AIMS Mathematics, 8(12): 29058-29072.
DOI: 10.3934/math.20231488

Received: 18 September 2023

Revised: 19 October 2023

Accepted: 19 October 2023

Published: 26 October 2023

AIMS Mathematics

http://www.aimspress.com/journal/Math

Research article

A novel numerical scheme for reproducing kernel space of 2D

fractional diffusion equations

Siyu Tian, Boyu Liu and Wenyan Wang*
Department of Mathematics, Northeast Forestry University, Harbin 150040, China
*Correspondence: Email: wangwenyan426@126.com.

Abstract: A novel method is presented for reproducing kernel of a 2D fractional diffusion equation.
The exact solution is expressed as a series, which is then truncated to get an approximate solution. In
addition, some techniques to improve existing methods are also proposed. The proposed approach is
easy to implement. It is proved that both the approximate solution and its partial derivatives converge
to their exact solutions. Numerical results demonstrate that the proposed approach is effective and
can provide a high precision global approximate solution.
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1. Introduction

The fractional diffusion equation (FDE) is widely used in engineering and science fields, such
as bioengineering, electrochemistry, medicine and signal processing [1-5]. The references [6-10] are
extensive and still growing rapidly on numerical approximations to solutions of FDE. Youssri and
Atta [11] applied the Petrov-Galerkin Lucas polynomials procedure to time FDEs. Gupta [12]
applied simplified differential transformation and homotopy perturbation to the fractional
Benney-Lin equation. Attar et al. [13] used Akbar-Ganji’s approach to investigate FDEs. Bota and
Caruntu [14] used polynomial least squares approach to study the fractional quadratic Riccati
differential equation. Moustafa, Youssri and Atta [15] applied the explicit Chebyshev-Galerkin
scheme to time FDE. Djennadi, Shawagfeh and Abu Arqub [16] used a reproducing kernel (RK)
approach to study the inverse source problem of FDEs. Jiang and Lin [17] studied the fractional


mailto:wangwenyan426@126.com
https://www.worldscientific.com/doi/10.1142/S0129183124500025
https://www.worldscientific.com/doi/10.1142/S0129183124500025
https://www.worldscientific.com/doi/10.1142/S0129183124500025

29059

advection-dispersion equation using the RK approach.
In this article, 2D FDEs are considered:

ofu(xy,t)=f(xy,t)+Au(xy,t), (xyt)eG=Dx[0,T], (1.1)
u(xy,0)=r(xy), (x,y)eD, (1.2)
u(xy,t)=0, te[0,T], (x,y)edD. (1.3)

Here, D cR® is a closed bounded field, T >0 is fixed and 0 [18] is defined as

t

oru(x,y,t)= L(t_r)w ou(xy,r)dz

I'(l-a)

, (1.4)

where I' is the gamma function [19, 20], and r(X,y) and f(X,y,t) are given.

The objective for this article is to obtain the numerical format of the 2D FDE by the RK method.

Also, superiorities for the scheme are as follows:
(1) A high-precision global approximate solution can be obtained.
(i1) The numerical program is simple and the calculation speed is fast.

The RK function in the Hilbert space and its related theories have important applications in the
fields of stochastic processes, machine learning, pattern recognition and neural networks [21-25].
The RK method can obtain the high-precision global approximate solution, and has been widely used
in differential and integral equations, linear and nonlinear problems, etc. [26-30]. In recent years,
researchers have become more and more interested in using the RK method to solve various FDEs [31-
34]. These papers show that the RK method has a number of superior advantages.

The n-term approximate solution for problems (1.1)—(1.3) is given in the RK space in this article.
Also, the existing approaches are improved as follows. First, inspired by references [35, 36], a
technique is presented to improve an existing method, which avoids the Gram-Schmidt orthogonal
(GSO) procedure [17]. This method not only improves the precision, but also greatly reduces the
runtime. Second, inspired by [37], a simpler RK is used than that in [38]. This improves accuracy
and greatly reduces runtime [35, 36]. Finally, inspired by [35], this paper extends the RK method in
[17] from one-dimensional to two-dimensional, and expands the application range of the RK method
to solve 2D FDEs.

