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Abstract: Picture fuzzy sets (PFSs) are a versatile generalization of fuzzy sets and intuitionistic
fuzzy sets (IFSs), providing a robust framework for modeling imprecise, uncertain, and inconsistent
information across various fields. As an advanced extension of PFSs, interval-valued picture fuzzy
sets (IVPESs) offer superior capabilities for handling incomplete and indeterminate information in
various practical applications. Distance measures have always been an important topic in fuzzy
sets and their variants. Some existing distance measures for PFSs have shown limitations and may
yield counterintuitive results under certain conditions. Furthermore, there are currently few studies
on distance measures for IVPFSs. To solve these problems, in this paper we devised a series of
novel distance measures between PFSs and IvPFSs inspired by the Hellinger distance. Specifically,
all the distance measures were divided into two parts: One considered the positive membership
degree, neutral membership degree and negative membership degree, and the other added the refusal
membership degree. Moreover, the proposed distance measures met some important properties,
including boundedness, non-degeneracy, symmetry, and consistency, but also showed superiority
compared to the existing measures, as confirmed through numerical comparisons. Finally, the proposed
distance measures were validated in pattern recognition and medical diagnosis applications, indicating
that the proposed distance measures can deliver credible, reasonable results, particularly in similar
cases.
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1. Introduction

In real life, we are often faced with factors of uncertainty and imprecision, which is especially
obvious in decision-making [21,35,61]. How to address the uncertain and imprecise information across
diverse applications has garnered significant attention over the past decade [33, 34,36,37,62]. Over
time, numerous foundational theories have been thoroughly explored, for example, fuzzy sets [44, 67,
68], evidence theory [40, 65, 69], R-numbers [50], rough sets [13,48] and Z-numbers [5]. Zadeh [67]
introduced fuzzy sets to deal with uncertain information. Since that pioneering work, fuzzy sets have
gained significant interest from researchers and have been applied across various fields [29,56,60,63].
To address uncertain information with greater efficacy, Atanassov [4] suggested intuitionistic fuzzy sets
(IFSs), which comprise membership, non-membership, and hesitancy degrees. IFSs offer a precise and
adaptable means to represent uncertainty and ambiguity, garnering considerable interest in various
areas [7, 20, 64]. Within the framework of IFSs, every element is assigned both a membership and a
non-membership value. Later, Atanassov [3] introduced the concept of interval-valued intuitionistic
fuzzy sets (IVIFSs) to enhance IFSs. IvIFSs employ interval-valued defined by lower and upper bounds
of membership and non-membership degrees to represent uncertain and imprecise information.

Recently, Cuong and Kreinovich [9] introduced picture fuzzy sets (PFSs) with neutral membership.
PFSs depend on four interrelated dimensions: Positive membership, negative membership, neutral
membership, and refusal membership degrees. A significant advantage of PFSs is the incorporation of
a “neutrality” degree, enhancing the depth of the framework for intricate decision-making in fields such
as medical diagnosis, personnel selection, and social choices [2,16,51], where a “maybe” or “neutral”
position holds relevance. Presently, research on PFSs is advancing across various domains [17,27,28].
Arya et al. [2] introduced innovative aggregation operators for PFSs, grounded in fundamental
mathematical procedures. These operators provided significant advantages when addressing practical
real-world challenges [23]. Ganie et al. [14] proposed novel correlation coefficients for PFSs,
showcasing their practical applications. Ali et al. [1] utilized Aczel-Alsina operational laws to develop
power aggregation operators through complex picture fuzzy sets (CPFSs). This demonstrated their
applicability through a decision-making methodology, a multi-attribute decision-making algorithm,
and a real-world illustration. Sindhu et al. [52] introduced the aggregation operators to select the
investment based on bipolar PFSs. Signh et al. [53] integrated quality functions deployment with PFSs
to propose a multi-criteria group decision-making method. Additionally, Cuong et al. [10] introduced
the concept of IVPFSs. Mhamood [41] later examined the interval-valued picture fuzzy frank averaging
operator to find the interrelationships among any number of IvPFSs. Khalil [24] proposed some new
operations and relative decision-making problems. IVPFSs provide a more apt representation of fuzzy
information than IFSs, IvIFSs, and PFSs.

PFSs and IvPFSs are extensions of classical fuzzy sets designed to manage uncertainties in data.
While both sets aim to address uncertainties, IVPFSs extend the framework by incorporating interval
values, allowing for a more nuanced analysis of uncertainties. This aspect of IvPFSs, being a
further generalization of interval-valued fuzzy sets, positions them as an advanced form of fuzzy
sets optimized for handling uncertainties during data analysis. Also, IvPFSs have a broader range
of applications than PFSs, as they can be applied to scenarios with elements having a specific range
of fluctuating values, rather than being limited to data with elements of fixed numerical values like in
PFSs. Specifically, when the interval values of IvPFSs have identical lower and upper bounds, IvPFSs
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equal to PFSs.

The study of distance and similarity measures has been pivotal in fuzzy sets and their variants,
garnering significant interest from researchers [11,12,25,26,45]. There are many works on distance and
similarity measures for IFSs and IvIFSs [8,18,22,42,46,47,49,57,66]. For example, Hatzimichailidis
et al. [18] developed a distance measure for IFSs that harnesses matrix norms and fuzzy implications.
Hwang et al. [22] introduced novel similarity measures for IFSs, drawing inspiration from the
Jaccard index. Ye [66] introduced cosine similarity measures tailored for IVIFSs and applied them to
address multiattribute decision making issues. Liu et al. [30] put forth an ordered weighted cosine
similarity measure for IVIFSs, which they subsequently employed to tackle investment decision-
making challenges. Recently, some distance or similarity measures tailored for PFSs have been
crafted over time [15, 38, 43]. For instance, Dinh and Thao [58] introduced several distance and
dissimilarity measures among PFSs, subsequently applying them to areas like pattern recognition and
multi-attribute decision-making. Singh and Mishra [54] introduced several parameterized distance
measures, encompassing the normalized Hamming, Euclidean, and Hausdorff distances as specific
instances. Son [55] demonstrated the relevance of distance measures in clustering analysis. Wei et
al. [59] introduced a cosine similarity measure tailored for PFSs, broadening its utility in multi-attribute
decision-making contexts. Liu and Zeng [31] delved into various distance measures such as picture
fuzzy weighted distance, ordered weighted distance, and hybrid weighted distance, refining them for
multi-attribute group decision-making. Although some studies have been on distance or similarity
measures, research specifically focused on IvPFSs remains limited. Cao [6] proposed a similarity
measure between IvPFSs based on a pyramidal center of gravity. Liu [32] introduced some novel
similarity measures based on cosine and cotangent functions.

The motivation for this paper primarily arises from two aspects. On the one hand, there are
significant flaws and gaps in the current distance measures for PFSs: Many existing distance measures
do not fully meet all axiomatic properties, and some existing distance measures may produce
inconsistent or counterintuitive results when calculating the difference between PFSs. On the other
hand, there exists a substantial void in the research areas concerning distance measures for IVPFSs, with
only a few papers available to explore them. Given these circumstances, this study attempts to bridge
these gaps by presenting a range of distance measures for PFSs and IvPFSs. The key contributions are
fourfold:

e We introduce eight novel distance measures for PFSs and another eight for IvPFSs, drawing
inspiration from the Hellinger distance.

e We demonstrate that the proposed measures to meet the properties of the axiomatic definition of
the distance measure.

e The proposed distance measures can adeptly address and rectify the counterintuitive outcomes
observed with some existing measures in certain cases.

e The efficacy of the proposed distance measures and related measures is validated in pattern
classification and medical diagnosis, underscoring their advantages.

