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Abstract: Taking into account the delayed fear induced by predators on the birth rate of prey, the
counter-predation sensitiveness of prey, and the direct consumption by predators with stage structure
and interference impacts, we proposed a prey-predator model with fear, Crowley-Martin functional
response, stage structure and time delays. By use of the functional differential equation theory and
Sotomayor’s bifurcation theorem, we established some criteria of the local asymptotical stability and
bifurcations of the system equilibrium points. Numerically, we validated the theoretical findings and
explored the effects of fear, counter-predation sensitivity, direct predation rate and the transversion
rate of the immature predator. We found that the functional response as well as the stage structure
of predators affected the system stability. The fear and anti-predation sensitivity have positive and
negative impacts to the system stability. Low fear level and high anti-predation sensitivity are beneficial
to the system stability and the survival of prey. Meanwhile, low anti-predation sensitivity can make
the system jump from one equilibrium point to another or make it oscillate between stability and
instability frequently, leading to such phenomena as the bubble, or bistability. The fear and mature
delays can make the system change from unstable to stable and cause chaos if they are too large.
Finally, some ecological suggestions were given to overcome the negative effect induced by fear on the
system stability.
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1. Introduction

In the study of ecological dynamics, the diversity of populations is a very important index for the
continuous development of populations. The dynamics of such systems as the predator-prey system,
competition system, co-operation system and more are a vital research area [1–3].
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In the real world, the prey-predator system is the most popular, in which the predation is an
important feature in evaluating the interactivity between prey and predator since the predator’s
survival depends on the successful consumption on prey populations, as well as regulating the overall
population size. The functional response is such an index that reflects the consumption rate of predator
populations on prey populations. It is characterized as the predation efficiency of the prey populations
consumed by predator populations and it is usually decided by the biomass of prey populations,
predator populations or both of them. Many authors have applied the Holling-type functional response
to depict the predation relationship [4–6]. The Holling-type functional response is only dependent
on the prey’s biomass, but when it is at a low level, the number of prey predated by predator usually
does not follow a linearly increasing curve with the prey’s biomass. Some researches have proved
that the consumption of prey by predator depends not only on the prey’s biomass, but also on the
predator’s biomass [7–12]. As a result, many predator-dependent functional responses have been
introduced, such as Crowley-Martin [9, 10], Beddington-DeAngelis [11] and Hassell-Varley [12],
which are more appropriate choices in mathematical modeling by experimental evidence. Taking
into account the interference among predator populations, the predation rate is often declined when
the predator populations are higher, even if the prey populations are higher, too. In this situation,
the interactions between predator populations should be considered and the Crowley-Martin functional
response is better to describe this kind of interplay than the other two, as it is more realistic in reflecting
this biological background [13].

In the ecological world, almost all kinds of prey and predator species have two stages of structure:
The immature stage and the mature stage. In different stages, the individuals exhibit very different
biological behaviors, such as the ability of predating and reproduction and susceptibility to predator.
Hence, in mathematical modeling, the assumption that every predator has the same skill to predate prey
is very impractical, whereas a great quantity of research works were performed on the assumption that
every individual undergoes only one stage in its whole living history [14–17]. Compared with those
single-stage systems, the authors in [14, 15] showed that it was more realistic for people to predict
the system dynamics if the stage structure was incorporated in the mathematical models. Taking the
stage structure of species into account, recently some nice results of prey-predator systems with stage
structure have been reported [16–18]. For example, the authors in [18] presented a predator-prey
model where the predator population was divided into two stages and the immature predator was not
capable of predation. Many researchers have shown that the parameters representing the stage structure
of individuals can change the behaviors of species from stable status to fluctuating status, and vice
versa [19]. Therefore, it is necessary to consider the effect of the stage structure of species on the
system dynamics.

Considering the Crowley-Martin type functional response of predator to prey and the stage structure
of predators, we have the following system:

dP1

dt
= rP1 − d1P1 − c1P2

1 −
b2P1P3

1 + b1P1 + b3P3 + b1b3P1P3
,

dP2

dt
=

ηb2P1P3

1 + b1P1 + b3P3 + b1b3P1P3
− d2P2 − c2P2,

dP3

dt
= c2P2 − d3P3 − c3P2

3,

(1.1)

where P1, P2 and P3 (the simplicity of P1(t) P2(t) and P3(t)) are the biomass of prey, immature predator
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and mature predator at time t, respectively. r > 0 is the growth rate and d1 is the natural death rate
of prey. c1 is the intra-specific competition rate between individuals. The immature predator has
no predation ability with natural death rate d2, and the transversion rate of predator from immature
to mature is c2. The predator functional response to prey is supposed to be the Crowley-Martin
type. Parameters b1, b2 and b3 describe the effect of handling time, capture rate and the magnitude
of interference among predators, respectively. η is the conversion rate of predators. The intra-specific
competition rate between adult predator populations is c3, and the natural death rate is d3.

The functional response of predator to prey is relatively easily observed [20]. However, besides the
direct predation, more and more experimental evidences show that predators can create fear in prey
populations by their voice or smell. This non-consumptive action of predators often induces some
significant impacts on prey and forces them to change their behaviors [21]. In fact, in some cases,
the fear effect of predators can work more efficiently than direct killing, resulting in the reduction of
the number of prey or even the extinction of prey, even if the direct predation is absent. The fear
effect from predators is a manifestation of sustained psychological stress because the prey species are
always worried about the possible attack of a predator. To protect themselves, the prey will take some
measures to prevent the predator’s attack and present some anti-predator behaviors. Due to the effect
of fear, some important aspects of prey behaviors are varied like hunting, foraging, reproduction ability
and so on [22–25]. Empirical observations show that the prey shifts to a relatively safer place with less
food and is accompanied by starvation to avoid the predator’s attack [26], forages in a less amount due
to the predator’s fear [27], spends less time hunting to prevent the predation risk of mountain lions [28]
or even changes their reproductive physiology due to the predation risk of wolves [29].

Therefore, it is interesting to take into account the fear effect as well as the counter-predation
sensitiveness. We then get the modified version of (1.1) below.

dP1

dt
=

rP1

1 + k f P3
− d1P1 − c1P2

1 −
b2P1P3

1 + b1P1 + kb3P3 + kb1b3P1P3
,

dP2

dt
=

ηb2P1P3

1 + b1P1 + kb3P3 + kb1b3P1P3
− d2P2 − c2P2,

dP3

dt
= c2P2 − d3P3 − c3P2

3,

(1.2)

where f denotes the fear effect induced by the predator and k is the sensitiveness of prey to predation
risk. That is, if the value of parameter k is higher, i.e., the counter-predation level of prey is higher,
then the predation rate is to be lower instead.

