,D(κ0) = 0.01, Re c1 (κ0) = −3.1316 × 10−3 < 0
and Im c1 (κ0) = 4.3667 × 10−3, simultaneously, hypothesis (A4) is true. Take the initial values as
u0 = 8 + 0.1 cos (x) , v0 = 47 + 0.1 cos (x).
(1) If d11 = 1, d22 = 1, d12 = d21 = 0, then

√
D(κ0)d11 +

√
D(κ0)d22 = 0.2 > 0. By Theorem 3.1, in

model (1.2), Turing patterns do not appear at
(
uT (t), vT (t)

)
, namely, the same self-diffusion rates do not

destroy the stability of the periodic solution(See [28]). If d11 , d22, d11 > 0, d22 > 0 and d12 = d21 = 0,
then

√
D(κ0)d11 +

√
D(κ0)d22 > 0 and the periodic solution of diffusion model (1.2) is stable (Figure 1).

Figure 1. The periodic solution
(
uT (t), vT (t)

)
of the reaction-diffusion equation is stable.

(2) If d11 = 0.2, d22 = 0.5, d12 = 0.05, then M2 = 0.6195. Select d21 = 0.7 by calculating T ′(0) < 0.
According to Theorem 3.1, when d21 > M2 = 0.6195, cross-diffusion induces system (1.2) to produce
Turing patterns at

(
uT (t), vT (t)

)
(Figure 2).
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Figure 2. Cross-diffusion-induced Turing patterns.

(3) If d11 = 1, d22 = 1, d12 = 0.02, then M2 = 1.6184. We choose d21 = 1.7, through computation and
T ′(0) < 0. According to Theorem 3.1, when d21 > M2, cross-diffusion induces system (1.2) to produce
Turing patterns at

(
uT (t), vT (t)

)
(Figure 3).

Figure 3. Turing patterns induced by diffusion coefficient d21.

5. Conclusions

In this paper, we established a cross-diffusion population model with prey refuge and Holling III
functional response, and studied the mathematical mechanisms of Turing patterns generated by the
diffusion-driven instability of the periodic solutions. The results show that when Im (c1 (κ0)) < 0 (> 0),
the symbol of the diffusivity expression T ′(0) is actually determined by the cross-diffusion coefficient
d21 (d12). That is, when d21 > M2 (d12 > M1) and the region Ω is sufficiently large, T ′(0) < 0
and model (1.2) generate Turing patterns at the periodic solutions. Our research more accurately
determined the range of cross-diffusion coefficients of Turing patterns occurring at the periodic
solutions. This provided a new idea for model (1.2) to generate Turing instability at the periodic
solutions.
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