This paper is structured as follows: Section 2 presents foundational concepts. In Sections 3 and 4,
we introduce a set of innovative distance measures for PFSs and IvPFSs, drawing on the Hellinger
distance and accompanied by their formal justifications. Section 5 offers a comparative analysis
between existing and our proposed measures through diverse cases. Applications to classification
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challenges and the medical diagnosis are explored in Sections 6 and 7. Section 8 introduces the
advantages of the work. Finally, Section 9 makes a conclusion.

2. Preliminaries
This section will introduce relevant definitions of fuzzy sets and distance measures.

2.1. Fuzzy set

Definition 1. Let X = {x1, x2,- - - , Xx,,} be a universe of discourse (UOD). A fuzzy set (FS) in X is defined
as follows:

& ={x, Te(x))|x € X}
where Tg(x) € [0, 1] expresses the positive membership. For each x € X, we have:

0<Ts(x)(x) <1,VxeX

and
Dg(x) =1—E5(x)

where @g(x) : X — [0, 1] indicates the negative membership associated with x € X.

2.2. Intuitionistic fuzzy set
Definition 2. [4] An intuitionistic fuzzy set (IFS) in X is defined as follows:
& = {{x, Te(x), Pe(x))lx € X}

where Tg(x), Pg(x) : X — [0, 1] expresses the positive membership and the negative membership. For

each x € X, we have:
0< Ts(x), Pg(x) <1

and
Pe(x) = 1 = Tg(x) — De(x)

where Pg(x) : X — [0, 1] indicates the neutral membership associated with x € X.

2.3. Interval-valued intuitionistic fuzzy set

Definition 3. [3] An interval-valued intuitionistic fuzzy set (IVIFS) in X is defined as follows:
& = {{x, Te(x), Pe(x))lx € X}

where Tg(x) = ['Y'é(x), Tg(x)] = [d%(x), @g(x)]. These intervals signify the positive and negative
membership degrees of an element. For all x € X,

0< TS(X), @5(X) <1

and
Pe(x) =1 - Te(x) — Pg(x)

where Pg(x) = [‘}’é(x), Y’g (x)] represents neutral membership in intervals of x € X.
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2.4. Picture fuzzy set
Definition 4. [9] A picture fuzzy set (PFS) in X is defined as follows:

& = {(x, Te(x), Pe(x), Pe(x))|x € X}
where Tg(x), Pg(x), Pg(x) : X — [0, 1]. For each x € X, we have:
Te(x), Pe(x), Pe(x) € [0, 1]
and
Qg(x) =1 = Te(x) — Pe(x) — Pe(x)

where Qg(x) : X — [0, 1] represents refusal membership degree of x € X.

2.5. Interval-valued picture fuzzy set

Definition 5. [10] An interval-valued picture fuzzy set (IvPFS) in X is defined as follows:
& = {(x, Te(x), Pe(x), Pe(x)lx € X}

where Te(x) = |TE(x), TE(x)|, Pe(x) = |@5(x), BL()|, Pelx) = [PLx), PY(x)| These intervals
signify the positive, negative, and neutral membership degrees of an element. For all x € X,

0< Tg(X), @g(X), Tg(X) <1

and
Qe(x) =1 = Tg(x) — Pg(x) — Pe(x)

where Qg(x) = [Qé(x), Qg(x)] represents refusal membership in intervals of x € X.

2.6. The relationship of different fuzzy sets

For every x in set X, we define & = {(x, T’s(x), Pg(x), P(x))|x € X}.

(1) In PFSs, when Pg(x) = 0, PFSs reduce to IFSs.

(2) Regarding IVIFSs, if Yg(x) = T5(x) = T5(x), Pg(x) = Pg(x) = DY (x), then IVIFSs simplify to
IFSs.

(3) In the scenario of IVPFSs, if Tg(x) = T5(x) = TE(x), Pg(x) = PE(x) = DL (x), Pe(x) = PE(x) =
#J(x), then IvPFSs are equivalent to PFSs.

Consequently, IFSs are a particular instance of PFSs and IvIFSs, while PFSs are a specialized form
of IVPFSs. The theory of fuzzy sets continually transitions from specialization to generalization.

2.7. Hellinger distance

Definition 6. [/9]] The Hellinger distance is calculated based on the shape of probability density
functions or probability mass functions to measure the distance between two distributions. For two
probability distributions P and Q, the Hellinger distance can be computed as follows:

1

D(P,Q) = 7

JZ(@— Vai? 2.1)
i=1
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where p; and q; represent the probability density of the two distributions at a specific event x.

The Hellinger distance possesses the following characteristics:

(1) Its values range between 0 and 1, where 0 signifies complete similarity between two
distributions, and 1 indicates complete dissimilarity.

(2) When two distributions are very similar, the Hellinger distance approaches 0.

(3) The Hellinger distance is symmetric, meaning D (P, Q) = D (Q, P). Compared to other distance
metrics, such as Kullback-Leibler (KL) divergence or total variation distance, the Hellinger distance
is more robust to outliers and, in certain cases, more accessible to compute. It finds widespread
application in probability distribution comparisons and model fitting.

2.8. The existing distance measures and similarity measures for PFSs and IvPFSs

Table 1 shows a series of existing distance measures utilized for PFSs.

Table 1. Existing distance measures of PFSs.

Ref. Distance Measures

Dutta [12] Dh(E.5) = L5 e T e e )
buali2l D7) = [ oo o)
omin__er- iz L T

n 1T (xi) = T (x) |2 + |Pg (x7) — P (x7) |2
Dutta [12] D‘[‘)u &,F) = ﬁ i:l( ex 7 (X s (X 7 (X )

+ ¥ (x;) — P () I + Q¢ (x) — QF (x) P
[Te (xi) — T (x| + | Pg (x;) — Py (x;)] )
+|We (x;) — P (x)]

Dinh and Thao [58] D}, (&,F) =+ 37, (

' w [ 1Te(x) = Tr (x) > + |Dg (x;) — D (x7) |?
Dinh and Thao [58] DéT(S,T):%\/Zi:1(| s (X 7 (x) |7 + |Dg (x, 7 (x;) | )

+Pe (x;) — P (x)
1Te (xi) — L (x| Dg (x;) — O (x|, )
Ye (x;) — P (X))
: 4 1 |yon e (x;) = T (x) P, | D (x;) — Do (x) [,
Dinh and Thao [58] D7, (&,F) = - \/ 1 max( W (1) — W (1) )

1T (x;) — T'r (x| + | Dg (xi) — Py (X)) )
+1%% (%) — P ()] + |9g (x) — Q7 ()]

- _ n [ 1Te(x) = Yr (x) P+ |Pe (X)) — P (x) 7
Sll’lgh et al [54] DgM(a, 7:) - \/ﬁ Zi:l ( +|¥/8 (xi) _ y/?_ (xi) |2 + |Q8 (xi) _ ,Q7- (xi) |2 )

1Te (xi) = T (xi) |, |De (x;) — D (x) |, )
|¥s (xi) — ¥ (x) |, 196 (x;) — Q7 (x3) |

Dinh and Thao [58] D3, (&,F) = % - max(

Singh et al [54] Dy (&, F) = + ?:1(

Singh et al [54] D3 (& F) =+ 38, max(

Singhetal(s4] Db (65 = \/ﬁ ?zlmax(|'r6(x,->—T¢<x,-)|,|¢8<xi>—q>¢(x,->|,)

|Pe (xi) — V& (x) 17,1926 (xi) — L (x) I”
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Based on the principle of maximizing similarity measures and minimizing distance measures, a
higher similarity measure suggests a lower distance measure, so we can define it as follows:
Let two IvPESs & and ¥ in UOD X, and we have:

DE,F)=1-SE,F). (2.2)
Table 2 shows a series of existing similarity/distance measures for IvPFSs.

Table 2. Existing similarity measures of IvPFSs.