On the other hand, except for the effect of direct and indirect predation of a predator, time delay
is another important factor that impacts the dynamics of prey-predator interactions [30]. Time delay
emerges in almost all ecological processes. For example, there is a time lag for the immature individual
to become mature, which is called maturation delay [31]. For predators, they absorb energy by
consuming prey to keep their survival, but the conversion of energy is not finished instantly, and
there exists a digestion delay [30]. The gestation delay of the newborn is more popular [30, 32]. In
addition, due to the fear effect induced by the predator, the reproduction efficiency of prey is reduced
by many manners, which is all invisible immediately. It takes a relatively long period of time to
manifest the impact of a predator’s fear on the birth rate of prey. The fear delay refers to the time
when prey population starts to change their physiological characteristics due to fear of predators.
That is, there is always a time lag for the fear effect on the system dynamics [33–36]. The delayed
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biological system has been extensively studied by use of the theory of delay differential equations.
Many results indicate that time delays can destroy the system stability. For instance, the authors in [37]
considered a predator-prey system with mature delay and established the conditions of global stability
and bifurcation. Mortoja et al. [38] considered the dynamics of a predator-prey model with mature
delay and disease in prey population. Currently, the studies of how multi-delays affect the system
dynamics have been executed and lots of helpful results have been obtained. Particularly the bifurcation
thresholds of delays have been derived [35,39,40]. By study of a delayed predator-prey system with no
intra-specific competitions, the authors in [39] observed that the system was stable when the time delay
was low, while as for the increasing of time delays, the stability was lost and bifurcation appeared, and
when the delay was large enough, then chaotic behavior occurred. Beretta et al. [40] involved a kind of
geometric method into a delayed differential equation to determine whether the stability was changed
or not. All these reveal that time delays play a key role in the analysis of system stability.

Incorporating the response delay of prey to the fear of predator and mature delay of predator, (1.2)
becomes 

dP1

dt
=

rP1

1 + k f P3(t − τ1)
− d1P1 − c1P2

1 −
b2P1P3

1 + b1P1 + kb3P3 + kb1b3P1P3
,

dP2

dt
=

ηb2P1P3

1 + b1P1 + kb3P3 + kb1b3P1P3
− d2P2 − c2P2,

dP3

dt
= c2P2(t − τ2) − d3P3 − c3P2

3.

(1.3)

The initial conditions are

Pi(θ) = ϕi(θ), θ ∈ [−τ, 0], τ = max{τ1, τ2}, i = 1, 2, 3.

For biological justifications, we assume all parameters in the models are positive and ϕi(θ) ≥ 0.
In biological research, the system stability is one of the most important issues. We aim to study the

local asymptotical stability, parameter bifurcations and the cost and benefit of fear and time delays on
the stability of model (1.3) both theoretically and numerically.

The innovations and contributions of this paper are as follows:

• The different predation ability of juvenile and adult predators, the mutual interference between
predators, the fear induced by predator on prey as well as the counter-predator sensitivity of prey,
and the fear and mature delays are incorporated simultaneously in the model.
• The effects of the conversion rate of prey to predator, stage structure, fear and time delays on the

system stability are investigated. Particularly, the critical values of some bifurcation parameters
are obtained by numerical simulations.
• The complicated ecological phenomena like bubble and bistability are presented intuitively.

The rest of the article is constructed as follows. The existence, boundedness and extinction of
species are presented in section two. The local stability and bifurcation of equilibrium points of (1.2)
and (1.3) are executed in sections three and four, respectively. Simulations and numerical analysis are
given in section five. Finally, a brief conclusion and discussion are given to end this paper in section
six.
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2. Preparations

By the theory of the delayed functional differential equation [30], if the initial values of system (1.3)
are positive, then there is a unique positive solution. That is, system (1.3) is positive invariant. Next,
we discuss the boundedness of solutions. From the first equation of (1.3), we have

dP1

dt
≤ (r − d1)P1 − c1P2

1,

then
P1 ≤

r − d1

c1
.

By the boundedness of P1, together with the second equation of (1.3), we have

dP2

dt
≤

ηb2P1

kb3
− d2P2 − c2P2

≤
ηb2(r − d1)

kb3c1
− (d2 + c2)P2.

Then P2 ≤
ηb2(r − d1)

kb3c1(d2 + c2)
and the boundedness of P2 is derived. By the third equation of (1.3) as well

as the boundedness of P2, we obtain

dP3

dt
≤

c2ηb2(r − d1)
kb3c1(d2 + c2)

− d3P3 − c3P2
3

≤
c2ηb2(r − d1)
kb3c1(d2 + c2)

− d3P3.

Then, P3 ≤
c2ηb2(r − d1)

kb3c1d3(d2 + c2)
and the boundedness of P3 is derived. Therefore, the boundedness of all

species is derived.
We proceed with the discussion of the extinction of species. It is clear that if r < d1, then P1 is

extinct, which results in the extinction of the juvenile and adult predator. Now, we study the case of
r > d1. Define P(t) = P2(t) + P3(t), differentiating P(t) w.r.t t along the solution of (1.3), and we have

dP(t)
dt
≤
ηb2

b1
P3 − d2P2 − c2P2 + c2P2(t − τ2) − d3P3 − c3P2

3;

that is,
dP2(t)

dt
+

dP3(t)
dt

− (d2 + c2)P2 + c2P2(t − τ2) + (
ηb2

b1
− d3)P3 − c3P2

3.

Consequently, we derive that
dP3(t)

dt
≤ (

ηb2

b1
− d3)P3 − c3P2

3.

Hence,

lim
t→∞

P3(t) =

ηb2
b1
− d3

c3
.
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Therefore, we can obtain that the adult predator P3 is extinct if ηb2
b1

< d3, which means the juvenile
predator is also extinct. Here, the prey is stable with lim

t→∞
P1(t) = r−d1

c1
.

Finally, in this part we give the equilibrium points of (1.2). The equilibrium points can be classified
into the following three classes:

• The trivial equilibrium point E0(0, 0, 0), which always exists.
• The predator-free equilibrium point E(P1, 0, 0) with P1 = r−d1

c1
, which exists under r > d1.

• The positive interior equilibrium Ẽ(P̃1, P̃2, P̃3), which conditionally exists such that the right
sides of (1.2) are equivalent to zero, which cannot be expressed by explicit function and is to
be discussed numerically in section five.

3. Dynamics of (1.2)

For the discussion of local asymptotic stability (LAS) of system (1.2), we start with the linearized
system of (1.2). For simplicity, let g(P1, P3) = 1 + b1P1 + kb3P3 + kb1b3P1P3, and rewrite (1.2) as

P′(t) = F(P(t)), P(t) = (P1(t), P2(t), P3(t))T , F = (F1, F2, F3)T ,

then we can linearize system (1.2) as P′(t) = JP(t) with Jacobian matrix

J =


a11 0 a13

a21 a22 a23

0 a32 a33

 ,
where

a11 =
r

1 + k f P3
− d1 − 2c1P1 −

b2P3(1 + kb3P3)
g2(P1, P3)

, a13 =
−rk f P1

(1 + k f P3)2 −
b2P1(1 + b1P1)

g2(P1, P3)
,

a21 =
ηb2P3(1 + kb3P3)

g2(P1, P3)
, a22 = −d2 − c2, a23 =

ηb2P1(1 + b1P1)
g2(P1, P3)

,

a32 = c2, a33 = −d3 − 2c3P3.

For convenience of using the Sotomayor’s bifurcation theorem [41] latter, we compute the partial
derivatives of F on viable Pi(i = 1, 2, 3) as follows:

FP1P1 =


−2c1 +

2b1b2P3(1 + kb3P3)2

g3(P1, P3)

−
2ηb1b2P3(1 + kb3P3)2

g3(P1, P3)
0

 , FP1P3 = FP3P1 =


−rk f

(1 + k f P3)2 −
b2

g2(P1, P3)
ηb2

g2(P1, P3)
0

 ,

FP3P3 =


2rk2 f 2P1

(1 + k f P3)3 +
2kb2b3P1(1 + b1P1)2

g3(P1, P3)

−
2ηkb2b3P1(1 + b1P1)2

g3(P1, P3)
−2c3

 ,
FP1P2 = FP2P1 = FP2P2 = FP2P3 = FP3P2 = (0, 0, 0)T .

