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Abstract: In this study, we focused on the spectral radius of the Schur product. Two new types of the
upper bound of p(M = N), which is the spectral radius of the Schur product of two matrices M, N

with nonnegative elements, were established using the Hdder inequality and eigenvalue inclusion
theorem. In addition, the obtained new type upper bounds were compared with the classical
conclusions. Numerical examples demonstrated that the new type of upper formulas improved the
result of Johnson and Horn effectively in some cases, and were sharper than other existing results.
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1. Introduction

For convenience, we use C™" to represent the union of complex matrices of order n, R™
denotes the union of all real matrices of order n and R" denotes the set of vectors of order n.

Given a component-wise nonnegative matrix M :(mij)e R™ and r>0, we define
M = (mp). 1f

u=(u,U,, - u,)eR"

and r >0, we write the following:
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u® :(u{,u;,---,ur).

n

Let M eR™(n>2), then M is considered a reducible matrix if there exists a permutation
matrix P such that

PMPT: Mll M12
O My)

where M, and M,, are square matrices of an order of at least one. Otherwise, M is referred to be

irreducible.
If the matrix M is nonnegative, i.e., whose elements are nonnegative, then the spectral radius,
represented by p(M), is a characteristic root of M and any other characteristic root A is not more

than p(M) in absolute value. Estimating the spectral radius is widely used in numerical analysis,

graph theory, stability theory and other related fields, and it is a relatively active topic in matrix
theory research.
The Schur product, often called the Hadamard product, is the consequence of multiplying two

matrices element by element to create a new matrix. The Schur product of M = (mij) and N = (nij)
is defined to be M o N :(mijnij) (see [1, Definition 5.0.1]). It is worth noting that the two multiplied

matrices must have the same number of rows and columns. Schur product plays an essential role in
the matrix theory. It can be used in various applications, including replacing matrix multiplication,
blind signal separation, feature selection and image processing.

It is obvious that if M,N are two nonnegative matrices, the Schur product MoN is

nonnegative and the spectral radius p(M = N) dominates any other characteristic roots of the Schur

product M o N in absolute value. The study of the Schur product, especially the spectral radius of
the Schur product, has attracted the attention of a wide range of scholars. Many studies involving the
bound of p(M = N) can be found in the subsequent works [2,3].

Let M, N be nonnegative matrices. The following classical result can be found in [1],
p(MoN)Sp(M)p(N). (1.2)

The above-mentioned inequality shows that the spectral radius p(l\/l oN) IS not more than the
product of p(M) and p(N).
The improved result of inequality (1.1) was proposed in [4] as follows:

p(MoN)< [p(MoM)p(NoN)<p(M)p(N). (1.2)

In some cases, the two results mentioned above may be fragile. The following example illustrates
this situation. Let M =1, the identity matrix of order n and N =J, the matrix of all ones with the

order n. It is not difficult to observe that
p(MeN)=p(l)=1<p(M)p(N)=p(J)=n

and

p(MoN)=p(1)=1<[p(MM)p(NeN)=+Vn<p(M)p(N)=n.
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We know that these inequalities can be weak when n is very large. The following result is observed
owing to Fang [5]:

p(MeN)<max{2mn, +p(M)p(N)-m,p(N)—n,p(M)}. (1.3)

1<i<n

Liu et al [6] improved inequality (1.3) and derived the following conclusion:

P(M © N)S mﬂxé{miinii +Myny +[(miinii —Mmyny )2

+4(P(M )_mii)(p(N)_nii)(p(M )_mjj)(p(N)_nji )J;} (14)

In addition, some significant new boundaries of the spectral radius of the Schur product were
introduced in [7-10], which gave better estimations for the spectral radius in some cases. Inspired by
the research, we continue to study the upper bound on the spectral radius of the Schur product of two
nonnegative matrices. We provided two new types of the upper bound of the spectral radius
involving the Schur product using the eigenvalue inclusion theorem and the Hdder inequality.
Numerical tests validate that the new type of upper formulas improve the result of Johnson and
Horn [1] effectively in some cases and are sharper than other existing results, which approach the
real value more efficiently than previous ones.

2. Main results

The following are some basic lemmas to get our main results.
Lemma 1. [11] Let M € R™ be a nonnegative irreducible matrix, then there is a positive vector x
such that Mx = p(M)x.

Lemma 2. [12] (Hdder inequality) Let X = (%, %, %,) 20,y =(¥;, Y5, ¥, ) >0.

1 1
If p>1qg>1 with 5+E =1, then the following is observed:

gooc(g 5]

i=1

Lemma 3. [5] Given a nonnegative irreducible matrix M € R™ and a nonnegative nonzero vector
zeR",if Mz<kz, then p(M)<k.

