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Abstract: The free metaplectic transformation (FMT) has gained much popularity in recent times
because of its various applications in signal processing, paraxial optical systems, digital algorithms,
optical encryption and so on. However, the FMT is inadequate for localized analysis of non-transient
signals, as such, it is imperative to introduce a unique localized transform coined as the short-time
free metaplectic transform (ST-FMT). In this paper, we investigate the ST-FMT. First we propose
the definition of the ST-FMT and provide the time-frequency analysis of the proposed transform in
the FMT domain. Second we establish the relationship between the ST-FMT and short-time Fourier
transform (STFT) in L2(Rn) and investigate the basic properties of the proposed transform including the
reconstruction formula, Moyal’s formula. The emergence of the ST-FMT definition and its properties
broadens the development of time-frequency representation of higher-dimensional signals theory to
a certain extent. We extend some different uncertainty principles (UPs) from quantum mechanics
including Lieb’s inequality, Pitt’s inequality, Hausdorff-Young inequality, Heisenberg’s UP, Hardy’s
UP, Beurling’s UP, Logarithmic UP and Nazarov’s UP. Finally, we give a numerical example and a
possible applications of the proposed ST-FMT.
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1. Introduction

The free metaplectic transformation (FMT) also known as the n-dimensional linear canonical
transformation (LCT) first studied in [1], is widely used in many fields such as filter design, pattern
recognition, optics and analyzing the propagation of electromagnetic waves [2–5]. The theory of
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FMT with a general 2n × 2n real, symplectic matrix M = (A, B : C,D) with n(2n + 1) degrees of
freedom [6, 7]. The FMT embodies several signal processing tools ranging from the classical Fourier,
Fresnel transform, and even the fundamental operations of quadratic phase factor multiplication [8–10].
The metaplectic operator or the FMT of any function f ∈ L2(Rn) with the real free symplectic matrix
M = (A, B : C,D) is given by [9, 32]

LM[ f ](w) =

∫
Rn

f (x)KM(x,w)dx, (1.1)

where KM(x,w) denotes the kernel and is given by

KM(x,w) =
1

(2π)n/2
√
|det(B)|

e
i
2 (wT DB−1w−2wT B−T x+xT B−1Ax), x,w ∈ Rn, |det(B)| , 0. (1.2)

The arbitrary real parameters involved in (1.1) are of great importance for the efficient analysis of the
inescapable signals, i.e., the chirp-like signals. Due to the extra degrees of freedom, the FMT has been
successfully employed in diverse problems arising in various branches of science and engineering, such
as harmonic analysis, optical systems, reproducing kernel Hilbert spaces, quantum mechanics, image
processing, sampling and so on [11, 12]. However, FMT has a drawback. Due to its global kernel
it is not suitable for processing signals with varying frequency content [13, 14]. The short-time free
metaplectic transform (ST-FMT) with a local window function can efficiently localize the frequency
spectrum of non-transient signals in the free metaplectic transform domain, hence, overcomes this
drawback. Taking this opportunity, our goal is to introduce the notion of the short-time free metaplectic
transform, which is a generalized version of FMT and endowed with higher degrees of freedom,
resulting in an efficient localized analysis of chirp signals.

Let us now move to the uncertainty iprinciple. Uncertainty principle was introduced by the German
physicist Heisenberg [15] in 1927 and is known as the heart of any signal processing tool. With
the passage of time, researchers further extended the uncertainty principle to different types of new
uncertainty principles associated with the Fourier transform, for instance, Heisenberg’s uncertainty
principle, Logarithmic uncertainty principle, Hardy’s uncertainty principle and Beurling’s uncertainty
principle [16–21]. Later these uncertainty principles were extended to LCT and its generalized
domains [22–31]. In [32] authors proposed uncertainty principles associated with the FMT and in [33]
authors establish uncertainty principles for the non-separable linear canonical wavelet transform.
Keeping in view the fact that the theory of ST-FMT and associated uncertainty principles is yet to
be investigated exclusively; therefore, it is both theoretically interesting and practically useful to study
the properties of ST-FMT and formulate some new uncertainty inequalities pertaining to it.

The highlights of the article are pointed out below:

(1) To introduce a novel integral transform coined as the short-time free metaplectic transform.
(2) To obtain the relationship of ST-FMT with FMT, FT and STFT in L2(Rn),respectively.
(3) To study the fundamental properties of the proposed transform, including the Moyal’s formula,

boundedness and inversion formula.
(4) To establish the Pitt’s inequality, Lieb inequality and Hausdorff-Young inequality associated with

the ST-FMT.
(5) To formulate the Heisenberg’s, Logarithmic and Nazarov’s uncertainty principles.
(6) To formulate the Hardy’s and Beurling’s uncertainty principles for the ST-FMT.
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(7) To present possible applications and an illustrative example.

The paper is organized as follows: In Section 2, we discuss some preliminary results and definitions
required in subsequent sections. In Section 3, we formally introduced the definition of short-time
free metaplectic transform (ST-FMT). Then we investigated several basic properties of the ST-FMT
that are important for signal representation in signal processing. In Section 4, we extend some
different uncertainty principles (UP) from quantum mechanics, including Lieb’s inequality, Pitt’s
inequality, Heisenberg’s UP, Hausdorff-Young inequality, Hardy’s UP, Beurling’s UP, Logarithmic UP
and Nazarov’s UP, which have already been well studied in the FMT domain. Section 5 is devoted to
a numerical example and potential applications of the proposed ST-FMT.

2. Preliminary

This section give some useful definitions and lemmas about the multi-dimensional Fourier transform
and free metaplectic transform.

2.1. Multi-dimensional Fourier transform (FT)

For any f ∈ L2(Rn), the n-dimensional Fourier transform (FT) of f (x) is given by [32]

F [ f ](w) =
1

(2π)n/2

∫
Rn

f (x)e−iwT xdx (2.1)

and its inversion is given by

f (x) =
1

(2π)n/2

∫
Rn
F [ f ](w)eiwT xdw, (2.2)

where x = (x1, x2, ..., xn)T ∈ Rn, w = (w1,w2, ...,wn)T ∈ Rn.

Based on the definition of short-time Fourier transform (STFT) [34], we can define n-dimensional
STFT as:

Definition 2.1. Let φ be a window function in L2(Rn), then for any f ∈ L2(Rn) the n-dimensional
short-time Fourier transform (STFT) of f (x) with respect to the window function φ is given by [33]

Vφ[ f ](w, u) =
1

(2π)n/2

∫
Rn

f (x)φ(x − u)e−iwT xdx. (2.3)

2.2. The free metaplectic transform

For typographical convenience, we shall denote a 2n × 2n matrix M =

(
A B
C D

)
as M = (A, B :

C,D), where A, B, C and D are real n × n sub-matrices. Moreover, we recall that the matrix M is
said to be a free symplectic matrix if MTΩM = Ω, and |det(B)| , 0, where Ω = (0, In : −In, 0) and In

represents the n × n identity matrix. The sub-matrices of M satisfy the following constraints:

ABT = BAT , CDT = DCT , ADT − BCT = In.
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The transpose of M =

(
A B
C D

)
is given by MT =

(
AT CT

BT DT

)
.