With these preparations, we analyze the dynamics of (1.2) near the equilibrium points.

AIMS Mathematics Volume 8, Issue 12, 29260–29289.



29266

(1) Dynamics near E0

At E0(0, 0, 0), the Jacobian matrix J0 of system (1.2) is,

J0 =


r − d1 0 0
0 −d2 − c2 0
0 c2 −d3

 .
It is not difficult to compute that the roots of characteristic equation are λ1 = r − d1, λ2 = −d2 − c2 < 0,
λ3 = −d3 < 0. Thus, if r < d1, then it is LAS, otherwise it is unstable [42]. We discuss the existence of
parameter bifurcation d1 at r − d1 = 0. Denote dT

1 the value of d1 − r = 0. The eigenvectors of λ1 = 0
corresponding to J0 and JT

0 are v1 = (1, 0, 0)T , v2 = (1, 0, 0)T , respectively. The partial derivatives of
F(P1, P2, P3) on viable d1 and Fd1 on viable Pi(i = 1, 2, 3) are

Fd1 =


−P1

0
0

 , DFd1 =


−1 0 0
0 0 0
0 0 0

 .
Now, we verify the conditions of bifurcation theorem point by point.

(i) vT
2 [Fd1(E0, d1 = dT

1 )] = 0.

(ii) vT
1 [DFd1(E0, d1 = dT

1 )v2] = (1, 0, 0)


−1 0 0
0 0 0
0 0 0




1
0
0

 = −1 , 0.

(iii) vT
2 [D2F(E0, d1 = dT

1 )(v1, v1)] = FP1P1(E0, d1 = dT
1 ) = (1, 0, 0)


−2c1

0
0

 = −2c1 , 0.

Consequently, by use of Sotomayor’s bifurcation theorem, there exists a transcritical bifurcation near
E0 at the threshold dT

1 = r.

(2) Dynamics near E

We linearize (1.2) and get the Jacobian matrix J1 at E as below,

J1 =


−(r − d1) 0 −

rk f (r−d1)
c1

−
b2(r − d1)

c1 + b1(r − d1)

0 −d2 − c2
ηb2(r − d1)

c1 + b1(r − d1)
0 c2 −d3

 .
By computation, one characteristic root is λ1 = −(r − d1), and the other two meet

(−d2 − c2 − λ)(−d3 − λ) −
ηc2b2(r − d1)

c1 + b1(r − d1)
= 0,

namely,

λ2 + (d2 + d3 + c2)λ + (d2 + c2)d3 −
ηc2b2(r − d1)

c1 + b1(r − d1)
= 0.
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If r − d1 > 0 and (d2 + c2)d3 −
ηc2b2(r − d1)

c1 + b1(r − d1)
> 0, then all characteristic roots are negative, and

system (1.2) is LAS. Otherwise, it is unstable.
If λ1 = r − d1 = 0, by the same manner as before, we can derive that (1.2) undergoes a transcritical

bifurcation near E at dT
1 = r.

If λ1 = −(r − d1) < 0, (d2 + c2)d3 −
ηc2b2(r − d1)

c1 + b1(r − d1)
= 0, then λ2 = −d2 − d3 − c2 < 0, λ3 = 0. Choose

η as a bifurcation parameter and analyze whether the bifurcation happens or not. Let η = ηT such that

(d2 + c2)d3 −
ηc2b2(r − d1)

c1 + b1(r − d1)
= 0. The eigenvector of zero characteristic value corresponding to J1 is

v1 = (%1, %2, 1)T , and the eigenvector corresponding to JT
1 is v2 = (0, %3, 1)T , where %1 = 1

r−d1
, %2 =

d3
c2
, %3 =

d3(c1+b1(r−d1))
ηb2(r−d1) . Compute the partial derivatives about parameter η, then

Fη =


0

b2P1P3

1 + b1P1 + b3kP3 + kb1b3P1P3
0

 , DFη =


0 0 0

b2P3(1 + kb3P3)
g2(P1, P3)

0
b2P1(1 + b1P1)

g2(P1, P3)
0 0 0

 .
The conditions of the bifurcation theorem are validated as follows:

(i) vT
2 [Fη(E, η = ηT ] = 0.

(ii) vT
1 [DFη(E, η = ηT )v2] =

(
%1, %2, 1

) 
0 0 0

0 0
b2(r − d1)

c1 + b1(r − d1)
0 0 0




0
%3

1


=

b2d3(r − d1)
c2(c1 + b1(r − d1))

, 0.

(iii) D2F(E, η = ηT )(v1, v1) = FP1P1(E1, η = ηT )%2
1 + 2FP1P2(E1, η = ηT )%1%2

+ 2FP1P3(E1, η = ηT )%1 + FP2P2(E1, η = ηT )%2
2

+ 2FP2P3(E1, η = ηT )%2 + FP3P3(E1, η = ηT )

=


−2c1

0
0

 %2
1 + 2


−rk f −

b2

(1 + b1P1)2

ηb2

(1 + b1P1)2

0

 %1 +


2rk2 f 2P1

1 +
2kb2b3P1

1 + b1P1

−
2ηkb2b3P1

1 + b1P1
−2c3


.

Consequently,
vT

2 [D2F(E1, η = ηT )(v1, v1)] , 0.

Therefore, Sotomayor’s bifurcation theorem implies that system (1.2) has a transcritical bifurcation
near E1 at η = ηT . Similarly we can obtain the bifurcation thresholds of other parameters (for example,
c2).

(3) Dynamics near Ẽ

Next, we research the stability and bifurcation around the coexistence equilibrium state Ẽ. The
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variational matrix J2 at Ẽ is

J2 =


ã11 0 ã13

ã21 ã22 ã23

0 ã32 ã33

 ,
where ã11 =

r

1 + k f P̃3

− d1 − 2c1P̃1 −
b2P̃3(1 + kb3P̃3)

g2(P̃1, P̃3)
, ã13 =

−rk f P̃1

(1 + k f P̃3)2
−

b2P̃1(1 + b1P̃1)

g2(P̃1, P̃3)
,

ã21 =
ηb2P̃3(1 + kb3P̃3)

g2(P̃1, P̃3)
, a22 = −d2 − c2, ã23 =

ηb2P̃1(1 + b1P̃1)

g2(P̃1, P̃3)
, a32 = c2, a33 = −d3 − 2c3P̃3.

The characteristic equation is
λ3 + δ1λ

2 + δ2λ + δ3 = 0, (3.1)

where δ1 = −(̃a11 +ã22 +ã33), δ2 = ã11ã22 +ã11ã33 +ã22ã33−ã23ã32, δ3 = ã11ã23ã32−ã11ã22ã33−ã13ã21ã32.