For simplicity, take D=[0,1]x[0,]]cR*, T=1 and put u(xyt)=r(xy)+w(xy,t).

Thus, problems (1.1)—(1.3) are turned into

Lw(x,y,t)=g(xy,t), (xy,t)eG, (1.5)
w(x,y,0)=0, (x,y)eD, (1.6)
w(x y,t)=0, te[0,1], (xy)eaD. (1.7)
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Here, set
Lw=0fw—Aw, g(x,y,t)=Ar(xy)+f(xy,t), (1.8)

for WeW( )(G), and W( )(G) is defined in the next section.

4,43 4,43

2. RK space W(4,4,3)(G)

In this section, W( )(G) is constructed according to [37] as an original book on numerical

4,43

methods for RK space, which provides a simpler RK than [38].
W,[0,1] = {W| w, W', W"and w"are all real valued absolutely continuous functions, W(1) =0,

w(0)=0, w*® e LZ[O,l]}. Its inner product is defined in W,[0,1] as

(w, u>W4 = Jjw“” (2)u“(z2)dz + ZZ“W(” (0u®(0). (2.1)

W3[O,1]:{W| w,W" and w" are all real valued absolutely continuous functions, w(0) =0,

wW” e L2[0,1]}. Its inner product is defined in W,[0,1] as
2 . .
(wu), = I:w"’(z)u"’(z)dz > w®©Ou®(0). 2.2)
: i=1

The norms are defined as ||W||W = /(W, W)WA ,1=3,4. It can be shown that both W,[0,1] and
W,[0,1] are RK spaces, and RKs rl and r2 are given by (2.1) and (2.2) in [36], respectively.

Furthermore, { Py (X)}:l1 and {I’k (t)}::1 are assumed to be the orthonormal bases of W,[0,1] and

W,[0,1], respectively. W, )(G) is defined as

4,43

W(4,4,3) G)= {W| w(x, y,t) = i Cia P; ) P (V)1 (D), i ‘ij ‘2 <%, Cjy € R}- (2.3)
=1 jai=1

Its inner product and norm are respectively defined respectively as

o0

<W1'W2>w(4‘4‘3) = >l W =<W’W>w(4v4,3)' (2.4)

et W(4,4,3)

where W= 3" ¢, P, (0P (VR and w,= 3 d.yp. ()P (Y ().

jki=1 jk1=1
With reference to [37], the following theorem can be obtained.

Lemma 2.1. W(41413) (G) is an RK space whose RK is
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R(x,¢y,¢,t,7) = h(t, 7)b(x, £)b(y, ¢).

Here, b(,,-) and h(,-) are given by (2.1)-(2.2) in [36], respectively.

Similarly, W( )(G) is also an RK space whose RK is

R(X.£,Y,6:t,7) = 5(t, 7)s(x,£)s(y, ),

where s(-,-) is given by (2.3) in [36].

3. Solution to problems (1.5)-(1.8)

A countable dense subset {(Xj, yj,tj)}jEN

¢, (%, y,t)=Lw;(x,y,t), where L is the formally adjoint operator of L.

Theorem 3.1 Let {(x;,y;.t;)}  <G. Then,

g, y.) =L, ,R(X .y t7) |(§,g,r):(xj,yj,tj)
O’R(X,¢,Y,6,1,7)
o¢?

, JjeN.

(€6 m)=(xj.yj.t5)

:[afR(x,§, y.6.t7)-

_O°R(X.¢,Y.6.t,7)
oc?

(2.5)

(2.6)

c G is chosen. Put l//j(X, y,t):ﬁ(x, X5 Y, yj,t,tj),

(3.1)

Here, R(X,¢,Y,¢,t,7) is shown by (2.5). The proof for this theorem is similar to that in reference [35],

where a 2D parabolic inverse source problem is discussed.

Theorem 3.2. ¢ eW(4y4’3)(G), jeN.