Also, inverse of the free symplectic matrix is given by M−1 =

(
DT −BT

−CT AT

)
. It is clear that MM−1 =(

In 0
0 In

)
.

Definition 2.2. [FMT] The free metaplectic transform of a function f ∈ L2(Rn) with respect 2n × 2n
real, free symplectic matrix M = (A, B : C,D) (with |det(B)| , 0) is defined by

LM[ f ](w) =

∫
Rn

f (x)KM(x,w)dx, (2.4)

where KM(x,w) denotes the kernel and is given by

KM(x,w) =
1

(2π)n/2
√
|det(B)|

e
i
2 (wT DB−1w−2wT B−T x+xT B−1Ax), (2.5)

where x = (x1, x2, ..., xn)T ∈ Rn, w = (w1,w2, ...,wn)T ∈ Rn.

Definition 2.3. Suppose f ∈ L2(Rn), then the inversion of the free metaplectic transform of f is
given by

f (x) = LM−1 {LM[ f ](w)} (x) =

∫
Rn
LM[ f ](w)KM−1(w, x)dw, (2.6)

where M−1 = (DT ,−BT : −CT , AT ).

For real, symplectic matrix M = (A, B : C,D), the free metaplectic transform kernel (2.5) satisfies
the following important properties:

(i) KM−1(w, x) = KM(x,w),
(ii)

∫
Rn KM(x,w)KM−1(z, x)dx = δ(z − w),

(iii)
∫
Rn KM(x,w)KN(x, z)dx = KMN(w, z).

Lemma 2.1. Let f , g ∈ L2(Rn), then the free metaplectic transform satisfies the following parseval’s
formula:

〈 f , g〉2 = 〈LM[ f ],LM[g]〉2. (2.7)

For f = g, one has
‖ f ‖2L2(Rn) = ‖LM[ f ]‖2L2(Rn). (2.8)

The free metaplectic transform (defined in (2.4)) of a function f ∈ L2(Rn) can be computed via
associated n-dimensional FT, namely

LM[ f ](w) =
e

i(wT DB−1w)
2

√
det(B)

F

{
e

i(xT B−1Ax)
2 f (x)

}
(B−1w), (2.9)

where F { f }(w) represents the n-dimensional FT defined in (2.1) as

F { f }(w) =
1

(2π)n/2

∫
Rn

f (x)e−iwT xdx. (2.10)
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Equation (2.9) can be rewritten as

e
−i(wT DB−1w)

2 LM[ f ](w) = F {H} (B−1w), (2.11)

where H(x) is given by

H(x) =
1

√
det(B)

e
i(xT B−1Ax)

2 f (x). (2.12)

Lemma 2.2. Let f ∈ L2(Rn) and H(x) = 1
√

det(B)
e

i(xT B−1Ax)
2 f (x), then we have following relationship

between n-dimensional FT and FMT:

|F [H](w)| = |LM[ f ](Bw)|. (2.13)

Proof. The proof follows by changing w = Bw and taking the modulus in (2.11).

�

Remark 2.1. If we change w = Bw and take the modulus in (2.9), we have

|F [H0](w)| =
√

det(B)|LM[ f ](Bw)|, (2.14)

where H0(x) = e
i(xT B−1Ax)

2 f (x).

3. The short-time free metaplectic transform

In this section, we introduce the novel short-time free metaplectic transform (ST-FMT) and discuss
several basic properties of the ST-FMT. These properties play important roles in signal representation
of multi-dimensional signals.

Definition 3.1. Let M = (A, B : C,D) be a real, free symplectic matrix. Let φ be a window function in
L2(Rn), the short-time free metaplectic transform (ST-FMT) of the function f ∈ L2(Rn) with respect to
φ is defined by

VM
φ [ f ](w, u) =

∫
Rn

f (x)φ(x − u)KM(x,w)dx, (3.1)

where x = (x1, x2, ..., xn) ∈ Rn, u = (u1, u2, ..., un) ∈ Rn, w = (w1,w2, ...,wn) ∈ Rn and KM(x,w) is given
by (2.5).

In terms of classic convolution, formula (3.1) can be written as

VM
φ [ f ](w, u) = ( f (u)KM(u,w)) ∗ φ(−u).

Also, by applying the properties of the free metaplectic transform, (3.1) can be rewritten in the form
of an inner product as

VM
φ [ f ](w, u) = 〈 f ,ΨM

x,w,u〉, (3.2)

where ΨM
x,w,u = φ(x − u)KM(u,w).

The prolificacy of the short-time free metaplectic transform given in Definition 3.1 can be
ascertained from the following important deductions:
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(i) When M = (In cosα, In sinα : −In sinα, In cosα), the ST-FMT (3.1) yields the n-dimensional
non-separable short-time fractional Fourier transform:

F α
φ [ f ](w, u) =

1
(2π)n/2| sinα|n/2

∫
Rn

f (x)φ(x − u)e
i
2 (wT w+xT x) cotα−iwT x cscαdx.

(ii) For M = (0, In − In, 0), the ST-FMT (3.1) boils down to an n-dimensional short-time Fourier
transform:

Fφ[ f ](w, u) =
1

(2π)n/2

∫
Rn

f (x)φ(x − u)e−iwT xdx.

(iii) If the sub-matrices A = diag(a11, ..., ann), B = diag(b11, ..., bnn), C = diag(c11, ..., cnn) and D =

diag(d11, ..., dnn) of the real, symplectic matrix M are taken then ST-FMT (3.1) yields the short-
time separable linear canonical transform:

LM
φ [ f ](w, u) =

1
(2π)n/2|Πn

j=1b j j|
1/2

∫
Rn

f (x)φ(x − u)e
i
∑n

j=1

 d j jw
2
j−2w j x j+a j j x2

j
2b j j


dx.

(iv) For M = (In, B : 0, In), the ST-FMT (3.1) boils down to an n-dimensional short-time Fresnel
transform:

FM
φ [ f ](w, u) =

1
(2π)n/2

√
|det(B)|

∫
Rn

f (x)φ(x − u)ei (wT B−1w−2wT B−T x+xT B−1 x)
2 dx.

Now we shall establish a relationship between FMT and ST-FMT, which will be helpful in establishing
various uncertainty principles in Section 4.