By the Rowth-Hurwitz theorem, if δ1 > 0, δ3 > 0, δ1δ2 > δ3, then it is LAS, otherwise it is unstable.
If δ3 = 0, then there is a zero eigenvalue of (3.1). Choose c2 as a bifurcation parameter and denote

cS
2 such that δ3 = 0, then we study the bifurcation about parameter c2. The eigenvectors of the zero

eigenvalue corresponding to matrix J2 and JT
2 are ṽ1 = (̃%1, %̃2, 1)T and ṽ2 = (̃%3, 1, %̃4)T , respectively,

where %̃1 = − ã13
ã11
, %̃2 = − ã33

ã32
, %̃3 = − ã21

ã11
, %̃4 = − ã22

ã32
. An easy computation results in

Fc2 =


0
−P2

P2

 , DFc2 =


0 0 0
0 −1 0
0 1 0

 .
Then, with the help of Matlab2014a, we compute that
(i) ṽT

2 [Fc2(Ẽ, c2 = cS
2 ] , 0.

(ii) ṽT
2 [D2F(Ẽ, c2 = cS

2 )(̃v1, ṽ1)] , 0.
Therefore, by the bifurcation theorem (Theorem 1 in Page 338 of [41]), (1.2) has a saddle-node
bifurcation near Ẽ at c2 = cS

2 .
Next, we investigate the Hopf bifurcation of (1.2) near Ẽ. Suppose (1.2) is LAS; that is, δ1 > 0,

δ3 > 0, δ1δ2 > δ3. If δ3 = δ1δ2, then the characteristic equation becomes

(λ2 + δ2)(λ + δ1) = 0. (3.2)

It is clear that there is a negative root λ1 = −δ1. Another two characteristic roots of (3.2) are λ2,3 =

±
√
δ2i. Choose k as the bifurcation parameter, then the roots of (3.2) can be written as

λ1(k) = −δ1, λ2,3 = µ(k) ± iν(k).

Denote k = kH satisfying δ3 − δ1δ2 = 0. Now we verify the tranversality condition d
dk Re(λi(k))|k=kH , 0,

i = 2, 3. Putting λ2 = µ(k) + iν(k) into (3.1) and calculating the derivative w.r.t k, noting µ(k) = 0 and
ν(k) =

√
δ2(k), we have {

∧1(k)µ′(k) − ∧2(k)ν′(k) = ∧3(k),
∧1(k)µ′(k) + ∧2(k)ν′(k) = ∧4(k),

where ∧1(k) = 2δ2(k),∧2(k) = 2δ1(k)
√
δ2(k),∧3(k) = δ′1(k)δ2(k) − δ3(k),∧4(k) = −δ2(k)

√
δ2(k).
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If
δ2

2(k) + δ1(k)(δ′1(k)δ2(k) − δ3(k)) , 0,

then we compute that

d
dk

Re(λi(k))|k=kH = −
∧1(k) ∧4 (k) − ∧2(k) ∧3 (k)

∧2
1(k) + ∧2

2(k)
, 0.

Note that λ1(k) = −δ1 , 0, so by Theorem 2 in Page 353 of [41], a Hopf bifurcation occurs near Ẽ
at k = kH. Similarly, we can obtain the bifurcation thresholds of other parameters. We summarize our
findings as follows.

Theorem 3.1. For system (1.2), there are the following properties.
(i) For equilibrium point E0(0, 0, 0), if r < d1, then system (1.2) is LAS, and there exists a transcritical
bifurcation near E0 at the threshold dT

1 = r.

(ii) For the predator-free equilibrium state E(P1, 0, 0), if r−d1 > 0 and (d2 +c2)d3−
ηc2b2(r − d1)

c1 + b1(r − d1)
> 0,

then system (1.2) is LAS. If r − d1 = 0 or (d2 + c2)d3 −
ηc2b2(r − d1)

c1 + b1(r − d1)
= 0, then (1.2) undergoes

transcritical bifurcations near E with threshold dT
1 = r or η = ηT , respectively.

(iii) For the interior equilibrium point Ẽ(P̃1, P̃2, P̃3), if δ1 > 0, δ3 > 0, δ1δ2 > δ3, then system (1.2) is
LAS, otherwise it is unstable. If δ3 = 0, then a saddle-node bifurcation occurs near Ẽ at c2 = cS

2 . If
δ1δ2 = δ3, δ

2
2(k) + δ1(k)(δ′1(k)δ2(k) − δ3(k)) , 0, then a Hopf bifurcation occurs near Ẽ at k = kH.

Remark 3.1. The instability of E0 ensures the existence of E and vice versa, but the relationship
between the instability of E and the existence of Ẽ is not clear. In addition, by use of similar deduction,
the bifurcation thresholds of other parameters, such as, the functional response parameters like bi

(i = 1, 2, 3), can be obtained similarly.

4. Dynamics of (1.3)

As stated before, the time delay usually plays a crucial role in the system dynamics, so we
investigate the delayed case now. By applying Taylor’s formula, we linearize the delayed system (1.3)
and get

dP(t)
dt

= M0P(t) + M1P(t − τ1) + M2P(t − τ2),

with Jacobian matrix

M0 =


a11 0 ã13

a21 a22 a23

0 0 a33

 , M1 =


0 0 â13

0 0 0
0 0 0

 , M2 =


0 0 0
0 0 0
0 a32 0

 ,
where ă13 = −

b2P1(1 + b1P1)
g2(P1, P3)

, â13 =
−rk f P1

(1 + k f P3)2 , and other parameters are the same as before. The

variational matrix of delayed system (1.3) is

M̃ = M0 + e−λτ1 M1 + e−λτ2 M2.
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Thus the characteristic equation of (1.3) is

|M̃ − λI| =

∣∣∣∣∣∣∣∣∣
a11 − λ 0 ă13 + â13e−λτ1

a21 a22 − λ a23

0 a32e−λτ2 a33 − λ

∣∣∣∣∣∣∣∣∣ = 0,

i.e.,
λ3 + Υ1λ

2 + Υ2λ + Υ3 + Υ4e−λτ2 + Υ5e−λ(τ1+τ2) = 0, (4.1)

where Υ1 = −(a11 + a22 + a33),Υ2 = a11a22 + a11a33 + a22a33 − a23a32e−λτ2 ,Υ3 = −a11a23a32,Υ4 =

a11a23a32 − ă13a21a32,Υ5 = −â13a21a32. Clearly, if τ1 = τ2 = 0, it is accordant with (3.1).
For E0 and E, the dynamics are the same as before, so we only discuss the dynamics near the

coexistence equilibrium state Ẽ(P̃1, P̃2, P̃3).
We suppose (1.3) is LAS in the absence of delays, i.e., conditions δ1 > 0, δ2 > 0, δ1δ2 > δ2

3 hold.
According to the scenarios of one delay or two delay appearance, we classify our discussion into the
following two cases.

(1) The scenario of one delay.

• τ1 > 0, τ2 = 0.

For system (1.3), if there is only one delay τ1 and the mature delay is free (τ2 = 0), then we have
the following conclusion.

Theorem 4.1. Suppose the delayed system (1.3) is LAS in the absence of delays. If τ1 > 0, τ2 = 0, then
there exists a Hopf bifurcation for system (1.3) near Ẽ at τ1 = τ̃1 under the condition that

Ξ1Ξ4 − Ξ2Ξ3 > 0,

where τ̃1,Ξi(i = 1, 2, 3, 4) are defined later in the proof.