Ref. Similarity Measures

| T5(x:) — Tch(xi)| v |ng/(xi) - Tg‘é(xi)l
VIPL(x;) — PE(x)| Vv | DY (x7) — DY (x)|
| VIPL(x) = PEG)| V[P () — PU(x)| |
[ TEG) = TEG)] + 7Y G — T2(x)] ]
+HPL(x;) — PL(xp)] + | DY (x) — DY (xy)|
| HPL(x) — PR+ [P () — P |
(TR = TE)I VT () = TVl ]
VIPL(x;) — BL(x)] V [DY(x;) — PY(x)
VIPEx) = PE)IV 1P (x0) = PY ()
| VIQL(x) — QL (x| V 1Y (x) — QY(x) |
[ 75 = TRl + 7Y () = T2l |
+HPL(x;) — PE ()] + | DY (x;) — PY(x;)
+HPEG) = PEG)] + 1P () — ()
| +HQL () — QL) + 19U () — QU(x)| |

Liuetal. [32] Dg(E,F)=1-X", cos

ST

Livetal. [32] D (EF)=1-3",cos

IS

Livetal [32] D} (E,F)=1-Y,cos

[STp]

Livetal. [32] Dj(E,F)=1-Y, cos

N

| TE() = Y| V[T (i = 1o ()|
Livetal [32] DL(E F)=1- 3 cotdZ + | V|PL(x;) — PL(x)| V DY (x) — DY (xy)|
| VIPE() = PRl V| P () = Pl |
[ Te00) = TGl v Tg () = 1700l |
: ) v e ) r x| VIDEGD) = P VDY () = DL ()]
Liuetal. [32] Dg,(E,F)=1-3_ cot3%+7 VWE(XI') _ WZ(J@N v |¥/§(xi) _ T;Z(Xiﬂ
| VIQEG) = Q50| V128 () ~ 7)) |

3. New distance measures for PFSs

In this section, we will propose new distance measures for PFESs based on the Hellinger distance in
three and four dimensions.

Definition 7. Suppose X = {x, x,...., x,} is a UOD. For two PFSs & = {{x, Tg(x), Pg(x), Ps(x))|x € X}

and F = {{x, Y (x), Ps(x), Y+(x))|x € X}. The proposed four PFSs distance measures based on the
Hellinger distance in three dimensions are defined as follows:

1 n

DAE.F) = 5~ D (1NTe0i) = TGl + INDe(x) = POl + 13 Pelx) - VPr(xl) (3.1

i=1
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1
n 2

DH(E.F) = {i |(VTst) - VTrCe) + (Vs - V@) + (VPen - x/s”(f(xi))z]}

2n

i=1

1 n
DE@&.F) = ~ > max (17 ~ VTr(ol | V@e(x) ~ Vor (ol |VPe(a) — v#r(x))
i=1

DhET) = = 3" max (VT - V) (ot ~ VB @) (Ve - VPr) )
i=1

Property 1. The following properties are derived from the D'(E, F) definition.
(1) 0<DYE,F)< 1.

(2) DY&E,F) = 0 if, and only if. & = F.

(3) DY(&,F) =DY(F,E).

(4) IfECF C G then D'(E,F) <D'(E,G) and D'(F,G) < D'(E,G).

Proof. (1) Take D) as an example.

As for .
VTe(x) = VTr(x)| > 0,
VPe(x) = NP7 (x)| > 0,
VPe(x) = V¥r(x)| > 0,
we have
D4ET) = 5 (| Tl - VTrC)| + | Ve ~ V()| + | Vol - V(x>0
and
DAEF) = 5 (| VT - V7G| + [ V8ol ~ Vr (| +| Vel - VP
< 3 (e0) + T (x) + Do) + By (6) + Pol) + ¥ (1)
< 3 (Vel) + Po) + Pol)) + 5 (T () + By () + P (x)
<l

Therefore, we can prove that:
0<DEF) <1

which proves that ]D}l(& F) satisfies boundedness.

(3.2)

(3.3)

(3.4)

O
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29825

Proof. (2) Consider D}g for illustration.
Given & = F, we have Tg(x;) = T'#(x;), Pe(xi) = Dy (x;), Pe(xi) = Pr(x0).
Therefore, we can obtain

| VT s(x:) = V7)) = | VPe(x) = VOF(x)| = [V Pe(x) — VPr(x) =0

1
2

l n
DH(E.F) = {51 O | (Ve = VTrG) + (Ve = Brtaa) +(VPaln - \/%(m)z]} =0,
i=1
Similarly, if D(E, F) = 0, we can obtain

Te(xi) = Tr(x), Pe(xi) = Pr(x;), Pe(x;) = Pr(x)).
We can infer that & = . Therefore, we can prove that D};(S, F) =0if, and only if, & = 7. O

Proof. (3) Let us use Dy, as a case in point.
We have

|V e(x) = NVTF)| = [V () = T e(x)]
| VPe(x) — VOr(x)] = [V Pr(x;) — Pe(xy)]
| VPe(x) = V)| = [V Pr(x) — v Pe(x)l.
From this, we can infer that
max (| VTe(x) = VTl | VPe(xi) — V7l [V We(x) — V¥ (x))
= max (| VT7(x) = VT, | VP7(x) = VPs(xi)l, | VP (xi) = Pe(x)l).
Therefore, we can prove that at this point DL(E, F) = DH(F, E). O

Proof. (4) Using D}, as a point of example.

If &CF C @G, wehave Tg(x)) < Tr (X)) < TgX),Ps (X)) < Pr (X)) < DPg(xp), Pg(xi) <
e (x) < Pe ().

Hence, we can derive the subsequent equations

1 n
Dp(&,F) = . Z max ((Ye(x;) — V(X)) (Pe(x) — Pr(x)”, (Pe(xi) — V(X))
i=1

1 \ 2 2 2
< = D max ((Te(n) = To()). (Pe(x) = Lo(x)), (Polx) ~ ¥o(x))’)
i=1

=Dp(E,6)

1 n
Dp(F,G) = P Z max (Y (x;) = Y6(x1)”, (Pr(x)) — Pg(x:)”, (P (x;) — Pg(x:))°)
i=1

1 n
< p Z max ((Ye(x:) — Tg(x:)?, (Pe(x;) — Pg(x:))?, (Pe(x:) — Pg(x:))?)
P

=D},(E,6).

Therefore,we can prove that if & € F C G, then D;(E,F) < D(E,G) and D(F,G) < D(E,G).
o
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Definition 8. The proposed four PFS distance measures based on the Hellinger distance in four
dimensions are defined as follows:

D2 (E.F [ | VTe(x) = VT r(l +1VPe(x) = NPy () ) 35
&= Z HVPe(x) = VPr ()l + 1 VQe(xi) = VOr(x) o)

(3.6)

1
D3(E,F) =
’ {2" 2, + (V) — VE @)+ (Ve — V2r(o)
1 VT e(x) = VT |1V Pe(x) = Py (x), )

Da(E,F) = — [ 3.7
7= Vo) = N (ol [V2s(x) — v2r ()l G7
(VTet) = NTr@) L (VPel) - VOr(x) J
2 2 |

= (V) — V() . (VQe(x) = VQr(x))

Property 2. The following properties are derived from the D*(E,F) definition. Proofs (1)—(4) is
similar with D',

(1) 0 <D*&E,F) < 1.

(2) DX(E,F) = 0 if, and only if, & = F.

(3) D*(&,F) = D(F, E).

(4) IfE CF C G, then D*(E,F) < DXE, G) and D*(F, G) < DXE, G).

(VTew) = \Tr @) + (Ve ~ V@, @) ]}

i=1

n

D&, F) = rll (3.8)

4. New distance measures for IvPFSs

In this section, we will propose new distance measures for IVPFSs based on Hellinger distance in
three and four dimensions.