For fixed u, we have
VM

φ [ f ](w, u) = LM
{
f (x)φ(x − u)

}
(w). (3.3)

Applying the inverse free metaplectic transform (2.6), we have

f (x)φ(x − u) = LM−1

{
VM

φ [ f ](w, u)
}

(3.4)

=

∫
Rn
VM

φ [ f ](w, u)KM−1(w, x)dw

=

∫
Rn
VM

φ [ f ](w, u)KM(x,w)dw. (3.5)

Now, we discuss several basic properties of the ST-FMT given by (3.1). These properties play
important roles in multi-dimensional signal processing.

The following properties follow directly from the definition of the ST-FMT, viz: linearity; anti-
linearity; translation; modulation and scaling are omitted. We shall focus on boundedness, Moyal’s
formula and inversion.

Lemma 3.1. (Relation with n-dimensional STFT)

VM
φ [ f ](w, u)

=
1

(2π)n/2
√
|det(B)|

∫
Rn

f (x)φ(x − u)e
i(wT DB−1w+xT B−1Ax−2wT B−T x)

2 dx
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=
ei wT DB−1w

2

(2π)n/2
√
|det(B)|

∫
Rn

e
i(xT B−1Ax)

2 f (x)φ(x − u)e−i(B−1w)T xdx

= ei wT DB−1w
2 Vφ[H](B−1w, u),

whereVφ[ f ] represents an n-dimensional STFT given in Definition 2.1.
And

H(x) =
1

√
|det(A)|

e
i(xT B−1Ax)

2 f (x). (3.6)

Next we prove the lemma that is very important in establishing various uncertainty principles in
Section 4.

Lemma 3.2. Let f ∈ L2(Rn) and F(x) = e
i(xT B−1Ax)

2 f (x)φ(x − u), then we have following relationship
between n-dimensional FT and ST-FMT:

|F [F](w)| =
√
|det(B)||VM

φ [ f ](Bw, u)|. (3.7)

Proof. From (3.1), we have

VM
φ [ f ](w, u)

=
1

(2π)n/2
√
|det(B)|

∫
Rn

f (x)φ(x − u)e
i(wT DB−1w+xT B−1Ax−2wT B−T x)

2 dx

=
ei wT DB−1w

2

(2π)n/2
√
|det(B)|

∫
Rn

e
i(xT B−1Ax)

2 f (x)φ(x − u)e−i(B−1w)T xdx

=
1

√
|det(B)|

ei wT DB−1w
2 F [F](B−1w).

On changing w = Bw and taking the modulus in (3.8), we get√
|det(B)||VM

φ [ f ](Bw, u)| = |F [F](w)|,

which completes the proof. �

Remark 3.1. If we take F0(x) = e
i(xT B−1Ax)

2
√

det(B)
f (x)φ(x − u), then the above lemma yields

|F [F0](w)| = |LM[ f ](Bw)|. (3.8)

Theorem 3.2. (Boundedness) Let f , φ ∈ L2(Rn), where φ is a non-zero window function, then we have∣∣∣VM
φ [ f ](w, u)

∣∣∣ ≤ 1
(2π)n/2

√
|det(B)|

‖ f ‖L2(Rn)‖φ‖L2(Rn).
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Proof. By using the Cauchy-Schwarz inequality in Definition 3.1, we have∣∣∣VM
φ [ f ](w, u)

∣∣∣2
=

∣∣∣∣∣∫
Rn

f (x)φ(x − u)KM(x,w)dx
∣∣∣∣∣2

≤

(∫
Rn

∣∣∣ f (x)φ(x − u)KM(x,w)
∣∣∣ dx

)2

=

(
1

(2π)n/2
√
|det(B)|

∫
Rn

∣∣∣∣∣ f (x)φ(x − u)e
i(wT DB−1w+xT B−1Ax−2wT B−T x)

2

∣∣∣∣∣ dx
)2

=

(
1

(2π)n/2
√
|det(B)|

∫
Rn

∣∣∣ f (x)φ(x − u)
∣∣∣ dx

)2

=
1

(2π)n|det(B)|

(∫
Rn

∣∣∣ f (x)φ(x − u)
∣∣∣ dx

)2

=
1

(2π)n|det(B)|

(∫
Rn
| f (x)|2 dx

) (∫
Rn

∣∣∣φ(x − u)
∣∣∣2 dx

)
=

1
(2π)n|det(B)|

‖ f ‖2L2(Rn)‖φ‖
2
L2(Rn).

On further simplification, we obtain∣∣∣VM
φ [ f ](w, u)

∣∣∣ ≤ 1
(2π)n/2

√
|det(B)|

‖ f ‖L2(Rn)‖φ‖L2(Rn),

which completes the proof. �

In the following theorem, we show that the proposed ST-FMT is reversible in the sense that the
input signal f can be recovered easily from the transformed domain.

Theorem 3.3. (Inversion) For any fixed window function φ ∈ L2(Rn). Then, any f ∈ L2(Rn) can be
reconstructed by the formula

f (x) =
1

‖φ(x)‖2

∫
Rn

∫
Rn
VM

φ [ f ](w, u)φ(x − u)KM−1(x,w)dwdu. (3.9)

Proof. From (3.4), we have

f (x)φ(x − u) = LM−1

{
VM

φ [ f ](w, u)
}

= f (x)φ(x − u)

=

∫
Rn
VM

φ [ f ](w, u)KM−1(x,w)dw.

Multiplying both sides of the last equation by φ(x − u) and integrating with respect to du, yields∫
Rn

f (x)φ(x − u)φ(x − u)du =

∫
Rn

∫
Rn
VM

φ [ f ](w, u)KM−1(x,w)φ(x − u)dwdu

AIMS Mathematics Volume 8, Issue 12, 28951–28975.
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Rn

f (x)|φ(x − u)|2du =

∫
Rn

∫
Rn
VM

φ [ f ](w, u)φ(x − u)KM−1(x,w)dwdu

f (x)‖φ(x)‖2 =

∫
Rn

∫
Rn
VM

φ [ f ](w, u)φ(x − u)KM−1(x,w)dwdu,

which implies

f (x) =
1

‖φ(x)‖2

∫
Rn

∫
Rn
VM

φ [ f ](w, u)φ(x − u)KM−1(x,w)dwdu.

�

Theorem 3.4. (Moyal’s formula) LetVM
φ1

[ f ](w, u andVM
φ2

[g](w, u) be the ST-FMT transforms of f and
g, respectively. Then, we have〈

VM
φ1

[ f ](w, u),VM
φ2

[g](w, u)
〉

= 〈 f , g〉L2(Rn)〈φ1, φ2〉L2(Rn). (3.10)

Proof. 〈
VM

φ1
[ f ](w, u),VM

φ2
[g](w, u)

〉
=

∫
Rn

∫
Rn
VM

φ1
[ f ](w, u)VM

φ2
[g](w, u)dwdu

=

∫
Rn

∫
Rn
VM

φ1
[ f ](w, u)

∫
Rn

g(x)φ2(x − u)KM(x,w)dx
 dwdu

=

∫
Rn

∫
Rn

∫
Rn
VM

φ1
[ f ](w, u)KM(x,w).g(x)φ2(x − u)dxdudw

=

∫
Rn

∫
Rn

[∫
Rn
VM

φ1
[ f ](w, u)KM(x,w)dw

]
g(x)φ2(x − u)dxdu.