Lemma 4. [13] (Brauer’s theorem) Let M :(mij)eC”X“ (n > 2). If A is the characteristic root of
the matrix M, there exists a pair of positive integers (i, j) satisfying the following inequality:
|/1—m“|‘ﬂ,—mjj‘§2|mik|2‘mjk‘, i ].

ki k=]

Lemma 5. [11] Let M, be a principal submatrix of the nonnegative matrix M, then
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p(M )< p(M). Specifically, if M, =M and M is irreducible, then p(M )< p(M).
The main findings of this study are presented below.

Theorem 1. If M =(m;),N=(n;)eR™ are two nonnegative matrices and p>1q>1 with

1 1
—+a =1, then we have the following:

p

p(MoN)< m_ax{m"nII +[p(M(p))—mi§’J; [p(N(‘*))—niﬂ(l‘}. (2.1)

1<i<n

Proof. When n =1, inequality (2.1) becomes an equality, and we assume that n>2. To demonstrate
this problem, we will distinguish two cases.
Case 1. First, we assume that M o N is irreducible, then M and N are irreducible, implying that

for any p>1,q>1 with l+l:1, M P :(mi})) and N :(ni‘}) are nonnegative and irreducible.
P q
According to Lemma 1, there exists

u=(u,u,,-,u,) >0

and
v=(V, Vv, ) >0,
such that
M Py :p(M(p))u(p) (2.2)
and
where
u® = (up,up, ,u;’)T
and

It follows from (2.2) and (2.3) that

mpu, +Zmuuf— ( ))uip, i=12..n

j#

and

fjvﬁ+2n,‘jvf ( ) i=12,

j=i
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Therefore, we get the following:
;mu“f‘[ ( ))—mﬂui", 1=12,--,n (2.4)
and
;nu J_[ ( ) nnﬂvuq’ =12, (2.5)

Let
2=(2,2,,---,2,)€eR",

where z, =uv,. We define A=Mo-N. By Lemma 2, Egs (2.4) and (2.5), for any p>1,q>1 with

1 1
—+—=1, and we obtain the following:

P q

(AZ II II I+Zmlj ij<]

j#i

my; Ny -+Z( i J)( J J)

j¢|

<m,nz + Zmu J] (Zn,J J]

j#i j#i

—m,n.z + p(M(p))—miff’ U, [p(N(q))—ni?J‘l*vi

=m,n,z +_p(M(p))—mi?}; [,o(N(“))—niﬂil Z;
(

{m,,n,,{p(m_mﬂp[p

Based on Lemma 3, there exists some i such that
1 1
p(MoN)<m;n, +[p(|\/|“’>)—mi§’]p [p(N(‘”)—nﬂq

<ol (- [

Case 2. Now, we consider the matrix M o N to be reducible. At this point, there is a permutation
matrix P :(pij) of size N with the following:

P2 =Py ="""=Pran=Pn =1

The remaining elements are zero, where M + &P, N +&P are nonnegative and irreducible for any
sufficiently small &> 0. Using continuity theory and combining it with Case 1, we can achieve our
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desired result. Thus, the proof of Theorem 1 is done.
In Theorem 1, when p=q =2, we will obtain the following result.

Theorem 2. If M =(m; ), N =(n; ) e R™" are two nonnegative matrices, then we have the following:

p(MoN)< max{m“nII +\/[p(M “U—mﬂ[;y(N‘”)—nﬂ}. (2.6)

1<i<n

Remark 1. Forany i=1,2,---,n, we have the following:
[p(M@)-m ][ p(N®)—n2]

= p(M@) o (N )+ i - nﬁp(M“))—mﬁp(N‘z’)

( (2)) ( (2) +m||n||_2m||nu\/p (2) (2)

(\/p M) p(N@)—m, “)2_

Therefore, we obtain the following:

\/[p(M(z)) _2] (N®)- \/p M@)p(N@)=myn, .

This implies that

m,n; +\/[p(M(2))—mﬂ[p(N(2’)—n§] < \/p(M (2))p(N(2)) . (2.7)

In terms of Theorem 2, inequalities (1.2) and (2.7) and noticing that M® =M oM, N® =NoN , we
get the following:

p(MoN)< rlggz({m”n“ +\/[p(|\/|(2))_mﬂ[p(N(2))_niﬂ}
<P (MP)o(N?)

=\p(M-M)p(NoN)
<p(M)p(N).
Therefore, the bound in (2.6) is sharper than p(M ) o(N) known in [1].

Now, we give an example to illustrate our conclusion. We consider again the numerical example
in the introduction. If M is an identity matrix of order n and N denotes the matrix of all ones with
the order n, then we obtain the following:

rlgiagl)n({m“n"+\/[p(M(2))—m§][p(N‘2))—nﬂ}=1+ (1-12)(n-27) =1.