Proof. At τ2 = 0, the characteristic Eq (4.1) becomes

λ3 + Υ1λ
2 + Υ2λ + Υ3 + Υ4 + Υ5e−λτ1 = 0. (4.2)

Take τ1 as a bifurcation parameter and assume the characteristic root of (4.2) is in the general form
λ(τ1) = α(τ1) + iβ(τ1). Due to the LAS of (1.2) with no delays, that is, α(τ1) < 0, by the continuity of
functions there exists a τ̃1 such that α(̃τ1) = 0. When τ1 < τ̃1, it remains the LAS, while if τ1 > τ̃1,
it turns unstable from stable and may undergo bifurcations. Based on the analysis, we substitute the
characteristic root λ into (4.2) and then separate the real part and imaginary part respectively, then

α3 − 3αβ2 + Υ1(α2 − β2) + Υ2α + Υ3 + Υ4 = −Υ5e−ατ1 cos βτ1,

3α2β − β3 + 2Υ1αβ + Υ2β = Υ5e−ατ1 sin βτ1.

If Ẽ alters its stability from stable to unstable, then the necessary condition is that the roots of (4.2) are
in the following forms: λ(τ1) = iβ(τ1), i.e., α(τ1) = 0, then{

−Υ1β
2 + Υ3 + Υ4 = −Υ5 cos βτ1,

−β3 + Υ2β = Υ5 sin βτ1.
(4.3)

AIMS Mathematics Volume 8, Issue 12, 29260–29289.



29271

Squaring both sides of (4.3) and adding them leads to

β6 + (Υ2
1 − 2Υ2)β4 + (Υ2 − 2Υ1(Υ3 + Υ4))β2 − Υ2

5 = 0. (4.4)

Denote γ1 = Υ2
1 − 2Υ2, γ2 = Υ2 − 2Υ1(Υ3 + Υ4), γ3 = −Υ2

5. For simplicity we rewrite (4.4) in the below
form,

β6 + γ1β
4 + γ2β

2 + γ3 = 0. (4.5)

Let h(x) = x6 + γ1x4 + γ2x2 + γ3, then h(0) = γ3 = −Υ2
5 < 0, h(∞) = ∞. By the continuity of h(x), we

obtain that (4.5) owns one positive solution at least and three positive solutions at most.
Without loss of generality, we suppose it has three solutions denoted by βi, i = 1, 2, 3, then for some

invariant βi, by (4.3), we can seek out a sequence of τ(i,k)
1 such that

τ(i,k)
1 =

1
βi

cos−1 Υ1β
2
i − Υ3 − Υ4

Υ5
+

2kπ
βi
, i = 1, 2, 3, k = 1, 2, · · · .

Let τ̃1 = min
i,k

τ(i,k)
1 , then by Butler’s lemma, Ẽ remains stable when τ1 < τ̃1. Next we verify

d
dτ1

Reλ(τ1)|τ1=τ̃1 > 0,

i.e., the tranversality condition of Hopf bifurcation holds. Differentiating (4.2) w.r.t. τ1 and substituting
τ1 = τ̃1, α(̃τ1) = 0, βi(̃τ1) = β̃i, we have

Ξ1
dα
dτ1
− Ξ2

dβi

dτ1
= Ξ3,

Ξ2
dα
dτ1

+ Ξ1
dβi

dτ1
= Ξ4,

(4.6)

where

Ξ1 = Υ2 − 3β̃2
i − Υ5τ̃1 cos β̃ĩτ1, Ξ2 = 2Υ1β̃i + Υ5τ̃1 sin β̃ĩτ1, Ξ3 = Υ5β̃i sin β̃ĩτ1, Ξ4 = β̃i cos β̃ĩτ1.

Under the condition that Ξ1Ξ4 − Ξ2Ξ3 > 0, solving (4.6) results in

dβi

dτ1
=

Ξ1Ξ4 − Ξ2Ξ3

Ξ2
1 + Ξ2

2

> 0.

That is, the tranversality condition holds and, hence, a Hopf bifurcation occurs near Ẽ at τ1 = τ̃1. �

• τ1 = 0, τ2 > 0.

In this case, we take τ2 as a bifurcation parameter, then the characteristic equation is

λ3 + Υ1λ
2 + Υ2λ + Υ3 + (Υ4 + Υ5)e−λτ2 = 0. (4.7)

Repeating the previous process, we have the following result.
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Theorem 4.2. Suppose the delayed system (1.3) is LAS in the absence of delays. If τ1 = 0, τ2 > 0, then
there exists a Hopf bifurcation for system (1.3) near Ẽ at τ2 = τ̃2 under the condition that ξ1ξ4−ξ2ξ3 >0,
where

τ̃2 = min
i,k

τ(i,k)
2 , τ(i,k)

2 =
1
βi

cos−1 Υ3 − Υ1β
2
i

Υ4 + Υ5
+

2kπ
βi
, i = 1, 2, 3, k = 1, 2, · · · ,

ξ1 = 3β̃2
i − Υ2 − (Υ4 + Υ5)̃τ2 cos β̃ĩτ2,

ξ2 = 2Υ1β̃i − (Υ4 + Υ5)̃βĩτ2 sin β̃ĩτ2,

ξ3 = (Υ4 + Υ5)̃β2
i sin β̃ĩτ2,

ξ4 = (Υ4 + Υ5)̃β2
i cos β̃ĩτ2, i = 1, 2, 3,

β̃i = βi(̃τ2), βi(i = 1, 2, 3) is the root of the following equation:

β6 + (Υ2
1 − 2Υ2)β4 + (Υ2

2 − 2Υ1Υ3)Υ2 − (Υ4 + Υ5)2 = 0.

(2) The scenario of two delays.

If there are two delays for (1.3), i.e., τi > 0(i = 1, 2), then we fix one delay in the stable interval and
choose the other as the Hopf bifurcation parameter. There are the following two scenarios.

• τ2 ∈ (0, τ̃2) and τ1 > 0.

We fix τ2 at some arbitrary point τ2 = τ̆2 ∈ (0, τ̃2), and take τ1 as a bifurcation parameter, then we
obtain the criterion of the existence of Hopf bifurcation of system (1.3).

Theorem 4.3. Suppose the delayed system (1.3) is LAS in the absence of delays. If τ1 > 0, τ2 ∈ (0, τ̃2),
then there exists a Hopf bifurcation for system (1.3) near Ẽ at τ1 = τ̂1 under the conditions that

(Υ3 + Υ4)2 − Υ2
5 < 0 and Ω1Ω3 −Ω2Ω4 > 0,

where Υi(i = 3, 4, 5) remains unchanged as those in (4.2), and Ωi(i = 1, 2, 3, 4) are defined in the proof.