Now applying (3.4) in the above equation, we obtain〈
VM

φ1
[ f ](w, u),VM

φ2
[g](w, u)

〉
=

∫
Rn

∫
Rn

f (x)φ1(x − u).g(x)φ2(x − u)dxdu

=

∫
Rn

f (x)g(x)dx
∫
Rn
φ1(x − u)φ2(x − u)du

= 〈 f , g〉L2(Rn)〈φ1, φ2〉L2(Rn),

which completes the proof. �

From the above theorem, we obtain the following consequences:
(i) If φ1 = φ2, then 〈

VM
φ [ f ](w, u),VM

φ [g](w, u)
〉

= ‖φ‖L2(Rn)〈 f , g〉L2(Rn). (3.11)
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(ii) If f = g and φ1 = φ2, then〈
VM

φ [ f ](w, u),VM
φ [ f ](w, u)

〉
= ‖φ‖L2(Rn)‖ f ‖L2(Rn). (3.12)

(iii) If f = g and φ1 = φ2 = 1, then〈
VM

φ [ f ](w, u),VM
φ [ f ](w, u)

〉
= ‖ f ‖L2(Rn). (3.13)

Equation (3.13) states that the proposed ST-FMT (3.1) becomes an isometry from L2(Rn) into L2(Rn).
In other words, the total energy of a signal computed in the short-time non-seperable linear canonical
domain is equal to the total energy computed in the spatial domain.

Remark 3.5. Suppose that ‖ f ‖2L2(Rn) = 1 and ‖g‖2L2(Rn) = 1. Then (3.12) gives∫
Rn

∫
Rn
VM

φ [ f ](w, u)dwdu = 1. (3.14)

Equation (3.14) is known as the radar uncertainty principle in the ST-FMT domain. It is easily seen
that the functionVM

φ [ f ](w, u) cannot be concentrated arbitrarily close to the origin.

4. N-dimensional uncertainty principles for the short-time free metaplectic transform

The uncertainty principle lies at the heart of harmonic analysis, which asserts that “the
position and the velocity of a particle cannot be determined precisely at the same time.” Authors
in [32] studied various uncertainty principles associated with non-seperable LCT. Since ST-FMT is
the generalized version of FMT and keeping in view the fact that the theory of UP’s for the short-
time free metaplectic transform is yet to be explored exclusively, it is natural and interesting to study
different forms of UP’s in the ST-FMT domain.

4.1. Pitt’s inequality

The Pitt’s inequality in the Fourier domain expresses a fundamental relationship between a
sufficiently smooth function and the corresponding Fourier transform [26]. The Pitt’s inequality
introduced in [32] can be extended to the free metaplectic transformation domain. We here extend
it to the ST-FMT domain.

Lemma 4.1. (Pitt’s inequality for the FMT [35]) Let f ∈ S(Rn) the Schwartz class in L2(Rn), then we
have the inequality ∫

Rn
|w|−α|LM[ f ](w)|2dw ≤ Cα|det(B)|−α

∫
Rn
|x|α| f (x)|2dx,

where Cα = πα
[
Γ
(

n−α
4

)
/Γ

(
n+α

4

)]2
and 0 ≤ α < n.

Based on Pitt’s inequality for the FMT, we obtain Pitt’s inequality for the ST-FMT.

Theorem 4.1. (Pitt’s inequality for the ST-FMT) Under the assumptions of Lemma 4.1, we have∫
Rn

∫
Rn
|w|−α|VM

φ [ f ](w, u)|2dwdu (4.1)

= Cα|det(B)|−α‖φ‖2L2(Rn)

∫
Rn
|x|α| f (x)|2dx. (4.2)
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Proof. Let f φu (x) = f (x)φ(x − u), then by virtue of (3.3), we have∫
Rn
|w|−α|VM

φ [ f ](w, u)|2dw =

∫
Rn
|w|−α|LM[ f φu (x)]|2dw.

Now applying Lemma 4.1 to the above equation, we obtain∫
Rn
|w|−α|VM

φ [ f ](w, u)|2dw

≤ Cα|det(B)|−α
∫
Rn
|x|α| f φu (x)|2dx

≤ Cα|det(B)|−α
∫
Rn
|x|α| f (x)φ(x − u)|2dx.

(4.3)

On integrating both sides of (4.3) with respect to du, we have∫
Rn

∫
Rn
|w|−α|VM

φ [ f ](w, u)|2dwdu

≤ Cα|det(B)|−α
∫
Rn

∫
Rn
|x|α| f (x)φ(x − u)|2dxdu

= Cα|det(B)|−α‖φ‖2L2(Rn)

∫
Rn
|x|α| f (x)|2dx,

which completes the proof. �

4.2. Lieb’s UP

Here we shall establish Lieb’s uncertainty principle for the ST-FMT by using the relation between
ST-FMT with the short-time Fourier transform in L2(Rn).

Theorem 4.2. (Lieb’s) Let φ, f ∈ L2(Rn) and 2 ≤ p < ∞. Then the following inequality holds:∫
Rn

∫
Rn
|VM

φ [ f ](w, u)|pdwdx ≤
2
p

|B|

|det(A)|p/2
(‖ f ‖L2(Rn)‖φ‖L2(Rn))p.

Proof. For every f ∈ S(Rn) ⊆ L2(Rn), the Leib’s inequality for the STFT states that∫
Rn

∫
Rn
|Vφ[ f ](w, u)|pdwdx ≤

2
p

(
‖ f ‖L2(Rn)‖φ‖L2(Rn)

)p
, (4.4)

where Vφ[ f ](w, u) denotes the STFT of f given by (2.1) and S(Rn) is the Schwartz class in L2(Rn).
To obtain an analogue of the Leib’s inequality for the ST-FMT, we replace f in the above equation
by H (defined in 2.12), ∫

Rn

∫
Rn
|Vφ[H](w, u)|pdwdx

≤
2
p

(
‖H‖L2(Rn)‖φ‖L2(Rn)

)p
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=
2
p


∫
Rn

∣∣∣∣∣∣ 1
√
|det(A)|

e
i(xT B−1Ax)

2 f (x)

∣∣∣∣∣∣2 dx

1/2

‖φ‖L2(Rn)


p

. (4.5)

Setting w = B−1w in (4.5), we get

∫
Rn

∫
Rn
|B−1||Vφ[H](B−1w, u)|pdwdx

≤
2
p

1
|det(A)|p/2

(∫
Rn
| f (x)|2 dx

)1/2

‖φ‖L2(Rn)

p

. (4.6)

Now using Lemma 3.1, we obtain∫
Rn

∫
Rn
|B−1||e

−iwT DB−1w
2 VM

φ [ f ](w, u)|pdwdx

≤
2
p

1
|det(A)|p/2

(∫
Rn
| f (x)|2 dx

)1/2

‖φ‖L2(Rn)

p

.