It is surprising to see that our bound is the actual value of the spectral radius.
Next, we establish the second inequality for p(M = N).

Theorem 3. If M :(mij),N :(nij)eR”X” are two nonnegative matrices and p>1q>1 with

AIMS Mathematics Volume 8, Issue 12, 29667-29680.
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1 1
E+a =1, then we have the following:

P(MoN)Smaxl{m..n. +m.n +[(mn —m.n )2

PN B i i i i

(o)) (o ()10 (o)) (o4 |

Proof. The conclusion holds with equality when n=1. Next, we assume that n>2. To demonstrate

this problem, we will discuss two cases.

Case 1. First, we suppose that M o N is irreducible, then M and N are irreducible. Clearly, for any
1 1

p>1qg>1 with B+a=1, and M(p)z(mif) and N(q):(ni‘}) are nonnegative and irreducible.

According to Lemma 1, there exists

and
V=(V1,V2,~ "Vn)T>O’
such that
M(p)u(p):p(M(P)>u(P)
and
N(q)V(q) :p(N(q))V(q),
where
u® = (uf,u, ,ug’)T
and
V(Q):(qu,vg, Vg)
Therefore,
" mPuP nmPuP .o
kz l.jpk =p(M“’))—mi§’, kz} l,;pk =p(|\/|(p))—m,-‘}' i,j=12,,n, (2.9)
#i i * ]
and
iMw(N“‘))—n-‘-‘ Z”:”?k"f = p(N@)=nd, i,j=1,2,-n. (2.10)
£ Viq i ? oy V? o 1 & ’ .

Next, we define two nonsingular positive diagonal matrices as follows:

AIMS Mathematics Volume 8, Issue 12, 29667-29680.



29674

U =diag(u,,u,,---,u, )

and
V =diag (v, V,, -+, V, ).
Let
m,,u m,u
12~°2 1n~n
mll cee
u1 ul
leul m mZnun
~ _ 22
M=U"'MU-=| u, u,
m.u,  m.u
nl~1 n2-2 mnn
un un
and
n N,V, Ny, Vy
11
Vl Vl
n21vl n r]van
~ _ 22
N=V'NV=| v, v,
r]nlvl nn2V2 n
nn
Vn Vn
It is simple to see that
m12 n12u2v2 mln r]ln unvn
My, My, VT
ulvl ulvl
M,y Ny, Uy Vi m..n My, Ny UnVy
i ~ 22722
MoN=| Wy, u,v,
mnlnnlulvl mnznnzuzvz m.n
nn-'nn
unvn unvn

=(UV) " (MoN)(UV).
Therefore,

p(MoN):p(M oN).

1 1
From Lemmas 2 and 4, as well as Egs (2.9) and (2.10), for any p>1,q>1 with E+a:1,

there exists a pair (i, j) such that

AIMS Mathematics Volume 8, Issue 12, 29667-29680.
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[p(M e N)=mn[|o(M o N)—m;n,|

< i M My Uy Vi Zn:

ki UiVi k#j UJ—VJ-

nPPlnqqlnpp%nqqé (211)

p q p q
o U Vi i Uj k=i Y

=[p(,\,|<p>)_mi?}i[p(Nm))_nﬂi[p(wm)_mﬂi[p(Nm))_nﬂé.

Furthermore, Lemma 5 denotes that

m; N UV,

p(MeN)>mn,

for i=1,2,---,n. From inequality (2.11), we obtain the following:

p(M oN)s%{m.n..+m n +[(m..n..—m n )2

i i i i i i

1 2
< ni]jlsz MmN +myn;; +[(m“n” - mjj”ij)

1

o) o) o) o)) |

Case 2. If the matrix M o N is reducible, we can use the method of Theorem 1 to prove similarly.

Remark 2. Following that, we compare the bound in (2.1) of Theorem 1 to the bound in (2.8) of
Theorem 3. We assume, without losing generality, the following:

m.n. +[p(|v|(p))_mﬂlln[p(N(q))_nﬂtlx >mn, +[p(M(p))—mﬂ'l’[p(N(q))—nﬂq.

As a result, we can express the inequality above as follows:

(1) [ (M) 05 <o () -]

Therefore,

S |-

[p(N(“))—nﬂaer. N, —m.n

AIMS Mathematics Volume 8, Issue 12, 29667-29680.
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(myn, —myn, ) +4[P(|V| (p))—mi?f’[
<(myn, —myn, )’ +4|:p(|\/|(p))_mi?:| [p(N“”)—niﬂa
x{[p(M(p))—mi?Jp [,()(N(q))—niﬂa +mn; —mjjnjj}

:(miinii —MyNy; )2 +4 p(M(p))_m'?