Proof. From (3.1),

b(y, y;)b(x,
rl-e)

~b(y, ¥, t,)0%b(x.£)| .,
—b(x,x,)h(t,t;)8%b(y. ¢)

X') ¥ _
ACE [t~ ) “0,h(t, 7)dr

c=yj "

Then,

(3.2)
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aiAb(va')a44b(y!y') t
e e e MR R R

—0%.b(y, ¥;)0%N(t,t;)0%, .b( ;)\ - (3.3)

~0,.b(x,x;)5h(t,1;)0% .b(y,¢)

s=Yi |

There are positive constants m,;, m,, m,, such that

34b(x,X,)3%b(y, y;)0%:h(t, )| < m, (3.4)

0Lb(y, ¥, )0% b (X, )] .,

<m,, (3.5)

and

31b(x, X, )O3N )25, (. )

<m;, (3.6)

§=Yj

for (x,y,t)eG and 7 €[0,1]. Thus,

tj —a
jo (t, —7)“dz

11

+m, +m,

<m,

[ —2)de|+m, +m, 3.7)

m5
<——+m,+m,,
l-a

where m,, m, are positive constants. Hence, Glxiy4t3¢j IS LZ(G). Since G is closed, 8i3y3t2¢j is
absolutely continuous in G.

In addition, b(x,{),b(y,s)eW,[0,1], h(t,7) eW,[0,1] with
b(L<)=0, b@g)=0, b(0,{)=0, b0,¢)=0, h(0,7)=0,
Gzzb(l, £)=0, azzb(o, ¢)=0, 0.h(0,7)=0.

By (32). #,(x¥.0=0, ¢(x1t=0,

Therefore, ¢, GW(4, 43) (G), jeN by definition.

respect to ¢,¢,7<€[0,1] and
6§2b(1, ¢)=0, 8§2b(0, ¢)=0,

¢j(x101t)20’ ¢j(lvy1t):0, ¢j(0,y,t)20, JEN

Theorem 3.3. Suppose that the solution to problems (1.1)—(1.3) is unique. Then, in W( 443 (G),
{¢j}jeN is complete.

In W( 443 (G), the orthonormal system {(75 i } o is obtained by the GSO process for {¢j}

5

jeN
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—_ i
¢j(X,y,t)=z¢i(X,y,t)yJi, 7/jj>01 jeN. (3.8)

i=1

Theorem 3.4.In W (4.4 (G), the unique solution to problems (1.5)—(1.8) is expressed as

© ]
w(x y.t)=>">"8; (% y.t)g(X. yi.t) 7 (3.9)

j=1i=1

Thus, the n-term approximate solution W, (x,y,t) is acquired by

X yt ZZ¢ X yt g(X|7y|7t|)7]| (310)

j=1i=1
Theorem 3.5. If w is the exact solution (ES) for Eqgs (1.5)-(1.8), w, =P w, where P, is an
orthogonal projection of W(4,4,3) to Span{%}jEN, then,

Lw, (x;.y;.t)=9(xy,.t), J=12m. (3.11)

The proofs of these theorems are similar to those in [35].
Thus,

W, (3.0 =33, (1.9 (%Y )7,.

i
22 A (%Y )739 (% Vi k)7 (3.12)

n k
Here,C; =7, > 9 (X, Y.t ) 7. The verification is listed below.

k=) =1

From (3.10),

nojo_ nj o

W, (%Y, 1) =330, (v ) g (%, Vi) 7 = D0 > B (X V) 738 (% Yoo t) 7 (3.13)

j=1i=1 j=1i=1 k=1

_ j
Let Cj:Zg(Xi,yi,ti)yji. Then,

i=1
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W Zz¢k7/]kc]

=L k=L
= ¢17/11C1 +¢1721C2 +¢z7/2262 +¢173163 +¢27/3263 +¢37’3363
+“'+¢17/nlC” +¢27/n2C” +¢37/n3C” +“'+¢n7/nnC”

=29 (Z?’kjEkJ (3.14)
i=1  \ k=j
= Z¢ [Zykj zg(xw y|’t )yli
=t \k=j it
- Z¢JC1- O
j=1
Next, Theorem 3.5 tells us that

Lw, (%, i ) = D CiLd (%, Vit ) =9 (%, Vit ), kK =1,2,--,n. (3.15)
=1

Here, L,g and ¢; are given by (1.8) and (3.1), respectively.