On further simplifying, we have∫
Rn

∫
Rn
|VM

φ [ f ](w, u)|pdwdx

≤
2|B|

p
1

|det(A)|p/2

(∫
Rn
| f (x)|2 dx

)1/2

‖φ‖L2(Rn)

p

=
2
p

|B|

|det(A)|p/2
(‖ f ‖L2(Rn)‖φ‖L2(Rn))p,

which completes the proof.
�

4.3. Heisenberg’s UP

In [32], authors introduced Heisenberg’s UP to observe the lower bound of uncertainty
corresponding to the free metaplectic transformation. We extend it to the proposed Heisenberg’s UP
for the ST-FMT.

Theorem 4.3. (Heisenberg’s UP) LetVM
φ [ f ] be the short-time free metaplectic transform of any non-

trivial function f ∈ L2(Rn) with respect to a real free symplectic matrix M = (A, B : C,D), then the
following inequality holds:{∫

Rn

∫
Rn
|w|2

∣∣∣VM
φ [ f ](w, u)

∣∣∣2 dw
}1/2 {∫

Rn
x2 | f (x)|2 dx

}1/2

≥
nσmin(B)

4π
‖ f ‖2L2(Rn)‖φ‖L2(Rn). (4.7)
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Proof. For any f ∈ L2(Rn) the Heisenberg–Pauli–Weyl uncertainty inequality for the FMT domain is
given by [32]: ∫

Rn
x2| f (x)|2dx

∫
Rn
|w|2|LM[ f ](w)|2dw ≥

n2σ2
min(B)

16π2

{∫
Rn
| f (x)|2dx

}2

.

Using the inversion of FMT (2.6) into the (2.8), above inequality becomes∫
Rn

x2 |LM−1{LM[ f ](w)}|2 dx
∫
Rn
|w|2 |LM[ f ](w)|2 dw

≥
n2σ2

min(B)
16π2

{∫
Rn
|LM[ f ](w)|2 dw

}2

,

sinceVM
φ [ f ] ∈ L2(Rn), therefore replacing LM[ f ](w) byVM

φ [ f ] ∈ L2(Rn), we obtain∫
Rn

x2
∣∣∣LM−1{VM

φ [ f ](w, u)}
∣∣∣2 dx

∫
Rn
|w|2

∣∣∣VM
φ [ f ](w, u)

∣∣∣2 dw

≥
n2σ2

min(B)
16π2

{∫
Rn

∣∣∣VM
φ [ f ](w, u)

∣∣∣2 dw
}2

.

First taking the square of the above equation and then integrating both sides with respect du, we obtain∫
Rn

{∫
Rn

x2
∣∣∣LM−1{VM

φ [ f ](w, u)}
∣∣∣2 dx

}1/2 {∫
Rn
|w|2

∣∣∣VM
φ [ f ](w, u)

∣∣∣2 dw
}1/2

du

≥
nσmin(B)

4π

∫
Rn

∫
Rn

∣∣∣VM
φ [ f ](w, u)

∣∣∣2 dwdu.

As a consequence of the Cauchy–Schwartz’s inequality and Fubini theorem, the above inequality yields{∫
Rn

∫
Rn

x2
∣∣∣LM−1{VM

φ [ f ](w, u)}
∣∣∣2 dxdu

}1/2 {∫
Rn

∫
Rn
|w|2

∣∣∣VM
φ [ f ](w, u)

∣∣∣2 dw
}1/2

≥
nσmin(B)

4π

∫
Rn

∫
Rn

∣∣∣VM
φ [ f ](w, u)

∣∣∣2 dwdu.

Now using (3.4) and (3.12) the above equation, we have{∫
Rn

∫
Rn

x2
∣∣∣ f (x)φ(x − u)

∣∣∣2 dxdu
}1/2 {∫

Rn

∫
Rn
|w|2

∣∣∣VM
φ [ f ](w, u)

∣∣∣2 dw
}1/2

≥
nσmin(B)

4π
‖φ‖2L2(Rn)‖ f ‖

2
L2(Rn).

Simplifying, we obtain{
‖φ‖2L2(Rn)

∫
Rn

x2 | f (x)|2 dx
}1/2 {∫

Rn

∫
Rn
|w|2

∣∣∣VM
φ [ f ](w, u)

∣∣∣2 dw
}1/2

≥
nσmin(B)

4π
‖φ‖2L2(Rn)‖ f ‖

2
L2(Rn).

On dividing both sides by ‖φ‖L2(Rn), we will get the desired result. �
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Theorem 4.4. (Hausdorff-Young) Let 1 ≤ p ≤ 2 and q be such that 1
p + 1

q = 1. Then for φ ∈ Lq(Rn) and
f ∈ Lp(Rn), the following inequality holds:

‖VM
φ [ f ](w, u)‖Lq(Rn) ≤ ‖φ‖Lq(Rn)‖ f ‖Lp(Rn). (4.8)

Proof. The definition of FMT 2.2 and procedure defined in Theorem 5.1 [36] together leads to

‖LM[ f ]‖Lq(Rn) ≤ ‖ f ‖Lp(Rn). (4.9)

For p = 1, we get
‖LM[ f ]‖L∞(Rn) ≤ ‖ f ‖L1(Rn). (4.10)

Now using (4.10) and taking ‖φ‖Lq(Rn) = 1, Eq (3.3) yields

‖VM
φ [ f ](w, u)‖L∞(Rn) = ‖LM{ f (x)φ(x − u)}‖L∞(Rn)

≤ ‖{ f (x)φ(x − u)}‖L1(Rn)

≤ ‖ f ‖L1(Rn)‖φ‖L∞(Rn)

= ‖ f ‖L1(Rn).

Now for p = 2, we obtain
‖VM

φ [ f ](w, u)‖L2(Rn) ≤ ‖ f ‖L2(Rn).