Definition 9. Consider X = {x, x,...., x,} as an UOD for two PFSs & = {{x, ['Y’é(x), ‘Y’U(x)] , Pg(x) =
|PL). BY)|, Pelx) = [PEO.PE@PIx € X} and F = (|70, TEW)]. Pr(x) =

[ 7 (X), D (x)] Vr(x) = [BUGL,(x), S”g (x)])lx € X}. The proposed four IvPFSs distance measures based
on the Hellinger distance in three dimensions are defined as follows:

s = Rl 1T - (T

1
DAEF) = 7 3|+ Ph) = P + @Y x) - \JPL )] (4.0
i=1

+Hy PE0D) = JPECL+ P ) = P2 )

| (- )+ - )|

D&, F) = %Z (\/cb (x) — P (x,) (\/45U(x,)— N (x,) 4.2)
i=1

o - JrEw) + (Jri - ) |
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) N TED) = T YY) = TY )

D&, F) = Zmax |\/q5 (x;) — \/gb ol |\/ch(x, \/qs )| 4.3)

T e - Rl e - (e

) (\/'Y'L(xi —\/ L(xl) (\/TU(xl \/ (x,)
D3(E,F) = %Zmax (\/cp ()~ [P (x,) (\/QU(x,)— N (x,) L (4
i=1

(o - Jrzcs) (e - )
Property 3. The following properties are derived from the D*(E, F) definition.
(1) 0<D¥&E,F) < 1.
(2) DX(&E,F) =0 if, and only if, & = F.
(3) D*(&,F) = DX(F, E).
(4) IfECF C G, then D*(E, F) < D&, G) and D*(F,G) < DI(E, G).

Proof. (1) Take D} as an example.
As for
| TEC) = T > 01780 = T2 >0,
| PECR) = AP > 0,1 BL(x) — | PL ()] >0,
|3 PG = PR > 0.1 P () = [P > 0.

we have
1y = (el + 10 - (1)
D3 (&, F) = %Z 4 \/cDL(x, \/ch (x) |+|\/CDU(x,)— \/CDU(x,)l >0
T - o+ R - ()
and

T = Jr+ 18 - (i)

DAEF) = 7 2| P — PGl + 1ol — ool

4 \/ PL(x;) \/ WL(x)| +| \/ wU(x;) - \/ U (x|
\/‘Y'L(x,) + \/TL (x) + \/TU(x,)+ \/‘Y’U(xl
< %; \/qs (x) + \/43 (x) + \/¢U(x,)+ \/qﬁ (x)
\/ WL(x;) + \/ WL(x;) + \/Wg(x,) + \/svg(xl
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1
— > 4
4 =1
<1
As Ts(x), Ds(x;), Pe(x), Tr(x;), Pr(x;), P#(x;) of both IVPFSs belong to [0,1] it is clear that Df‘ &, )
belongs to [0,1]. O

Proof. (2) Consider the case of D3,
Given & = ¥, we have
Loy _ oL Upoy — opU
Ts(x) = Ti(x), Tg(xi) = Te(xy)
@é(xi) = ¢5Lc(xi), qu(%) = @;—/'(xi)
Pe(x:) = Pr(x), Vg (x) = PL(x).

Consequently, we can acquire

(Vi - i) = (\/‘rU(xo - i) = (Ve - Jorw)
= (Y - yJau (x,) (Ve - ¥ (x,) = (Y - \/avg(x,-))zzo

Similarly, if Dg(c‘), ¥) = 0 ,we can acquire
TH) = Th(a), Y400 = T(x)
DE(x;) = Pi(x;), Py (x;) = PL(x;)
PE(x:) = Pr(x), P (x) = PL(x).

From this, we can infer that & = F.

Therefore, we can prove that at this point D%(S, ¥) =0if, and only if, & = F. O
Proof. (3) Let us examine Dg for illustration.

We have | | |

s = s = | i = rie|.[rieo - Jrico| =| i - Jrie

'\/cbg(x,)— L(x)| = [P x) — yJPEx) '\/QDU(x,)— Jeu) ‘\/cpf(x,)— DY(x).

e - Jerc| = [ereo - Jezool | rgoo - e = | e - ez

From this, we can infer

| ThC = (JTE, [ TEC) = | TE,
Y0 = 7Y, Y0 = 7Y,
. Zma" | PEC) = PG | $ s | PL ) = [ PEG)

[ Ph = Jolool, | 2| 1ol - oY,
|y PEG) = PG, |y PG = PG,
| P = P | PLG) - P
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Therefore, we can prove that ID)3C(8, F)= Dg(?‘, E).

Proof. (4) As a representative example, we can look at ID)%.

If&ECF C G, we have

TE(x) < Ti(x) < Tg(x), T () < T (x) < Tg(x).

Similarly,

Dg(x) < PE(x;) < Dg(x:), PG (%) < Pl(xi) < PG (x)
Ve(x) > Pr(x) > PG, Vg (x) > P (x) > g (x)

and we can get the following conclusion:

(- ]
(- )
(@b - \/ch(x))
(o - ]
(( VPG - JrEe) |

\/TU(x) \/TU(x )

2

2

[\

max

[\S)

[\

NS}

2

(
(
] |
(
(

VTG = \[Th()
V) = \Jré) .
NEABDENOIE
NCIOENET R
NEZOSENZIENR
B

< max

< max

(- ],
(- ]
(- o).
(- o]
E NN ))

\/‘}’U(x) \/S”U(x )

(V7
(- ]
(ot o)
| i

VY0 = ([0l (x)
NZORN e ))
M)

Thus, D3(E, F) < D3 (&, G). Similarly, we can prove D3 (F, G) < D3(&, G).

O

Definition 10. The proposed four IvPFSs distance measures based on the Hellinger distance in four

dimensions are defined as follows:

[ TE) = \JTEGI+ T = 7Y )

HBER) = \JPEC] + 1 PY () — (DL

1 n
DIEF)= 1))

P PR — PR+ 1P ) — ()

AIMS Mathematics

+H QL) = QR+ QL) — QY ()

(4.5)
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DI—=

(V7 - 750 + - o)
piET) = {1 i - o (’“’) (V2 - o ““)

— (4.6)
4n = (\/IPL(x,)— \/ (x, ) (\/Y’U(x,)— \/TU(M))
(Yo - ) + (Yelen - i)
I TED) = Ty TY ) = TY )
1l | PECE) = \JPEL |y PY () — [ PL )]
R ;max PR = RGP () = Y0 D
| QL) = ALl 13 QY ) — \JRU(w)
(ke = T ) (YT - ri) )
D&, F) = L imax ( Pex) - \/d) () ) (\/QBU(%) ) \/(D ) ) (4.8)
] (Y- (x,) (o - \/W’f(xo)

(et~ ] (ot - )

Property 4. The following properties are derived from the D*(E, ) definition. Proof (1-4) is similar
with D3

(1) 0 <D*&E,F) < 1.

(2) DY&E,F) = 0 if, and only if, & = F.

(3) DY&E,F) = DHF, &).

(4) IFECF C G, then DYE, F) < D&, G) and DXF, G) < D&, G).

5. Numerical comparisons

5.1. Numerical examples of PFSs

In this section, we use three numerical examples to demonstrate that the proposed distance measures

not only meet the required properties, but also exhibit superiority compared to existing distance
measures.

Example 1. Let three PFSs E,F ,G in the UOD X = {x1, x»},

& =1{(x1,0.3,0.2,0.3),(x,,0.4,0.3,0.1)}
F =1{(x1,0.3,0.2,0.3),(x»,0.4,0.3,0.1)}
G = {(x1,0.15,0.25,0.2), (x,,0.25,0.35,0.1)}
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we can arrive at the result:
D} (&, F) = D\(F, &) = 0.0000,D}(E,G) = DY(G, &) = 0.1225

Dy(E, F) = DR(F, E) = 0.0000, Dy(E, G) = Di(G, E) = 0.1205
DHE, F) = DE(F, E) = 0.0000, DH(E, G) = DH(G, E) = 0.1464
DL(E, F) = DL(F, &) = 0.0000, DL(E, §) = DL(G, &) = 0.0216.