Proof. We fix τ2 = τ̆2 ∈ (0, τ̃2), then by (4.1), the characteristic equation is

λ3 + Υ1λ
2 + Υ2λ + Υ3 + Υ4e−λτ̆2 + Υ5e−λ(τ1+τ̆2) = 0. (4.8)

Based on the same method, let λ(τ1) = α(τ1) + iβ(τ1) be a characteristic root of (4.8), then putting it
into (4.8) and separating the real and imaginary parts leads to{

α3 − 3αβ2 + Υ1(α2 − β2) + Υ2α + Υ3 + Υ4 cos βτ̆2e−ατ̆2 = −Υ5 cos β(τ̆2 + τ1)e−α(τ̆2+τ1),

3α2β − β3 + 2Υ1αβ + Υ2β − Υ4 sin βτ̆2e−ατ̆2 = Υ5 sin β(τ̆2 + τ1)e−α(τ̆2+τ1).
(4.9)

The stability near Ẽ changes from stable to unstable under the condition that there is a pair of purely
imaginary roots for (4.8), i.e., α(τ1) = 0, and whence (4.9) becomes{

−Υ1β
2 + Υ3 + Υ4 cos βτ̆2 = −Υ5 cos β(τ̆2 + τ1),

−β3 + Υ2β − Υ4 sin βτ̆2 = Υ5 sin β(τ̆2 + τ1).
(4.10)
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Squaring the left and right sides of (4.10) and then adding them, we have

β6 + Λ1β
4 + Λ2β

2 + Λ3 sin βτ̆2 + Λ4 cos βτ̆2 + Λ5 = 0, (4.11)

where

Λ1 = Υ2
1 − 2Υ2, Λ2 = Υ2

2 − 2Υ1Υ3, Λ3 = 2Υ4β
3 − 2Υ2Υ4β,

Λ4 = 2Υ3Υ4 − 2Υ1Υ4β
2, Λ5 = Υ2

3 + Υ2
4 − Υ2

5.

Let h(x) = x6 + Λ1x4 + Λ2x2 + Λ3 sin τ̆2x + Λ4 cos τ̆2x + Λ5. It is clear that h(∞) = ∞, then under the
condition that h(0) = (Υ3 + Υ4)2 − Υ2

5 < 0, by the continuity of h(x), (4.13) has at least one positive
root and at most a finite number of positive solutions denoted by β j, j = 1, · · · ,N. Thus, for some fixed
solution β j( j ∈ 1, 2, · · · ,N), by (4.10) we can find a sequence of τ( j,k)

1 such that

τ
( j,k)
1 =

1
β j

cos−1
Υ1β

2
j − Υ3 − Υ4 cos β jτ̆2

Υ5
− τ̆2 +

2kπ
β j

, j = 1, 2, · · · ,N, k = 1, 2, · · · .

Let τ̂1 = min
j,k
τ

( j,k)
1 , then by Butler’s lemma, Ẽ remains stable when τ1 < τ̂1. Again, we verify the

following tranversality condition
d

dτ1
Reλ(τ1)|τ1=̂τ1 > 0.

Differentiating (4.9) w.r.t. τ1 and putting τ1 = τ̂1, α(̂τ1) = 0, β̂ j = β j(̂τ1) for some j ∈ {1, 2, · · · ,N}, we
have

Ω1
dα
dτ1
−Ω2

dβ j

dτ1
= Ω3,

Ω2
dα
dτ1

+ Ω1
dβ j

dτ1
= Ω4,

where
Ω1 = −3β̂2

j + Υ2 − Υ4τ̆2 cos β̂ jτ̆2 − Υ5(τ̆2 + τ̂1) cos β̂ j(̂τ1 + τ̆2),
Ω2 = 2Υ1β̂ j + Υ4τ̆2 sin β̂ jτ̆2 + γ5(τ1 + τ̆2) sin β̂ j(̂τ1 + τ̆2),
Ω3 = γ5β̂ j sin β̂ j(̂τ1 + τ̆2), Ω4 = γ5β̂ j cos β̂ j(̂τ1 + τ̆2).

Solving them results in
dβ j

dτ1
=

Ω1Ω4 −Ω2Ω3

Ω2
1 + Ω2

1

> 0

provided that Ω1Ω3−Ω2Ω4 > 0. That is, the tranversality condition holds and, hence, a Hopf bifurcation
occurs near Ẽ at τ1 = τ̂1. �

• τ1 ∈ (0, τ̃1) and τ2 > 0.

Fix τ1 at τ1 = τ̆1 ∈ (0, τ̃1) and take τ2 as a free parameter, then we have the similar theorem.

Theorem 4.4. Suppose the delayed system (1.3) is LAS in the absence of delays. If τ̆1 ∈ (0, τ̃1), τ2 > 0,
there exists a Hopf bifurcation for system (1.3) near Ẽ at τ2 = τ̂2 under the conditions that

Υ2
3 − Υ2

5 − (Υ4 + Υ5 cos β jτ̆1)2 < 0, Π1Π3 − Π2Π4 > 0,
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where

τ̂2 = min
j,k
τ

( j,k)
2 , τ

( j,k)
2 =

1
β j

cos−1
(Υ1β

2
j − Υ3)(Υ4 + Υ5 cos β jτ̆1) + (Υ2β j − β

3
j)Υ5 sin β jτ̆1

(Υ4 + Υ5 cos β jτ̆1)2 + Υ2
5 sin2 β jτ̆1

+
2kπ
β j

,

Π1 = −3β̂2
j + Υ2 − Υ4̂τ2 cos β̂ ĵτ2) − Υ5(τ̆1 + τ̂2) cos β̂ j(τ̆1 + τ̂2),

Π2 = 2Υ1β̂ j − Υ4̂τ2 sin β̂ ĵτ2 − Υ5(τ̆1 + τ̂2) sin β̂ j(τ̆1 + τ̂2),
Π3 = γ4β̂ j sin β̂ ĵτ2 + Υ5β̂ j(τ̆1 + τ̂2) sin β̂ j(τ̆1 + τ̂2),
Π4 = γ4β̂ j cos β̂ ĵτ2 + Υ5β̂ j(τ̆1 + τ̂2) cos β̂ j(τ̆1 + τ̂2), j = 1, 2, · · · ,N, k = 1, 2, · · · ,

and β̂ j = β j(̂τ2), β j( j = 1, 2, · · · ,N) is the root of the following equation:

β6 + (Υ2
1 − 2Υ2)β4 + (Υ2

2 − 2Υ1Υ3)β2 + Υ2
3 − Υ2

5 − (Υ4 + Υ5 cos βτ̆1)2 = 0.

5. Numerical analysis

In this part, we give some examples to simulate and validate the previous theoretical analysis and
take the discussion further to discuss how the fear and time delays affect the stability of the equilibrium
points. For this purpose, we fix a set of parameters and change the values of fear level f induced by
the predator, the counter-predation parameter k of prey, the transversion level η of predator from prey
and the maturing efficiency c2 from immature to mature predator. Without the others stated, the rest of
the parameters are chosen as follows:

r = 3, d1 = 0.1, c1 = 0.1, b1 = 0.5, b2 = 0.6, b3 = 0.2, d2 = 0.1, d3 = 0.1, c3 = 0.02. (5.1)

We make the numerical simulations from the following four scenarios.

5.1. Dynamics of the equilibrium states

For system (1.2), let r = 0.08, f = k = η = c2 = 0 and other parameter values are the same as (5.1),
then it is not difficult to find that all species will become extinct and the trivial equilibrium point is
E0(0, 0, 0). Keep the parameters unchanged and r = 3, then the prey can survive while the predator
remains extinct. The equilibrium state is E(29, 0, 0). By Theorem 3.1, both E0 and E are LAS. See
Figures 1 and 2, respectively.
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Figure 1. The time series diagram of species of (1.2). It shows that all species are extinct
and the trivial equilibrium point E0(0, 0, 0) is LAS.
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(a) (b)
Figure 2. The dynamics of species of (1.2); (a) is the time series diagram of species; (b) is
the phase diagram. It shows that the predator-free equilibrium point E(P1, 0, 0) is LAS.