+4[p(|v|<p))—mi$f

{(m“n“_mﬂnﬂ)n p(M<p>)_mi?)i(p(N<q>)_n;;)3T

From inequalities (2.8) and (2.12), we obtain the following:

(2.12)

P(M °oN ) < r?gxl{miinii+mjjnjj +[(miinii —myny )2

1
< max%{m“nii +myn; +(mn, —mjjnjj)+2[p(|\/|(p))_mi?]5 [p(N(q))_ni?J

i#]

= Q&f{mﬁ”n {p(M(p))_mﬂi [p(Nm))_nﬂ;}

As a result, the bound in (2.8) of Theorem 3 is more precise than that in (2.1) of Theorem 1.
When p=0q=2 in Theorem 3, we get the following conclusion.

Theorem 4. If
M =(m;),N=(n;)eR™
are two nonnegative matrices, then we have the following:

P(M °N ) = rri];tajxg{miinii+mjjnii +|:(miinii _mjjnjj )2

alo M) W) oM ) ()

N |-

}.

Remark 3. According to the previous proofs, we have the following conclusions:

AIMS Mathematics Volume 8, Issue 12, 29667-29680.
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%] i i i i i i

ol (M) ) (p (N )08 ()5 ) o (N) i)
< rlrgial)n({m“n“ +\/[p<M (2))—mﬂ[p(N(2>)—nﬂ}

< oM (V)
<p(M)p(N).

The above inequalities show that our bounds are improvements of the result of Johnson and Horn [1].

p(MoN)smaxl{m..n..+m.n +[(m n.—m.n )2

3. Numerical examples

Here, we discuss certain concrete examples to show that our new upper bounds are more precise
than earlier results.

Example 1. First, we will employ two 4 x4 matrices as in [6]:

4 1 0 2 1111
1 005 1 1 1111
M = N = .
0 1 4 05 1111
1 05 0 4 1111

With the Schur product M o« N =M, we see that
p(MoN)=p(M)=5.7339.
From inequality (1.1), we have
p(MoN)< p(M)p(N)=229336.
From inequality (1.3) in [5], we get
p(MoN)<max{2mn, +p(M)p(N)-m,p(N)-n,p(M)}=17.1017.

A i i
1<i<n

From inequality (1.4) in [6], we obtain
1 2
p(M ° N)S rTiLanE{miinii +Myny; +[(miinii _mjjnij)
1

+4(p<M>—mn)<p<N>—nn>(p<M>—m,-j)(p(N)—n,-,-)]z}=11-6478-
According to Theorem 2 in this study, we obtain

p(MoN)< max{m“nii +\/[p(|v| <2>)—m§][p(N<2>)—n§]}=7.3573.

I<i<n

AIMS Mathematics Volume 8, Issue 12, 29667-29680.
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If we apply Theorem 4 in this study, we will get

P(M ° N)S n?fj)(%{miinii-l-miinjj +[(miinii —myny )2

+a o (M@)=mi)(o(N®) =) (M) -m ) (o(N®)-r) |

Example 2. Now, we present the second example and look at the following two 4 x4 nonnegative
matrices:

N

}: 6.7142.

4 1 1 1 1100
2 511 1 320
M = , N= .
0 2 41 0143
111 4 0 015
Then, the Schur product will be as follows:

4 1 0 O

2 15 2 O
MoN =

0 2 16 3

0 0 1 20

We also observe that

p(M oN)=20.7439, p(M oM ) = 26.1755,

and

p(NoN)=259286.

From inequality (1.1), we acquire

p(MoN)<p(M)p(N)=50.1274.

According to inequality (1.3) in [5], we get
p(MoN)< max{2m. ni +2(M)p(N)-m;p(N)—n;p(M )} = 25.6463.

. i i
1<i<n

From inequality (1.4) in [6], we obtain

P(M © N)S n?f?(%{miinii MmNy +|:(miinii —MmyN;; )2
1

+4(P(M )_mii)(p(N)_nii)(p(M )_mjj)(p(N)_njj )]2}: 25.5209.

According to Theorem 2, we obtain

1<i<n

p(MoN)< max{m”nii +\/[p(|\/| (2))—mﬂ[p(N(2))—nﬂ}: 26.0512.

AIMS Mathematics Volume 8, Issue 12, 29667-29680.
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However, if we apply Theorem 4, we will get
oy i i g

+4\/(p(M (2))_mizi)(p(N(Z))_nizi)(p(M (2))mfj)(p(N<2))ni)f}: 24.0030.

p(MoN)smax%{m..n..+m.n +[(m n. —m.n )2

The data calculated above shows that our results are more precise than previous results in some
cases.

4. Conclusions

In this study, we focused on the spectral radius of the Schur product for two nonnegative
matrices. We presented two new types of upper bounds of the spectral radius by utilizing Brauer’s
theorem and the Hdder inequality. The obtained upper bounds improved the classical conclusion of
Johnson and Horn [1].
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