By Riesz-Thorin interpolation theorem, we have

‖VM
φ [ f ](w, u)‖Lq(Rn) ≤ ‖ f ‖Lp(Rn). (4.11)

Now setting g =
φ

‖φ‖Lq(Rn)
, where φ is a window function in Lp(Rn), we have by anti-linearity property

of FMT

VM
g [ f ](w, u) =

1
‖φ‖Lq(Rn

VM
φ [ f ](w, u). (4.12)

On taking φ = g in (4.11), we obtain

‖VM
g [ f ](w, u)‖Lq(Rn) ≤ ‖ f ‖Lp(Rn), (4.13)

which on simplification becomes

‖VM
φ [ f ](w, u)‖Lq(Rn) ≤ ‖φ‖Lq(Rn)‖ f ‖Lp(Rn).

This completes the proof. �

4.4. Logarithmic UP

In 1995, W. Beckner [26] introduced the Logarithmic uncertainty principle. In this subsection we
obtain the concept of Logarithmic uncertainty principle for the short-time free metaplectic transform
as follows:
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Theorem 4.5. (Logarithmic UP) Let φ be a window function in L2(Rn) and let VM
φ [ f ](w, u) ∈

S(Rn), then the short-time free metaplectic transform satisfies the following logarithmic uncertainty
inequality: ∫

Rn

∫
Rn

ln |wB−T ||VM
φ [ f ](w, u)|2dwdu + ‖φ‖2L2(Rn)

∫
Rn

ln |x|| f (x)|2dx

≥

(
Γ′(n/2)
Γ(n/2)

− ln π
)
‖φ‖2L2(Rn)‖ f ‖

2
L2(Rn).

Proof. For any f ∈ S(Rn), the Logarithmic UP for the free metaplectic transform domain is given
by [32]: ∫

Rn
ln |x|| f (x)|2dx +

∫
Rn

ln |wB−T ||LM[ f ](w)|2dw

≥

(
Γ′(n/2)
Γ(n/2)

− ln π
) ∫
Rn
| f (x)|2dx.

Now invoking the inversion formula of the free metaplectic transform and the Parseval’s formula,
we obtain ∫

Rn
ln |x||LM−1{LM[ f ](w)}|2dx +

∫
Rn

ln |wB−T ||LM[ f ](w)|2dw

≥

(
Γ′(n/2)
Γ(n/2)

− ln π
) ∫
Rn
|LM[ f ](w)|2dw.

Since both LM[ f ](w) andVM
φ [ f ](w, u) are in S(Rn), we can replace LM[ f ](w) byVM

φ [ f ](w, u) on both
sides to get ∫

Rn
ln |x||LM−1{VM

φ [ f ](w, u)}|2dx +

∫
Rn

ln |wB−T ||VM
φ [ f ](w, u)|2dw

≥

(
Γ′(n/2)
Γ(n/2)

− ln π
) ∫
Rn
|VM

φ [ f ](w, u)|2dw.

Integrating above inequality with respect du on both sides and then by virtue of Fubini’s theorem,
we have

∫
Rn

∫
Rn

ln |x||LM−1{VM
φ [ f ](w, u)}|2dxdu +

∫
Rn

∫
Rn

ln |wB−T ||VM
φ [ f ](w, u)|2dwdu

≥

(
Γ′(n/2)
Γ(n/2)

− ln π
) ∫
Rn

∫
Rn
|VM

φ [ f ](w, u)|2dwdu.

Now using (3.4) and (3.12) in thef above inequality, we have∫
Rn

∫
Rn

ln |wB−T ||VM
φ [ f ](w, u)|2dwdu +

∫
Rn

∫
Rn

ln |x|| f (x)φ(x − u)|2dxdu

≥

(
Γ′(n/2)
Γ(n/2)

− ln π
)
‖φ‖2L2(Rn)‖ f ‖

2
L2(Rn).
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Further simplifying, we obtain the desired result as∫
Rn

∫
Rn

ln |wB−T ||VM
φ [ f ](w, u)|2dwdu + ‖φ‖2L2(Rn)

∫
Rn

ln |x|| f (x)|2dx

≥

(
Γ′(n/2)
Γ(n/2)

− ln π
)
‖φ‖2L2(Rn)‖ f ‖

2
L2(Rn).

�

4.5. Hardy’s UP

G. H. Hardy first introduced the Hardy’s uncertainty principle in 1933 [37]. Hardy’s uncertainty
principle says that it is impossible for a function and its Fourier transform to decrease very rapidly
simultaneously. Hardy’s UP in the Fourier transform domain [38] was given as follows:

Lemma 4.2. (Hardy’s UP in the Fourier transform [38]) If f (x) = O(e−|x|
2/β2

), F [ f ](w) =

O((2π)n/2e−16π2 |w|2/α2
) and 1/αβ > 1/4, then f ≡ 0. If 1/αβ = 1/4, then

f = Ce−|x|
2/β2

,

where C is a constant in C.

Based on Lemma 4.2, we derive the corresponding Hardy’s UP for the ST-FMT.

Theorem 4.6. (Hardy’s UP in the ST-FMT) If f (x) = O(e−|x|
2/β2

), F [ f ](w) = O((2π)n/2e−16π2 |B−1w|2/α2
)

and 1/αβ > 1/4, then f ≡ 0. If 1/αβ = 1/4, then

f = Ce−|x|
2/β2−

i(xT B−1Ax)
2 ,

where C is a constant in C.

Proof. Consider then function F(x) = e
i(xT B−1Ax)

2 f (x)φ(x − u).
On setting u = x then we have

|F(x)| = | f (x)||φ(0)| = O(e−|x|
2/β2

).

Also by Lemma 3.2, we have

|F [F](w)| =
√

det(B)|VM
φ [ f ](Bw, u)|

= O((2π)n/2e−16π2 |B−1w|2/α2
).

Following from Lemma 4.2:
If 1/αβ > 1/4, we have F ≡ 0, which implies f ≡ 0.
Also, if 1/αβ = 1/4, then

F(x) = Ce−|x|
2/β2

implies

f (x) = Ce−|x|
2/β2−

i(xT B−1Ax)
2 .

�

This completes the proof.
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4.6. Beurling’s UP

Beurling’s uncertainty principle is a more general version of Hardy’s uncertainty principle, which is
given by A. Beurling. It implies the weak form of Hardy’s UP. Beurling’s UP in the Fourier transform
domain is as follows:

Lemma 4.3. (Beurling’s UP in the Fourier transform domain [24]) Let f ∈ L2(Rn) and d ≥ 0 satisfy∫
Rn

∫
Rn

| f (x)||F [ f ](w)|
(1 + ‖x‖ + ‖w‖)d e2π|〈x,w〉|dxdw ≤ ∞.

Then
f (x) = P(x)e−π〈Ax,x〉,

where A is a real positive definite symmetric matrix and P(x) is a polynomial of degree < d−n
2 .

According to Lemma 4.3, we derive Beurling’s uncertainty principle for the ST-FMT.