In summary, the main procedures for this proposed approach are listed below.
1) Put u(xy,t)=r(xy)+w(X,y,t), problems (1.1}-(1.3) are turned into problems (1.5)~(1.8).
2) From Eq (3.15), Cj, j=12,---,n can be obtained.
3) Substitute C;, j=1,2,---,n into Eq (3.12), numerical solution W, (X,y,t) of problems (1.5)~(1.8)
can be obtained.
4) Again by u(xy,t)=r(xy)+w(xy,t), the approximation u, (X, y,t) for the original
problems (1.1)—(1.3) can be obtained.

From the above calculation steps, it can be seen that the GSO process for {¢j }Tzl in [17] may be
avoided. (Here, only the proofs require the GSO step, however numerical computation does not require
this step.) Therefore, compared with the method in [17], this method may improve the accuracy and

greatly reduce the runtime [35, 36]. This method can solve some model problems effectively and provide
a high-precision global approximate solution.

4. Convergence analysis

w(x,y,t)andw, (X, y,t)are respectively ES and the n-term approximation solution to Eqs (1.5)-

(1.8). Set”W(X Y, t)| max |W(X Y, t)| Similarly to [35], the following theorem can be obtained.
Theorem 4.1. Suppose weW, ,, (G). Then,

||W_W””W<4,4,3)(G) —0, n—>o.Also, |[w-w, Wioa (@)

decreases monotonically with n.

AIMS Mathematics Volume 08, Issue 12, 29058-29072.
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” a|+k+jW al+k+jWn

2 |ox‘ay<at!  axay“at!|,
Proof. (1) From (3.9) and (3.10),

”W_Wn”vaS)(G)

—->0,n>w; j=0,31,k=0,1,2;1+k+j=0,12.

o
ZZ j th X.vYnti)?/ji
j=ni1ioL

W(4,4,3)(C)

Thus,

[w—w,

-0, n—o oo
W24, (G)
In addition,
2

o ]
w—w, ZZ (X, y,1)9 (%, Vi t)7;
j=n+li=1

443)(G)

Wis4,9(G)

= i (ig(xi,yi,ti)yﬁf.

j=n+1\_i=1

Clearly, |[w—Ww, decreases monotonically with n.

Wis 49 (G)

Note that

6I+k+jW(X y t) 8I+k+jw (X y t)

al+k+jK(X,é” y'g,t,f) .

<W(§gf) w,(&,6,7),

ox'oy* ot ox'oy*ot’ ox'oy*at’
j=011,k=0121+k+j=012,
I+k+j
0 Kxe, AN <C, j=0LLk=0121+k+j=012i=12--,
axay at] W(4,4,3)(G)

Here, C,,i=12,---,9 are normal numbers. For all (X,Yy,t) <G,

a|+k+jW(X, y,t) a|+k+jwn (X, y,t)| 6|+k+jK(X, é,v y,g,t,f)

= <W(§,g,r)—Wn(§,g,f),

adoykat  axlayat) ax'ay*at!

[0 K (x,¢,y,6,7)|
W43 (G) || ox'oyFat]
j=0L1k=012l+k+j=012,
<Ci[w-w,

<[w-w,

Wi4,45)(G)

W43 (G) "
Hence,

al+k+jW al+k+jW

n

ox'oy‘atl  ox'ay et |,

—>0,n>w; j=0,11,k=0,1,2;1+k+ j=0,12.

4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

4.7)
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5. Numerical results

The effectiveness of the presented technique and the high precision of the approximate solution
are verified by two examples in this section. Mathematica 5.0 software was used for all numerical
calculations on a personal laptop computer.

The domainG is divided into an m, xm,xm, grid with steps 1/m;,1/m, and 1/m, in the

X,y and t directions, where m;,m,,m, e N.
Example 5.1. Egs (1.1)-(1.3) are considered based on the following conditions:

u(x, y,0) = x*sin*(y)(1—x)?sin*(1-y), (x,y)eD,

u(x,y,t)=0, te[01], (x,y)eaD, (5.1)
a =0.6.