Similarly, we can calculate D3, D3, D%, D2, It is clear that the distance measure D}, D%, D}, D7, DL,
ID%, ID}:,, D%) satisfies the (2) (3) property.

Example 2. Given three PFSs &, F ,G in the UOD X = {x1, X2},
E=1{(x,0.2,0.3,0.4),(x,,0.1,0.2,0.4)}

F =1{(x1,0.3,0.4,0.3),(x2,0.25,0.35,0.2)}
G =1{(x1,0.4,0.5,0.1)(x,,0.3,0.4,0.1)} .

Clearly ECF C G.
D} (&, F) = 0.1958,D}(E,G) = 0.3485, D) (F,G) = 0.1526, D} (E, G) = 0.3485
DL(E, F) = 0.1684, DL(E, G) = 0.2948, DL(F, G) = 0.1479, DL(E, G) = 0.2948
D(E,F) = 0.1429,D(E, G) = 0.3162, DH(F, G) = 0.1812,DL(E, G) = 0.3162
DL(E, F) = 0.0222,D}(E, G) = 0.1000, D (F, G) = 0.0354,D1(E, G) = 0.1000.

By calculating, we can find
D}(E,7) < D}(&.6),Dy(F.G) < Di(E.6)

D&, F) < DR(E, G), DY(F, G) < DR(E, G)
DLE, F) < DEE, G), DHF, G) < DLE, G)
DL(E, F) < DL(E,G), D (F,G) < D (E,6).

Similarly, we can calculate D%, D3, D%, D7,
It is clear that the distance measure Di, Di, Dg, D%, DIC, D%, Dllj, D%) satisfies (4) property.

Example 3. Given two PFSs & and ¥ in UOD X, the specific numerical values are as illustrated in the
following Table 3, and the results for different distance measurement methods applied to & and ¥ are
displayed in Table 4 as shown below.

Table 3. Two PFSs in six cases under Example 3.

PES Case 1 Case 2 Case 3 Case 4 Case 5 Case6
& <x,0.4,0.4,0.2> <x,0.1,0.4,0.5> <x,0.3,0,0.7> <x,0.3,0,0.7> <x,0.1,0.2,0.6> <x,0.1,0.3,0.3>
F <x,0.20503> <x,02,05,03> <x,0.2008> <x,04,006> <x,02,04,03> <x,04,0.3,0.1>
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Table 4. A comparison of distance measures of PFSs.

Casel Case2 Case3 Case4 CaseS5 Caseb6
D})M&Déu 0.2 0.2 0.1 0.1 0.3 0.3
D%M&D“ 0.1732 0.1732 0.1 0.1 0.07 0.07

Du

Dpy 0.1333 0.1333 0.0667 0.0667 0.3 0.167
D%, 0.2449 0.2449 0.1414 0.1414 0.3742 0.3606
D3, &D7, 0.2 0.2 0.1 0.1 0.3 0.3
Dy, 0.1 0.1 0.05 0.05 0.15 0.15
D2, 0.1225 0.1225 0.0707 0.0707 0.1871 0.1871
D3, 0.05 0.05 0.025 0.025 0.1369 0.1369
D%, 0.1 0.1 0.05 0.05 0.2739 0.2739
D} 0.1802 0.16 0.0791 0.0735 0.2716 0.2739
D4 0.1802 0.16 0.0791 0.0735 0.2716 0.3242
D} 0.1581 0.1552 0.1158 0.0745 0.2268 0.2771
D2 0.1581 0.1552 0.1158 0.0745 0.2268 0.2861
DL 0.1853 0.1594 0.1005 0.0848 0.2269 0.3163
D 0.1853 0.1594 0.1005 0.0848 0.1135 0.1582
D;, 0.0343 0.0254 0.0101 0.0072 0.0515 0.1000
D2 0.0343 0.0254 0.0101 0.0072 0.0515 0.1000

L . 1 ™2 3 4 1 2 3 4 1 2 3 4
The existing distance measure D, ,Dy, , Dy, , D}, , Dy, Dy, Dy, Dy, Dyy,e Dy Diyye Dy,

produced the same results between Cases 1 and 2. In the context of highly similar cases between

1 ™2 3 4 1 2 3 4 1 2 3 .
Cases 3 and 4, D, , Dy, , Dy, , D}, Dy, Dy, Dy, Dy, Dyyye Dy, Dy, produce consistent results,

failing to effectively distinguish between Cases 3 and 4. Similarly, when calculating for Cases 5 and 6,

1 ™2 3 4 1 3 4 1 2 3 . .
Dy, Do Doy Phw Pprs Dy Dy Dy Dy Dy, also produce identical results. However, the

proposed distance measures demonstrated strong performance. They excelled in calculating distances
when dealing with counterintuitive or subtly different dates in Cases 1-6, proving their superiority.

5.2. Numerical examples of IvPFSs

In this section, we showcase three illustrative examples to highlight how the proposed distance
measures adhere to the properties and outperform the existing similarity measures.

Example 4. Assume three IVPFSs &, F, G as follows:

& = {([0.2,0.3],[0.4,0.5],[0.1, 0.2])}
¥ ={[0.2,0.3],[0.4,0.5],[0.1,0.2])}
G = {([0.6,0.7],10.1,0.2],[0.1,0.2])} .

We can arrive at the result:
D3 (&, F) = D3(F,E) = 0.0000,D3(E,6) = DG, E) = 0.2981
D&, F) = Dy(F,E) = 0.0000,D3(E, G) = D3(G, E) = 0.2993

AIMS Mathematics Volume 8, Issue 12, 29817-29848.



29833

D&, F) = DAF, &) = 0.0000, DX(E, G) = DAG, E) = 0.1637
D&, F) = D3(F, E) = 0.0000,D3(E, G) = DG, E) = 0.0536.

In the same vein, we can work out D}, D3, D¢, D},
It’s evident that the distance measure D3, D}, D3, D5, D2, DL, D3 D} adheres to (2) and (3)
property.

Example 5. Consider the following three IvPFSs &, F and G:
& = {([0.10, 0.20], [0.10, 0.20], [0.40, 0.50])}

¥ = {([0.15,0.25],[0.20, 0.30], [0.30, 0.40])}
G = {([0.20, 0.30], [0.30, 0.40], [0.20, 0.30])} .

Clearly, ECF C G.
D3(E,F) = 0.1287,D}(E,G) = 0.2482,D3(F,G) = 0.1195,D3(E, G) = 0.2482

Dy(E, F) = 0.1094, D3(E, G) = 0.2091, Dy(F, G) = 0.1005, Dy(E, G) = 0.2091
D&, F) = 0.0655,DL(E,G) = 0.1157,DL(F, G) = 0.0503,DHE, G) = 0.1157
D&, F) = 0.0086,D;,(E,G) = 0.0268, D), (F, G) = 0.0051,D;,(E, G) = 0.0268.

By calculating, we can find
Di(&,%) < D}(&,6).Di(F.6) < Di(&E.6)

D&, F) < DYE, G, DY(F,G) < DYE,G)
DLE, F) < DUE, G), DAF,G) < DAE,G)
D}(E, F) < Di(E,3), Dy(F, G) < DH(E, G).

Similarly, we can calculate DY}, D}, D¢, D3,
The distance measures denoted as DZ,D} D%,Dg,Dg,D‘é,Di’) and D4D unequivocally meet the
criteria stipulated by the (4) properties.

Example 6. Given the IvPFSs &; and F; under Case i(i=1,2,3,4), which are shown in Table 5, the
results obtained for the four cases are presented in Table 6.

Table 5. Two IvPFSs &; and F; under different cases in Example 6.