Due to the complexity of the equations of equilibrium points, next we numerically validate that
there exists a coexistence equilibrium point. Choose f = 0.5, k = 1, η = 0.5, c2 = 0.8 and the rest of
the parameters are taken from (5.1), then by computation we get the unique interior equilibrium point
as Ẽ(3.6540, 0.9939, 4.2827). It is LAS by Theorem 3.1 (see Figure 3). That is to say, all the species
can coexist together.
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   Equilibrium point
(3.6540,0.9939,4.2827)

(a) (b)
Figure 3. The dynamics of species of (1.2); (a) is the time series diagram of species; (b) is the
phase diagram. It indicates that the coexisting equilibrium point Ẽ(3.6540, 0.9939, 4.2827)
is LAS.

5.2. Effects of functional response and stage structure

In order to find whether the functional response and the stage structure affect the system dynamics,
we let η = 0.9 or c2 = 0.3, and the other parameter values are identical with Figure 3. By simulation
we get the time series graph of prey and predator species (see Figure 4). Comparing Figure 3 with
Figure 4, we find that when the parameter values of η or c2 are changed, the interior equilibrium point
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of (1.2) becomes unstable from stable, i.e., the conversion rate of prey to predator as well as the stage
structure of predators affects the system stability.
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Figure 4. The time series diagrams of species of system (1.2) with variable parameters η
and c2, the other parameter values are identical with Figure 3; (a) is with η = 0.9; (b) is with
c2 = 0.3.

5.3. Effect of fear and anti-predation sensitivity

Due to the predator’s fear on prey, the prey presents some counter-predation features, then it is
necessary to explore how the anti-predation sensitivity k affects the stability of the system. In this
subsection, we mainly pay our attention on the effect of parameters k and f on the system dynamics.
By resetting the parameter values of f = 2 or k = 0.2 and keeping the rest the same as Figure 3,
we get the time series diagrams of model (1.2) (Figure 5). Simulation figures reveal that system (1.2)
becomes oscillatory accompanied with a period fluctuation, which means that the system bifurcation
about parameters k and f may occur, so we further explore the system bifurcation phenomenon.
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Figure 5. The time series diagrams of system (1.2); the values of fear f and anti-predation
sensitivity k are reset behind, the other parameters are the same as Figure 3(a) is with f = 2;
(b) is with k = 0.2. It shows that system (1.2) becomes unstable accompanied with periodic
fluctuation.
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(1) Bifurcation analysis of parameter k.

In view of the importance of parameter k, which indirectly reveals how the fear level affects the
whole system dynamics, we start with the bifurcation analysis of k.

(i) Bifurcation of k for different fear level f .
For system (1.2) with the parameter values given in Figure 5(a), by use of Matlab and Moncont [43],

we depict the continuous trajectories of the coexistence equilibrium point of prey with k in different
regions (see Figure 6). We find from Figure 6 that when k = 0.002041 or k = 1.8719, the Hopf
bifurcation appears, and when k = 0.002169, the saddle-node bifurcation appears. That is, when k is
smaller, the system dynamics are more complex.
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Figure 6. The bifurcation diagrams of prey P1 w.r.t parameter k of system (1.2) with f = 2;
(a) is with k ∈ [0, 0.05]; (b) is with k ∈ [0, 2].

To better visualize the effect of k on the stability for different fear f , we change the value of f and
draw the bifurcation picture of prey about parameter k with f = 0.5 (see Figure 7). Compared with
Figure 6(a), we find that the saddle-node bifurcation region is enlarged when the fear is reduced, which
indicates that the fear indirectly affects the prey stability by the anti-predation sensitivity k.
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Figure 7. The bifurcation diagram of prey P1 w.r.t parameter k of system (1.2) with f = 0.5
and k ∈ [0, 0.05].
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Figures 6 and 7 show that if the fear level of prey is high but the anti-predation sensitivity is very
low, then the system changes its stability from stable to unstable and even makes the prey extinct.
When the anti-predation sensitivity is high enough, like k > 1.8719, then the system becomes stable
again and the prey and predator can coexist. If the fear level is lower, then the system remains a stable
and larger region. The survival region of prey is also enlarged.

(ii) Two parameter bifurcation.

� The interplay of k and f on the dynamics of (1.2).

As previously stated, both the parameters k and f represent the effects of fear on the system
dynamics, and we now study their joint effects. By Matcont, we get the bi-parameter bifurcation
picture (see Figure 8). Figure 8(a) is with k ∈ [0, 2] and Figure 8(b) is the enlarged part of Figure 8 (a)
with k ∈ [0, 0.8], where R1 is the region of stable E, R2 is the region of bistability between stable E and
oscillatory Ẽ, R3 is the region of bistability between stable E and Ẽ, R4 is the region of oscillatory Ẽ,
R5 is the region of stable Ẽ, R6 is the region of bistability between two limit cycles and R7 is the region
of bistability between stable Ẽ and oscillatory Ẽ. Figure 7 shows that as the changes of k and f occur,
the cush point, homoclinic bifurcation curve (HC)), saddle-node bifurcation of limit cycle (LPC) and
generalized Hopf point appear. The stability of Ẽ is changed and many bistability regions appear.
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Figure 8. The dynamics of interior equilibrium point of system (1.2) about
parameters k and f .

To better visualize the dynamics of system switching, keep the parameter values given in (5.1)
unchanged. Take f = 0.5, η = 0.5, c2 = 0.8 and change the value of k, or keep k = 1, η = 0.5, c2 = 0.8
and change the value of f , then we draw the phase graph of the system with three groups of different
initial data (see Figure 9) where the initial data for the blue line, green line and red line are (5,4,2),
(1,2,0.5) and (1,1,4), respectively.

Figures 8 and 9 show that the fear level and anti-predation sensitivity can jointly affect the
equilibrium stability of (1.2). Specifically, when the anti-predation sensitivity is low, the coexistence
state of prey and predator will lose. The system will jump from one equilibrium point to another and
oscillate between stability and instability frequently, even leading to bistability. The system dynamics
are very complex.
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Figure 9. The phase diagrams with three different initial data and varying k and f . The initial
data for the blue trajectory is (5,4,2), the green trajectory is (1,2,0.5) and the red trajectory is
(1,1,4). The previous four diagrams are with f = 0.5 and the latter four diagrams are with
k = 1, and the changing parameter values see the bottom of each diagram.
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� The interplay of k and c2 on the dynamics.

As a stage structure system, the transversion rate is a very important indictor that decides on the
whole system dynamics, so we investigate the interrelationship of anti-predation parameter k and the
transversion rate c2. By simulation we get the graph of interplay effects between k and c2 on the system
dynamics (see Figure 10) where R1 is the region of stable Ẽ, R2 is the region of bistable between stable
Ẽ and oscillatory Ẽ and R3 is the region of oscillatory Ẽ. Clearly, when k is small, the dynamics of (1.2)
are very rich. The cush point produces at the point (k, c2) = (0.008273, 0.355558) and the bistability
regions between oscillatory Ẽ and stable Ẽ are presented. It shows that the anti-predation behaviors
of prey affect the predation rate of the predator, resulting in a change of the transversion rate from
immature predator to mature predator, and the system presents some complicated dynamics.
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Figure 10. The bifurcation diagram of two-parameters k and c2 of system (1.2).

(2) Bubble phenomenon.