Theorem 4.7. (Beurling’s UP) Let f , φ ∈ L2(Rn) where φ is a nonzero window function andVM
φ [ f ] ∈

L2(Rn) satisfies

∫
Rn

∫
Rn

| f (x)||φ(x − u)||VM
φ [ f ](w, u)|

√
|det(B)|(1 + ‖x‖ + ‖B−1w‖)d

e2π|〈x,B−1w〉|dxdw < ∞, where d ≥ 0.

Then
f (x) = P(x)/φ(x − u)e

−i(xT B−1Ax)
2 −π〈Ax,x〉,

where A is a real positive definite symmetric matrix and P(x) is a polynomial of degree < d−n
2 .

Proof. Consider the function F(x) = e
i(xT B−1Ax)

2 f (x)φ(x − u), then

∫
Rn

∫
Rn

|F(x)||F [F](w)|
(1 + ‖x‖ + ‖w‖)d e2π|〈x,w〉|dxdw

=

∫
Rn

∫
Rn

| f (x)||φ(x − u)|
√
|det(B)||VM

φ [ f ](Bw, u)|

(1 + ‖x‖ + ‖w‖)d e2π|〈x,w〉|dxdw

=

∫
Rn

∫
Rn

| f (x)||φ(x − u)||VM
φ [ f ](w, u)|

√
|det(B)|(1 + ‖x‖ + ‖B−1w‖)d

e2π|〈x,B−1w〉|dxdw < ∞.

Therefore by Lemma 4.3, we have
F(x) = P(x)e−π〈Ax,x〉,

where A is a real positive definite symmetric matrix and P(x) is a polynomial of degree < d−n
2 .

Furthermore f (x) = P(x)/φ(x − u)e
−i(xT B−1Ax)

2 −π〈Ax,x〉. �

This completes the proof.
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4.7. Nazarov’s UP

Nazarov’s UP was first proposed by F. L. Nazarov in 1993 [22]. It measures the localization of
a nonzero function by taking into consideration the notion of support of the function instead of the
dispersion. In other words it argues what happens if a non-trival function and its Fourier transform are
only small outside a compact set. Let us start with Nazarov’s UP for the Fourier transform.

Lemma 4.4. (Nazarov’s UP for the Fourier transform [23]) There exists a constant K, such that for
finite Lebesgue measurable sets S , E ⊂ Rn and for every f ∈ L2(Rn), we have

KeK(S ,E)
(∫
Rn\S
| f (x)|2dx +

∫
Rn\E
|F [ f ](w)|2dw

)
≥

∫
Rn
| f (x)|2dx,

where K(S , E) = Kmin(|S ||E|, |S |1/n, µ(E), µ(S )|E|1/n), µ(S ) is the mean width of S and |S | denotes the
Lebesgue measure of S .

Now we shall establish Nazarov’s UP to the short-time non-sperable linear canonical
transform domain.

Theorem 4.8. (Nazarov’s UP) Let VM
φ [ f ] be the short-time FMT, then under the assumptions of

Lemma 4.4 for every f ∈ L2(Rn), the following inequality holds:

‖φ‖2L2(Rn)

∫
Rn
| f (x)|2dx

≤ KeK(S ,E)
(
‖φ‖2L2(Rn)

∫
Rn\S
| f (x)|2dx +

∫
Rn

∫
Rn(\EB)

|VM
φ [ f ](w, u)|2dwdu

)
.

Proof. Applying Lemma 4.4 to the function F(x) ∈ L2(Rn) defined in Lemma 3.2, we have∫
Rn
|F(x)|2dx ≤ KeK(S ,E)

(∫
Rn\S
|F(x)|2dx +

∫
Rn\E
|F [F](w)|2dw

)
.

Now with the help of Lemma 3.7, we have∫
Rn
| f (x)φ(x − u)|2dx

≤ KeK(S ,E)
(∫
Rn\S
| f (x)φ(x − u)|2dx +

∫
Rn\E
|
√
|det(B)|VM

φ [ f ](Bw, u)|2dw
)
.

Integrating both sides with respect to u, we obtain∫
Rn

∫
Rn
| f (x)φ(x − u)|2dxdu

≤ KeK(S ,E)
∫
Rn

(∫
Rn\S
| f (x)φ(x − u)|2dx +

∫
Rn\E
|
√
|det(B)|VM

φ [ f ](Bw, u)|2dw
)

du.

Implementing Fubini’s theorem, we have

‖φ‖2L2(Rn)

∫
Rn
| f (x)|2dx
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≤ KeK(S ,E)
(
‖φ‖2L2(Rn)

∫
Rn\S
| f (x)|2dx + |det(B)|

∫
Rn

∫
Rn\E
|VM

φ [ f ](Bw, u)|2dwdu
)

= KeK(S ,E)
(
‖φ‖2L2(Rn)

∫
Rn\S
| f (x)|2dx +

∫
Rn

∫
Rn(\EB)

|VM
φ [ f ](w, u)|2dwdu

)
,

which completes the proof. �

Alternative proof. For any function f ∈ L2(Rn) and a pair of finite measurable subsets S and E of Rn,
Nazarov’s uncertainty principle in the linear canonical domain reads [32]

KeK(S ,E)
(∫
Rn\S
| f (x)|2dx +

∫
Rn\EB

|LM[ f ](w)|2dw
)
≥

∫
Rn
| f (x)|2dx, (4.14)

where K(S , E) = Kmin(|S ||E|, |S |1/n, µ(E), µ(S )|E|1/n), µ(.) is the mean width of measurable subset,
and |.| denotes the Lebesgue measure. Moreover, the relationship between the ST-FMT and the FMT
is given by

VM
φ [ f ](w, u) = LM{ f (x)φ(x − u)}(w). (4.15)

Since f (x)φ(x − u) ∈ L2(Rn) then by virtue of (4.14), we have∫
Rn
| f (x)φ(x − u)|2dx

≤ KeK(S ,E)
(∫
Rn\S
| f (x)φ(x − u)|2dx +

∫
Rn\EB

|LM[ f (x)φ(x − u)](w)|2dw
)
.

Using (4.15), we have∫
Rn
| f (x)φ(x − u)|2dx

≤ KeK(S ,E)
(∫
Rn\S
| f (x)φ(x − u)|2dx +

∫
Rn\EB

|VM
φ [ f ](w, u)|2dw

)
.

Integrating both sides with respect to u, we obtain∫
Rn

∫
Rn
| f (x)φ(x − u)|2dxdu

≤ KeK(S ,E)
∫
Rn

(∫
Rn\S
| f (x)φ(x − u)|2dx +

∫
Rn\EB

|VM
φ [ f ](w, u)|2dw

)
du.