IvPESs Case 1 Case 2
&E; <(0.3,0.3)(0.3,0.3)(0.3,0.3)> <(0.2,0.2)(0.2,0.2)(0.2,0.2)>
F; <(0.2,0.2)(0.2,0.2)(0.2,0.2)> <(0.1,0.1)(0.1,0.1)(0.1,0.1)>
IvPESs Case3 Case4
& <(0.3,0.8)(0.1,0.1)(0.1,0.1)> <(0.3,0.8)(0.1,0.1)(0.1,0.1)>
F; <(0.1,0.2)(0.1,0.1)(0.1,0.1)> <(0.1,0.2)(0.1,0.2)(0.1,0.1)>
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Table 6. A comparison of different measures of IvPFSs.

Casel Case2 Case3 Case4d
Dés 0.0122 0.0122 0.1090 0.1090
D%S 0.1090 0.1090 0.2929 0.2929
D%S 0.1090 0.4122 0.1090 0.1090
D‘és 0.1090 0.2396 1.0000 1.0000
Dét 0.1459 0.1459 0.3872 0.3872
Dél 0.3872 0.6751 0.3872 0.3872
Di 0.0754 0.1965 0.1229 0.1146
Di 0.1545 0.2986 0.2039 0.2013
D% 0.1231 0.0258 0.1741 0.1622
D‘; 0.2553 0.0467 0.2105 0.2069
D% 0.0500 0.0655 0.1300 0.1135
D‘é 0.1000 0.1021 0.1300 0.1135
D3D 0.0050 0.0086 0.0008 0.0006
D?) 0.0050 0.0086 0.0008 0.0006

Based on the results presented in Table 6, it is apparent that the eight proposed distance measures
for IvPFSs can better distinguish different cases, especially in handling counterintuitive datas. In the
context of highly similar cases between Case I and Case 2, S;.,, S¢., and S{, produce consistent resuls,
failing to effectively distinguish between Case 1 and Case 2. Similarly, when calculating for Case
3 and Case 4, Slcs, S%S, S3Cs, S‘és, SICt, and S%t also yield the same results, so the proposed distance

measures are demonstrated to be superior.
6. Applications for PFSs

In this section, we will introduce two applications of PESs, including pattern recognition and
medical diagnosis.

Application 1. We give four sets in the format of PFS and compute the distances between &, &,, Es,
and F. Each set has four elements, and Table 7 presents a comparison between the classification
outcomes generated by the proposed distance measures and those produced by existing distance
measures.

&1={(a;,0.3,0.0,0.4), (a,0.7,0.0,0.1), (a3,0.2,0.0,0.6), (a4,0.7,0.0,0.1)}
&,={(a,,0.5,0.0,0.2), (a2,0.6,0.0,0.1), (a3,0.2,0.0,0.7), (a4,0.7,0.0,0.3)}
E3={(a,,0.5,0.0,0.3), (a2,0.7,0.0,0.0), (a3,0.4,0.0,0.5), (a4,0.7,0.0,0.3)}
F={(01,0.4,0.0,0.3), (6,,0.7,0.0,0.1), (55,0.3,0.0,0.6), (b4,0.7,0.0,0.3)}.
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Table 7. Classification results on Application 1.

(E1L.F) (6, F) (E,F) Result
D})M 0.4000 0.3000 0.3000 NaN
DZDM 0.1000 0.0750 0.0750 NaN
D%u 0.0600 0.0300 0.0300 NaN
DY 00150 0.0075 0.0075 NaN
D;)T 0.0417 0.0417 0.0333 NaN
D%T 0.0661 0.0559 0.0500 &
D3DT 0.1000 0.0750 0.0750 NaN
D‘})T 0.0612 0.0433 0.0433 NaN
DéM 0.0500 0.0375 0.0375 NaN
D2, 00866 0.0612 00612 NaN
DgM 0.0675 0.0593 0.0593 NaN
DéM 0.0612 0.0433 0.0433 NaN
DL 0.0627 0.0500 0.0679 &
Di 0.1350 0.0625 0.0930 &
D}g 0.0989 0.0647 0.1211 &
D% 0.1921 0.0738 0.1311 &
D(l; 0.1042 0.0658 0.1189 &
D% 0.1657 0.0754 0.1254 &
D}) 0.0177 0.0060 0.0282 &
DZD 0.0561 0.0076 0.0293 &

All the proposed distance measures get the same classification results that the test sample belongs
to &. However, D})u, D%)u, ID%M, D‘[‘)u, D}DT, D?)T, D4DT, D; Jyn D% a Dg w Dé w cannot distinguish the
sample D as the results are (E1,F) = (&, F) or (E,F) = (E3,F).

Hence, the proposed distance measures successfully address pattern recognition problems that
existing measures fail to resolve, demonstrating their superior performance.

Application 2. [39] Consider four patients E,F , G, H and sets a set of patients as P ={E,F , G, H).
The set of diagnostic symptoms is S ={T emperature, Headache, Stomachpain, Cough, Chestpain}.
Table 8 outlines the symptoms associated with each patient. Table 9 presents the symptoms related to
the various diseases. Each element of the tables are given as PFSs.

Table 8. Diagnostic criteria for various symptoms of different diseases.

Temperature Headache Stomach pain Cough Chest pain
VF <0.10,0.00,0.00> <0.20,0.20,0.50> <0.10,0.25,0.60> <0.30,0.40,0.20> <0.20,0.15,0.50>
M  <0.70,0.00,0.00> <0.20,0.40,0.35> <0.00,0.40,0.50> <0.70,0.10,0.00> <0.10,0.30,0.50>
T <0.30,0.40,0.30> <0.60,0.20,0.10>  <0.20,0.30,0.40> <0.20,0.35,0.30> <0.10,0.20,0.60>
SP  <0.10,0.30,0.50> <0.20,0.40,0.30> <0.80,0.00,0.00> <0.20,0.40,0.30> <0.20,0.35,0.30>
CP <0.10,0.30,0.50> <0.00,0.50,0.35> <0.20,0.30,0.50> <0.20,0.35,0.40> <0.80,0.00,0.10>

Note: VF:Viral Fever, M: Malaria, T:Typhoid, SP: Stomach Problem, CP: Chest Problem.
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Table 9. Indicators of various symptoms in four patients.

Temperature Headache Stomach pain Cough Chest pain
&  <0.80,0.00,0.10> <0.60,0.30,0.10> <0.20,0.40,0.40> <0.50,0.15,0.10> <0.10,0.40,0.40>
¥ <0.00,0.50,0.40> <0.40,0.25,0.30> <0.60,0.20,0.10> <0.10,0.30,0.60> <0.10,0.35,0.40>
G <0.80,0.00,0.10> <0.80,0.00,0.10> <0.50,0.40,0.00> <0.20,0.30,0.40> <0.00,0.40,0.40>
H <0.70,0.20,0.10> <0.40,0.25,0.25> <0.00,0.40,0.50> <0.70,0.10,0.15> <0.10,0.30,0.05>

Based on the governing principle of minimum distance measures, a smaller distance measure
signifies a more accurate diagnosis. In Table 10, it is discerned that patient & diagnoses with Malaria,
patient F faces a stomach problem, patient G is diagnosed with Typhoid and patient H suffers from
Malaria. In Table 11 and Figure 1, a comparative analysis with existing measures is conducted. It
becomes apparent that the distance measure Dy, is unable to accurately diagnose patients E, F, and
G. Furthermore, D%u encounters limitations in calculating some distances, thereby resulting in an
outcome that goes against the desired property. Besides, when analyzing other existing measures, it is
observed that the diagnostic outcomes generated by the proposed distance measures are in harmony
with the results, demonstrating satisfactory accuracy and reliability. This alignment emphasizes
the potential effectiveness and appropriateness of the proposed distance measures in diagnosing the
ailments above, thereby contributing to a more precise and trustworthy diagnostic procedure.

Table 10. Disease diagnosis of proposed measures with four patients.