The ES is
u(x, y,t) = exp(t)x*sin®(y)1-x)*sin’*(1-y) . (5.2)

According to the main steps (1)—(4) of the proposed method in Section 3, the absolute errors
(AE) for u(x,y,t) are given in Table 1 with grid m,xm,xm, =3x3x3. Root mean square errors

(RMSE) for u(X,y,t) and CPU time are shown in Table 2.

It is not difficult to see from Tables 1 and 2 that good results can be achieved when the step size
is larger. Further, the CPU time is short. In addition, the accuracy increases as the step size decreases.

Table 1. AE for u (X, y,t) in Example 5.1.

(x,y,1) AE (x,y,1) AE
111 211
5 ) g ) § 6.02456E-4 g ) § ) § 6.03771E-4
112 212
é ) 5 ) g 7.22032E-4 g ; 5 ) g 7.21850E-4
121 221
5 ) g ) § 6.03771E-4 g ) g ) é 6.05237E-4
122 22 2
5 ) g ) g 7.21850E-4 g ; 5 ) 5 7.21535E-4

Table2. RMSE for u(X,y,t) and CPU time in Example 5.1.

m, x M, x m, RMSE for U(X,Y,t) CPU time (s)
2x2x2 2.52686E-3 0.016
3x3x3 6.65434E-4 0.718

AIMS Mathematics Volume 08, Issue 12, 29058-29072.
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Moreover, errors |u—u27|:t =0.1,0.2,---,0.9 are given in Figure 1. It is easy to see from the
figure that this method can provide a high-precision global approximate solution.
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Figure 1. Errors |u —u27| 't=0.1,0.2,---,0.9 in Example 5.1.

Example 5.2. Questions (1.1)—(1.3) are considered based on the following conditions:
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u(x, y,0) = sin*(x)sin®(y)sin’(1-x)sin°(L—y), (x,y) D,

u(x,y,t)=0, te[0,1], (x,y)eaD, (5.3)
a=0.5.

The ES is
u(x, y,t) = exp(t)sin(x)sin®(y)sin*(1—x)sin®(1-y) . (5.4)

According to the main steps (1)-(4) of the proposed method in Section 3, the AE for u(X, y,t)
are given in Table 3 with grid m xm,xm, =3x3x3. Also, the RMSE for u (X, y,t) and CPU

time are shown in Table 4. It is easy to see from the two tables that good results can be achieved
when the step size is larger. Further, the CPU time is short. Besides, as step size decreases, accuracy
improves.

Table 3. AE for u (X, y,t) in Example 5.2.

(X, y,1) AE (X, y,t) AE
111 2.81463E-6 211 2.82680E-6
3'3'3 ' ' 3'3'3 ' )
112 212
Ty v 9.91324E-7 v 9.88143E-7
333 333
121 2.82680E-6 221 2.84024E-6
3'3'3 ‘ ) 3'3'3 '
122 2 22
T 9.88143E-7 T 9.85582E-7
333 333
Table4. RMSE for u (X, y,t) and CPU time in Example 5.2.
m, xm, x m, RMSE for U(X,Y,t) CPU time (s)
2x2x2 1.73194E-4 0.015
3x3x3 2.11771E-6 0.640

Moreover, Figure 2 shows the errors |u —u27| :1=0.1,0.2,---,0.9. It is not difficult to see from

the figure that this method can provide a high-precision global approximate solution.

AIMS Mathematics Volume 08, Issue 12, 29058-29072.
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Figure 2. Errors |u —u27| 't=0.1,0.2,---,0.9 in Example 5.2.

6. Conclusions and discussion

The presented method has been successfully applied to the 2D FDE in this article. Based on the RK
space, the method improves existing methods [17,38], extends the RK method in [17] from
one-dimensional to two-dimensional, and obtains a simpler RK than that in [38]. This improves the
accuracy and greatly reduces the runtime. Numerical results demonstrate that this approch has high

AIMS Mathematics Volume 08, Issue 12, 29058-29072.
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precision, and the error for the approximate solution decreases monotonically in the sense of ||||W .
(4.4.3)

In addition, this approch is applicable to more general FDEs, which we will discuss in an upcoming
paper.
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