On implementing the well known Fubini theorem in above equation, we obtain the desired result as

‖φ‖2L2(Rn)

∫
Rn
| f (x)|2dx

≤ KeK(S ,E)
(
‖φ‖2L2(Rn)

∫
Rn\S
| f (x)|2dx +

∫
Rn

∫
Rn\EB

|VM
φ [ f ](w, u)|2dwdu

)
.

This completes the proof.
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5. Numerical example and potential applications

Using simulation, we will offer an illustrated case in this section to demonstrate the proposed ST-
FMT (3.1) and some potential applications.

We start with an illustrative example as:

Example 5.1. Consider a function given by f (x) = e−x2
1−x2

2 and taking the window function φ(x) =

e
−

(
x2
1
2 +

x2
2
2

)
, which is a well known 2D-Gaussian window function. Then

φ(x − u) = e

(
−

(x2
1+u2

1−2x1u1)
2 −

(x2
2+u2

2−2x2u2)
2

)
. (5.1)

Subsequently, the ST-FMT (3.1) of f (x) with respect to the 2D-Gaussian window function φ(x), and
the real symplectic matrix M = (A, B : C,D) with

A =

(
1 −1
1 1

)
, B =

(
−1
4

−1
4

−1
4

1
4

)
,

C =

(
−3 −6
3 6

)
, D =

(
2 2
−1
2

1
2

)
, (5.2)

is given by

VM
φ [ f ](w, u)

=
1

(2π)
√
|det(B)|

∫
R2

f (x)φ (x − u)e
i(wT DB−1w+xT B−1Ax−2wT B−T x)

2 dx

=
1

(2π)
√
|det(B)|

∫
R2

e−x2
1−x2

2e

(
−

(x2
1+u2

1−2x1u1)
2 −

(x2
2+u2

2−2x2u2)
2

)

×e
i(wT DB−1w+xT B−1Ax−2wT B−T x)

2 dx1dx2.

Moreover, we have

wT DB−1w = (w1 w2)
(
−8 0
0 2

) (
w1

w2

)
= −8w2

1 + 2w2
2, (5.3)

wT B−T x = (w1 w2)
(
−2 −2
2 2

) (
x1

x2

)
= −2(w1 + w2)x1 − 2(w1 − w2)x2, (5.4)

xT B−1Ax = (x1 x2)
(
−4 0
0 4

) (
x1

x2

)
= −4x2

1 + 4x2
2. (5.5)

Plugging Eqs (5.3)–(5.5) in Eq (5.3), we get

VM
φ [ f ](w, u)

=
2
√

2
2π

∫
R2

e−x2
1−x2

2e
−

(
x2
1+u2

1−2x1u1
2

)
−

(
x2
2+u2

2−2x2u2
2

)
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×e
i
2 (−8w2

1+2w2
2+4w1 x1+4w2 x1+4w1 x2−4w2 x2−4x2

1+4x2
2)dx1dx2

=

√
2e
−

(
u2
1+u2

2
2

)
π

ei(−4w2
1+w2

2)
∫
R

e−(
3
2 +2i)x2

1+(2i(w1+w2)+u1)x1dx1

×

∫
R

e−(
3
2−2i)x2

2+(2i(w1−w2)+u2)x2dx2

=
2
√

2
5

e
−

(
(4w2

1−w2
2)i+

u2
1+u2

2
2

)
e

(
(u1+2i(w1+w2))2

6+4i +
(u2+2i(w1−w2))2

6−4i

)
. (5.6)

It is clear from (5.6) that the ST-FMT given in Definition 3.1 can be visualized as a signal with four
parameters w1,w2, u1 and u2. A simultaneous visualization of the ST-FMT in all the four variables is
hardly possible. Therefore, in order to have a sound visualization, some variables have either to be
fixed or eliminated, so that one is restricted to a particular section of the parameter space. This gives
rise to several representations associated with the ST-FMT (3.1).
(i) Position Representation: If VM

φ [ f ](w, u) is solely regarded as a function of the translation
parameter u in (5.6), then the ST-FMT (3.1) yields a position representation systemVM

φ [ f ](., u), which
is widely used in image processing: Shape and contours of objects, pattern recognition, detection of
position, image filtering and so on. The real and imaginary parts of the position representation of
VM

φ [ f ](w, u) for the symplectic matrix M given by (5.2) are presented in Figure 1.
(ii) Frequency Representation: If in VM

φ [ f ](w, u) the translation parameter u is kept constant, then
the ST-FMT (3.1) is regarded as a function of frequency w. The frequency representation system
VM

φ [ f ](w, .) is especially useful in situations where frequency behaviour is important. The real and
imaginary parts of the frequency representation of VM

φ [ f ](w, u) for the symplectic matrix M given
by (5.2) and u = (0, 0) is presented in Figure 2.

Figure 1. Real and imaginary parts of the position of an Example 5.1 for w = (2, 1).
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Figure 2. Real and imaginary parts of the frequency of an Example 5.1 for t = (0, 0).

The UPs in the ST-FMT environment share the same philosophy as the UPs in the FMT
environment. The ST-FMT case is subject to suitably incorporate the window function. The purpose of
this section is to demonstrate the value and significance of the theorems in signal processing through
a few hypothetical applications. The band-widths are frequently estimated using UPs. For example,
if the spread of the signal in the time domain (TM) is known, then the bandwidth of a system that
performs ST-FMT cannot be narrower than n2σ2

min(B)
16T 2

Mπ
2 . Thus, the derived Theorem 4.3 can be used in

the estimation of effective bandwidths in the ST-FMT. Other potential applications can be found in
the estimation of the lower bound of an integral as if a signal in Theorem 4.3 is determined, it is
difficult to obtain the value of the left side of Theorem 4.3 by calculating the integral. However,
an estimation of the left side of Theorem 4.3 can be easily obtained based on Theorem 4.3. The
UPs have some applications in signal recovery. Donoho and Stark [16] studied the problem of signal
recovery. The potential applications can be found in signal modulations and filter design, such as the
methods presented in [39, 40]. Authors in [8] have shown that the uncertainty principle related to the
spread in the FMT domain has an immediate application in the discussion of some well-known optical
propagation models, such as wave propagation through an aperture, free-space propagation and pulse
propagation in optical fibres. The correlative result has been applied to the ST-FMT domain as well.

6. Conclusions

In this paper we presented a novel concept of short-time free metaplectic transform. Based on the
properties of ST-FMT and FMT, the relationship between these two notations are presented. Important
properties such as boundedness, reconstruction formula and Moyals formula are derived. Then, we
extend some different uncertainty principles from quantum mechanics including Lieb’s inequality,
Pitt’s UP, Heisenberg’s UP, Hausdorff-Young inequality, Hardy’s UP, Beurling’s UP, Logarithmic UP
and Nazarov’s UP which have already been well studied in the ST-FMT domain. Finally, we provided
a numerical example and some potential applications of the proposed ST-FMT.
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