In the biological system dynamics, we often see a closed loop-like structure where oscillation
appears from one Hopf bifurcation point and disappears from another Hopf bifurcation point. From
the diagram it seems like a bubble in the real world, so we call it a bubble phenomenon [32, 35]. By
drawing the Hopf bifurcation picture w.r.t. fear level f , we see the interesting bubble phenomenon (see
Figure 11). It shows that as the change of parameter f occurs, the system (1.2) changes its stability
from stable to unstable, then from unstable to stable again. That is, if the fear induced by the predator
is low, then prey and predator can coexist and the system remains stable, but when it becomes large
( f > 0.649), then the system becomes unstable. If the fear level is sufficiently large, for example,
f > 21.104, then the prey and predator coexist again and the system remains stable.
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Figure 11. The bifurcation diagram of species P1 of system (1.2) about parameter f .

(3) Bistability.

For a system with fixed parameter values, if the initial data is changed, then the solution curves of
the system is convergent with different attractors and we say the system has a bistability phenomenon.
From the bifurcation graphs of two parameters (Figures 8 and 10), we find that (1.2) has some different
bistability behaviors. Given some different initial data, we depict the diagrams of time series and phase
of system (1.2) to better visualize the bistability phenomenon (see Figure 12) where the parameter
values are same as given in (5.1), and f = 2, k = 1.87, η = 0.5 and c2 = 0.8. Figure 12(a) shows
that the trajectories with different initial data converge to different cycles respectively. The trajectories
of Figure 12(c) corresponding to different initial data converges to a cycle and a stable equilibrium
respectively. However, the trajectories of Figure 12(e) converge to the same cycle although the initial
data is different. Biologically, it means that under different conditions, the prey and predator can
experience multiple stable coexistence states, which is valuable for people to keep the species alive
and serve the economic development.

In a word, the fear of predator brings some important influences to system (1.2), which leads to
richer dynamical properties of the system. It makes the prey produce anti-predation behaviors and
affects the predation rate of the predator, as well as the transversion rate of mature predator from
immature predator. Particularly, the change of anti-predation sensitivity brings large influences to the
system dynamics, such as changing the system stability from stable to unstable or from unstable to
stable, accompanied by bifurcations, limit cycles and the bubble or bistability phenomena.
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Figure 12. The bistability phenomena of system (1.2) with a set of fixed parameter values
but different initial data; (a) is the time series diagram with initial data (1.03,0.19,1.22) for
the green line and (1,0.1,1.2) for the blue line; (b) is the phase diagram of (a); (c) is the time
series diagram with initial data (1,0.1,1) for the green line and (1,1,1) for the blue line; (d)
is the phase diagram of (c); (e) is the time series diagram with initial data (1.03,0.19,1.22)
for the green line and (3,1,1) for the blue line; (f) is the phase diagram of (e).
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5.4. Effect of time delays

Now we investigate how the time delay affects the system dynamics of system (1.3). For
system (1.3), we keep the parameter values the same as given in Figure 3; that is, it is LAS when
the delays are absent. Then, by choosing two small time delays as τ1 = τ2 = 0.08, we find it is still
stable (see Figure 13(a) and (b)). However, if we increase the delay values, for example, let τ1 = τ2 = 5,
then we observe that it is unstable and presents periodic fluctuation behaviors (see Figure 13(c) and
(d)).
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Figure 13. The dynamics of system (1.3) with time delays. (a) is with τ1 = τ2 = 0.08, (b)
is the phase diagram of (a); (c) is with τ1 = τ2 = 5, (d) is the phase diagram of (c).

By the simulation Figure 13, we conjecture that there may be a Hopf bifurcation. First, we consider
the case of one delay. Let τ2 = 0 (or τ1 = 0) and depict the bifurcation picture w.r.t. τ1 (or τ2),
then we get the bifurcation pictures (see Figure 14(a) or Figure 14(b)). Second, we consider the case
of two delays. Keep one delay fixed in the range of assuring the system stability, and take the other
delay as bifurcation parameter, then we get the delay bifurcation pictures (see Figure 14(c) and (d)).
Similarly, as the change of one delay, Hopf bifurcations occur and system stability are changed from
stable to unstable. If they are large enough, then the system will become unstable and produce chaos
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Figure 14. The Hopf bifurcation diagram of time delays of system (1.3); (a) is the
bifurcation diagram of τ1 with τ2 = 0; (b) is the bifurcation diagram of τ2 with τ1 = 0;
(c) is the bifurcation diagram of τ1 with τ2 = 3; (d) is the bifurcation diagram of τ2 with
τ1 = 3; (e) is chaos phenomenon of (2.3) with τ1 ∈ [50, 150] and τ2 = 0,T = 10000; (f) is
the chaos phenomenon of (1.3) with τ2 ∈ [10, 50] and τ2 = 0,T = 5000.
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(see Figure 14(e) and (f)).
All simulation figures indicate that if the prey can respond timely to the fear of predator and the

mature period of the predator is very short, then the system can remain stable. Meanwhile, if the fear
delay or mature delay is large enough, then the system stability is lost and accompanied with periodic
fluctuation. If one of them becomes too large, then chaos occurs and the system becomes unstable. In
a word, the fear and mature delays bring some significant influences to the system stability.

6. Discussion and conclusions

Combining the real ecological environment, we formulated a delayed predator-prey system with a
Crowley-Martin functional response and stage structure for predators. The existence of equilibrium
points, the locally asymptotical stability and bifurcation behaviors of the system were investigated. All
theoretical results were summarized in Theorems 3.1 and 4.1–4.4. In order to validate the theoretical
results and intuitively reveal the influence on system dynamics of fear, stage structure, anti-predation
sensitivity and time delays, some numerical analyses were given. Figures 1–3 validated the stability
of equilibrium points. Figure 4 showed the functional response and stage structure of how predators
affected the system stability. Figures 5–12 revealed how the fear and anti-predation sensitivity affected
the system stability numerically. Figures 13 and 14 explained the effects of fear delay and mature delay
on the system stability. We summarize our findings as follows:

(1) The conversion rate from prey to predator and the stage structure of predator bring some influence
on the stability of the equilibrium point of the system.

(2) The fear induced by the predator seriously affects the stability of the interior equilibrium point. It
makes the prey produce anti-predator behaviors, which affects the predation rate and transversion
rate of mature predator from immature predator. The fear and anti-predation sensitivity jointly
affects the system stability and produces complex dynamical phenomena such as bubble, or
bistability.

(3) The fear delay and mature delay will bring some important influence on the system dynamics.
They can change the system stability from stable to unstable and even lead to chaos if they are
large enough.

By these findings, from the angle of protecting the species from extinction to maintaining the system
permanence and the biological balance, we should make some measures such as

• Constructing some refuge zones for prey to prevent the fear of predators and increase the anti-
predation sensitivity of prey.
• Supply some additional food for predators and decrease the predation rate to decline the negative

effect of predators fear on prey.
• Shorten the mature delay and accelerate the mature speed of predators from immature predator

by using some biological control strategies, like changing their genes.

There are still some topics to be investigated. For example, the environments are always fluctuated
by random noise, so incorporating the effects of environmental stochastic noise on the system dynamics
is very interesting [44]. On the other hand, how the refuge and additional food supplement affects the
stability is another interesting topic [45, 46]. In addition, whether the mature delay can be efficiently
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controlled by some reasonable ways is also necessary to be considered. All of these are left for our
future research.
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