Patient VF M T SP CP Result
D/g & 0.3105 0.2192 0.2486 0.4933 0.5260 M
F 0.4076 0.5534 0.2566 0.2410 0.4056 SP
G 0.4615 0.4872 0.3527 0.4390 0.6332 T
H 0.3202 0.1560 0.2684 0.4812 0.4902 M
Di & 0.4420 0.3023 0.3435 0.5839 0.5811 M
F 0.5210 0.6283 0.3433 0.2949 0.4830 SP
G 0.5400 0.5458 0.4045 0.4581 0.6943 T
H 0.3959 0.1977 0.3295 0.5237 0.5420 M
Dllg & 0.3074 0.2492 0.2912 0.4692 0.5084 M
F 0.4145 0.5808 0.2680 0.2444 0.4086 SP
G 0.4555 0.4997 0.3777 0.4581 0.6356 T
H 0.3167 0.2259 0.2662 0.5010 0.4656 M
D% & 0.3879 0.2877 0.3388 0.5012 0.5255 M
F 0.4728 0.6026 0.3133 0.2689 0.4303 SP
G 0.4987 0.5093 0.3935 0.4604 0.6458 T
H 0.3573 0.2406 0.3059 0.5057 0.4784 M
DIC & 0.3203 0.2984 0.2661 0.3993 0.4795 T
Vil 0.3765 0.5291 0.2956 0.2613 0.4147 SP
G 0.4865 0.5209 0.4226 04750 0.6236 T
H 0.3041 0.2040 0.2820 0.4298 0.5135 M
D% & 0.3475 0.2984 0.3555 0.3993 0.4795 M
F 0.3765 0.5291 0.3277 0.2792 0.4310 SP
G 0.4973 0.5209 0.4226 04750 0.6334 T
H 0.3041 0.2040 0.3136 0.4298 0.5135 M
D}) & 0.1255 0.1029 0.1118 0.1932 0.2897 M
Vil 0.1787 0.3880 0.1066 0.0806 0.2046 SP
G 0.2737 0.3000 0.2214 0.2683 0.4872 T
H 0.1079 0.0769 0.0958 0.2564 0.2714 M
ID% & 0.1446 0.1029 0.1483 0.1932 0.2897 M
F 0.1787 0.3880 0.1263 0.0903 0.2106 SP
G 0.2869 0.3000 0.2214 0.2683 0.4886 T
H 0.1079 0.0769 0.1191 0.2564 0.2714 M
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Table 11. Final diagnostics for existing distance measures.

Patient VF M T SP CP Result
D}, & \ \ \ \ \ Cannot be diagnosed
F \ \ \ \ \ Cannot be diagnosed
G \ \ \ \ \ Cannot be diagnosed
H \ 0.6000 \ \ \ M
DzDu & 0.4200 0.2100 0.2800 0.5000 0.5200 M
F 0.4600 0.5200 0.2900 0.2200 0.4000 SP
G 0.5000 0.4300 0.3200 0.4000 0.5700 T
H 0.3600 0.1200 0.3000 0.4800 0.4800 M
D-’I’)u & 0.8775 0.2000 0.4100 0.9850 \ M
F 0.9650 \ 0.3275 0.1825 0.6975 SP
G \ 0.8225 0.4575 0.8175 \ T
H 0.6700 0.0900 0.3850 \ 0.9750 M
D}, & 0.1755 0.0400 0.0820 0.1970 0.2285 M
F 0.1930 0.2380 0.0655 0.0365 0.1395 SP
G 0.2420 0.1645 0.0915 0.1635 0.2960 T
H 0.1340 0.0180 0.0770 0.2085 0.1950 M
D})T & 0.2100 0.1133 0.1667 0.3067 0.3300 M
F 0.2400 0.3167 0.1700 0.1300 0.2467 SP
G 0.2733 0.2567 0.1967 0.2567 0.3600 T
H 0.1833 0.0600 0.1800 0.3000 0.3033 M
DQDT & 0.2095 0.174 0.1778 0.2768 0.3002 M
F 0.2258 0.3032 0.1572 0.1170 0.2340 SP
G 0.2665 0.2516 0.1889 0.2548 0.3426 T
H 0.1836 0.0762 0.1697 0.2871 0.2777 M
D%T & 0.3600 0.1800 0.2600 0.4400 0.5000 M
F 0.3600 0.4400 0.2800 0.2000 0.3800 SP
G 0.4700 0.3600 0.2800 0.4000 0.5700 T
H 0.3100 0.1100 0.2800 0.4600 0.4800 M
D}, & 0.1806 0.0959 0.1371 0.2173 0.2458 M
F 0.1720 0.2245 0.1296 0.0938 0.1887 SP
G 0.2291 0.1876 0.1414 0.2059 0.2844 T
H 0.1584 0.0640 0.1414 0.2307 0.2280 M
ID;M & 0.2100 0.1050 0.1400 0.2500 0.2600 M
¥ 0.2300 0.2600 0.1450 0.1100 0.2000 SP
G 0.2500 0.2150 0.1600 0.2000 0.2850 T
H 0.1800 0.0600 0.1500 0.2400 0.2400 M
DﬁM & 0.2962 0.1414 0.2025 0.3138 0.3380 M
F 0.3106 0.3450 0.1810 0.1351 0.2641 SP
G 0.3479 0.2868 0.2139 0.2859 0.3847 T
H 0.2588 0.9487 0.1962 0.3229 0.3123 M
]DgM & 0.1487 0.1080 0.1210 0.1596 0.1698 M
F 0.1564 0.1575 0.1311 0.1103 0.1498 SP
G 0.1695 0.1476 0.1275 0.1504 0.1778 T
H 0.1372 0.0641 0.1275 0.1635 0.1699 M
DéM & 0.2197 0.1140 0.1533 0.2429 0.2748 M
F 0.2377 0.2510 0.1449 0.1049 0.2110 SP
G 0.2704 0.2133 0.1581 0.2302 0.3180 T
H 0.1946 0.0716 0.1581 0.2579 0.2550 M
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Figure 1. Diagnosis result comparison for patients across different distance measures.
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7. Applications for IvPFSs

In this section, we explore medical dianoses related to IVPFSs. Through a detailed analysis, we aim
to prove the measures proposed in this paper have strong robustness.

Application 3. Let us assume we have three patients: P, P,, Ps. The patient set can be denoted as
P ={P,, P, P3}. The symptom set can be articulated as S = {S1.S2,53,S4,S5}, while the diagnostic
set is denoted by D = {Dy, D,, D3, D4}. The symptoms associated with the patients are outlined in
Table 12, while the symptoms linked to the diseases are detailed in Table 13. Each entry in these tables
is presented as IvPFSs.We perform a reasoned diagnosis for each patient using the proposed distance
measures.

Table 12. Symptoms characteristic for the patients.

S S» S S4 Ss
[0.3,0.3], [0.3,0.3], [0.4,0.4], [0.5,0.5], [0.3,0.3],
P, [0.3,0.3], [0.3,0.3], [0.1,0.1], [0.1,0.1], [0.2,0.2],
[0.3,0.3] [0.3,0.3] [0.3,0.3] [0.4,0.4] [0.3,0.3]
[0.0,0.0], [0.4,0.4], [0.6,0.6], [0.1,0.1], [0.1,0.1],
P, [0.1,0.1], [0.1,0.1], [0.3,0.3], [0.1,0.1], [0.0,0.0],
[0.8,0.8] [0.4,0.4] [0.1,0.1] [0.7,0.7] [0.8,0.8]
[0.3,0.3], [0.7,0.7], [0.0,0.0], [0.2,0.2], [0.1,0.1],
P; [0.3,0.3], [0.2,0.2], [0.3,0.3], [0.0,0.0], [0.0,0.0],
[0.3,0.3] [0.1,0.1] [0.7,0.7] [0.7,0.7] [0.9,0.9]
Table 13. Symptoms characteristic for the diagnoses.
S S» S Sa Ss
[0.5,0.5], [0.3,0.3], [0.3,0.3], [0.4,0.4], [0.1,0.1],
D, [0.1,0.1], [0.1,0.1], [0.1,0.1], [0.2,0.2], [0.1,0.1],
[0.1,0.1] [0.3,0.3] [0.4,0.4] [0.3,0.3] [0.5,0.5]
[0.4,04], [0.3,0.3], [0.4,04], [0.5,0.5], [0.2,0.2],
D, [0.3,0.3], [0.2,0.2], [0.1,0.1], [0.2,0.2], [0.3,0.3],
[0.2,0.2] [0.5,0.5] [0.3,0.3] [0.3,0.3] [0.4,0.4]
[0.3,0.3], [0.6,0.6], [0.2,0.2], [0.2,0.2], [0.1,0.1],
Ds [0.3,0.3], [0.2,0.2], [0.1,0.1], [0.0,0.0], [0.0,0.0],
[0.3,0.3] [0.1,0.1] [0.7,0.7] [0.6,0.6] [0.9,0.9]
[0.1,0.1], [0.2,0.2], [0.8,0.8], [0.2,0.2], [0.2,0.2],
Dy [0.2,0.2], [0.3,0.3], [0.2,0.2], [0.1,0.1], [0.0,0.0],
[0.7,0.7] [0.4,0.4] [0.0,0.0] [0.7,0.7] [0.7,0.7]
AIMS Mathematics Volume 8, Issue 12, 29817-29848.
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From Table 14, it is discernible that patient P, suffers from disease D,, patient P, has been
diagnosed with disease D,, and patient P suffers from disease Ds. Table 15 and Figure 2 compare
with other existing measures. We can see that the proposed measures and existing measures produce
the same diagnostic results, which demonstrates the robustness and reliability of the proposed distance
measures. Moreover, the consistency of diagnostic results between the proposed and existing measures
emphasizes their potential for seamless integration with current diagnostic frameworks. Additionally,
new perspectives or additional insights may be provided, representing a significant step toward
improving the accuracy and effectiveness of medical diagnostic procedures.

Table 14. The diagnosis by the proposed distance measures.

Patient D D, D D, Result
DZ P, 0.0379 0.0201 0.0514 0.0661 D,
P, 0.0694 0.0792 0.0672 0.0356 D,
P 0.0747 0.0802 0.0161 0.0764  D;
" P, 0.0618 0.0227 0.0846 0.0904 D,
P, 0.0922 0.1020 0.0672 0.0482 D,
P 0.1102 0.1018 0.0250 0.1017  Ds
D% P, 0.0794 0.0490 0.1247 0.1429 D,
P, 0.1667 0.1703 0.1528 0.0861 D,
Ps 0.1522 0.1766 0.0723 0.2024  D;
D, P, 0.1248 0.0523 0.1719 0.1696 D,
) 0.1871 0.1903 0.1602 0.1068 D,
Ps 0.2006 0.1979 0.0870 0.2213 D;
D% P, 0.0231 0.0159 0.0447 0.0548 D,
P, 0.0707 0.0632 0.0548 0.0316 D,
P 0.0548 0.0632 0.0447 0.0894  D;
p P, 0.0548 0.0159 0.0447 0.0548 D,
P, 0.0707 0.0632 0.0548 0.0316 D,
P 0.0548 0.0632 0.0447 0.0894  D;
DSD P, 0.0054 0.0025 0.0200 0.0300 D,
P, 0.0500 0.0400 0.0300 0.0100 Dy,
P 0.0300 0.0400 0.0200 0.0800  Ds
D}, P, 0.0300 0.0025 0.0200 0.0300 D,
P, 0.0500 0.0400 0.0300 0.0100 Dy,
Ps 0.0300 0.0400 0.0200 0.0800  Ds

AIMS Mathematics Volume 8, Issue 12, 29817-29848.
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Table 15. The diagnosis by the existing similarity measures.

Patient D, D, D D, Result
S, P 0.0343 0.0172 0.1522 0.1582 D,
P, 0.1935 0.1711 0.1677 0.0270 Dy,
P 0.1462 0.1756 0.0147 0.2472  D;
Sz, P, 0.1944 0.0796 0.3867 0.4976 D,
P, 0.5862 0.6730 0.5685 0.1104 D,
P 0.5266 0.6854 0.0431 0.6640 D
Sgs P, 0.0463 0.0172 0.1522 0.1582 D,
P, 0.2008 0.1784 0.1677 0.0270 D,
P 0.1462 0.1756 0.0147 0.2472  D;
St P, 0.3511 0.0960 0.5764 0.6413 D,
P, 0.7764 0.8830 0.5922 0.1342 D,
P 0.8146 0.8098 0.0578 0.7480  D;
Se; P, 0.2224 0.1422 0.3652 0.4492 D,
P, 0.4341 0.4151 0.3880 0.1969 D,
P 0.4264 0.4406 0.1131 0.4675  D;
Sz, P 0.2452 0.1422 0.3652 0.4492 D,
P, 0.4596 0.4406 0.3880 0.1969 D,
P 0.4264 0.4406 0.1131 0.4675  D;s
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Figure 2. Diagnosis result comparison for patients across different distance measures.

8. Advantages of the work

The proposed distance measures for PFSs and IvPFSs, inspired by Hellinger distance, manifest a
series of advantages that significantly contribute to the existing knowledge and practical applications.

Below, we delineate the key advantages of our work:
Volume 8, Issue 12, 29817-29848.
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8.1. Advantages based on PFSs

e Compared to IFSs, PFSs introduce a “refusal membership”, allowing PFSs to express uncertainty
information more comprehensively than IFSs.

e When the “refusal membership” is equal to 0, PFSs equals to IFSs, making PFSs a generalized
form of IFSs.

e The distance measures proposed in this paper based on PFSs demonstrates stronger adaptability
in applications compared to those grounded in IFSs.

e The distance measures introduced in this paper founded on PFSs can overcome the limitations of
existing distance measures, producing superior results.

8.2. Advantages based on IvPFSs

e Compared to IVIFSs, IVvPFSs introduce a “refusal membership”. Compared to PFSs, IvPFSs
have interval membership. These allow IvVPFSs to express uncertainty information more
comprehensively than IvIFSs and PFSs.

e When the “refusal membership” is equal to 0, IVPFSs equals to IVIFSs, positioning IvPFSs as an
extended version of IvIFSs. When IvPFSs have equal intervals, IvPFSs equals to PFSs, further
establishing IvPFSs as a more general representation of PFSs.

e The proposed distance measures based on IvVPFSs can exhibit enhanced adaptability in practical
applications compared to IVIFSs and PFSs.

e The proposed distance measures based on IVPFSs can overcome the limitations of existing
distance or similarity measures, producing superior results.

9. Conclusions

In this work, we proposed novel distance measures for PFSs and IvPFSs, leveraging Hellinger
distance to overcome limitations in existing measures. These measures adhered to critical properties
such as boundedness, non-degeneracy, symmetry, and monotonicity, affirming their theoretical
robustness. The newly introduced PFSs distance measures addressed the challenges posed by nuanced
data intricacies often overlooked by existing measures, thereby enhancing accuracy and reliability in a
picture fuzzy environment. Similarly, the IVPFSs distance measures tackled the heightened uncertainty
inherent in IvPESs, offering improved precision and reliability. Practical applications of these measures
in pattern recognition and medical diagnosis have shown promising results, demonstrating their
potential in real-world scenarios.

However, PFSs and IvPFSs are not without their shortcomings, as they exhibit certain limitations,
such as the inability to handle uncertain information in complex number fields. In light of these
limitations, our future work aims to extend the distance measures proposed in this paper to CPFSs
and CIvPFSs. This extension is envisioned to broaden the span of applications, thereby fostering a
more robust framework for tackling uncertain information in complex number fields. Through these
advancements, we aspire to bridge the existing gaps and propel the practical utility of fuzzy sets in
many complex scenarios.
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