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Abstract: The density peaks clustering (DPC) algorithm plays an important role in data mining
by quickly identifying cluster centers using decision graphs to identify arbitrary clusters. However,
the decision graph introduces uncertainty in determining the cluster centers, which can result in an
incorrect number of clusters. In addition, the cut-off distance parameter relies on prior knowledge,
which poses a limitation. To address these issues, we propose an improved automatic density peaks
clustering (ADPC) algorithm. First, a novel clustering validity index called density-distance clustering
(DDC) is introduced. The DDC index draws inspiration from the density and distance characteristics of
cluster centers, which is applicable to DPC and aligns with the general definition of clustering. Based
on the DDC index, the ADPC algorithm automatically selects the suitable cut-off distance and acquires
the optimal number of clusters without additional parameters. Numerical experimental results validate
that the introduced ADPC algorithm successfully automatically determines the optimal number of
clusters and cut-off distance, significantly outperforming DPC, AP and DBSCAN algorithms.
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1. Introduction

Clustering represents a versatile conceptual and algorithmic framework employed in diverse
domains like pattern recognition, image segmentation, data mining and genetic disease detection,
among others [1–3]. The fundamental objective of clustering is to categorize data points into
meaningful clusters based on their similarity characteristics [4]. The overarching objective is to
optimize similarity within clusters while minimizing it between distinct clusters [5, 6]. Over time,
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numerous clustering methods have emerged, encompassing the likes of k-means, AP, SC algorithms
and others [7–9]. However, the performance of most conventional algorithms is constrained when
dealing with datasets that exhibit arbitrary shapes and densities [10–12].

In 2014, the density peaks clustering (DPC) algorithm was introduced on the Science Journal,
presenting two key features for identifying cluster centers [13]. First, cluster centers exhibit higher
local density compared to their neighboring points. Second, cluster centers are positioned at relatively
large distances from each other. By capitalizing on these unique traits, the DPC algorithm effectively
identifies cluster centers through the construction of a decision graph. In addition, DPC does not
require iterative processes or excessive input parameters [14]. As a simplistic yet highly efficient
density-based clustering technique, DPC has played an eminent role in diverse domains, including data
mining, community exploration, genetic disease investigation, biology and other related areas [15–19].

However, the DPC algorithm has a limitation as it may inaccurately estimate the number of
clusters when selecting cluster centers based on the decision graph [20]. In addition, determining the
appropriate input parameter dc for satisfactory clustering performance requires prior knowledge [21].
In recent years, several approaches have been proposed to address these limitations. Xu et al. [22]
utilized a linear fitting method based on the distribution of parameters to select all potential centers.
Chen et al. [23] employed a linear regression model and residuals analysis to automatically determine
the cluster centers. Liu et al. [24] introduced the ADPC-KNN algorithm, which selects initial cluster
centers and then aggregates density-reachable sub-clusters. Masud et al. [25] presented the I-nice
algorithm, inspired by human observation of mountains during field exploration to automatically detect
the number of clusters and select their centers. d’Errico et al. [26] proposed that density peaks can
be automatically identified using a point adaptive k-nearest neighbor density estimator. Despite the
theoretical and practical advantages of the algorithms mentioned above, they introduce new parameters
to facilitate obtaining an exact number of clusters. Alternatively, the algorithms may be complex and
not scalable. Consequently, the challenge of automatically obtaining the optimal number of clusters
and a suitable parameter persists.

To address the challenges faced by the DPC algorithm, we present an innovative automatic density
peaks clustering (ADPC) algorithm. First, based on the Silhouette Coefficient [27], a clustering index
named density-distance cluster (DDC) is defined. Then, ADPC introduces the DDC index to identify
accurate number of clusters and select a suitable parameter automatically. The new features of the
ADPC algorithm are (i) a novel DDC index is proposed based on the characteristics of the DPC
algorithm and while simultaneously fulfilling the clustering definition. The DDC index is specifically
designed to be appropriate for DPC, and (ii) suitable parameter dc is selected according to the optimal
DDC value. Thus, ADPC detects the number of a clusters automatically without any additional
parameters.

To summarize, the major contributions of our work are

• The proposed novel clustering validity index leverages both density and distance characteristics
of cluster centers. Notably, this index is not only suitable for the DPC algorithm but also aligns
harmoniously with the broader definition of clustering.
• An improved automatic density peaks clustering algorithm is proposed based on the DDC index,

which automatically selects a suitable cut-off distance and determines the optimal number of
clusters without the need for additional parameters.
• The experimental results validate the effectiveness of the ADPC algorithm in automatically
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determining the optimal number of clusters and cut-off distance.

The subsequent chapters of this paper are structured as follows: Section 2 presents the fundamental
principles of the DPC algorithm. Section 3 introduces the innovative DDC index and details the
enhanced ADPC algorithm. In Section 4, experiments are designed to demonstrate the efficiency of
the ADPC algorithm. A comparison of the DPC, AP and DBSCAN algorithms is conducted on diverse
datasets. The paper concludes with a summary of the key findings and generalization and outlines
potential challenges for future research.

2. Related works

This section introduces the major ideas of the Silhouette Coefficient and the DPC algorithm.

2.1. Silhouette coefficient

Clustering algorithms are evaluated based on two significant factors: Within-cluster similarity and
between-cluster dissimilarity. As far as we know, the Silhouette Coefficient is a clustering validity
index that reflects the compactness and separation of clusters [27,28]. Its value rang is between [-1, 1],
and the larger the indicator value, the better the clustering effect of the clustering results.

Assuming that dataset X = {x1, x2, · · · , xn} has been divided into C = {C1,C2, · · · ,Ck} clusters
through clustering algorithms. To calculate the total Silhouette Coefficient of the clustering result,
we first calculate the Silhouette Coefficient of each sample point in the dataset separately. First, the
average distance between point and other points in the same cluster is calculated as

a(i) =
1

|Ci| − 1

∑
x j∈Ci,i, j

d(xi, x j), (2.1)

where d(xi, x j) represents the Euclidean distance between xi and x j. a(i) determines the degree to which
xi is assigned to this cluster. Second, calculate the minimum average distance from xi to other clusters

b(i) = min
m,i

1
|Cm|

∑
xm∈Cm

d(xi, xm), (2.2)

b(i) represents the dissimilarity between clusters. Third, the Silhouette Coefficient of xi is defined as

s(i) =
b(i) − a(i)

max{a(i), b(i)}
. (2.3)

It can be seen that the closer s(i) approaches 1, the better the compactness and separation of the
clustering results. Finally, average the Silhouette Coefficient of all points to obtain the total Silhouette
Coefficient of the clustering result

S C =
1
n

n∑
i=1

s(i). (2.4)

To calculate the Silhouette Coefficient for each sample point, O(|Ci| − 1) and O(n − |Ci|) time
complexity are required to obtain a(i) and b(i), respectively. An iteration requires calculating the
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entire data point to obtain S C, and the distance between two data points will be calculated. Therefore,
the total time complexity of the Silhouette Coefficient is O(n2).

The Silhouette Coefficient validity reflects the compactness of datasets within clusters and the
separation between clusters. However, the computational complexity of the Silhouette Coefficient
is high. Therefore, we design a new clustering index DDC based on the concept of the Silhouette
Coefficient for DPC, which not only meets the density and distance characteristics of DPC, but also
meets the definition of clustering.

2.2. DPC algorithm

The DPC algorithm is introduced as an efficient method for identifying cluster centers and
creating arbitrary clusters [29]. It is a straightforward approach with substantial potential, leading to
significant interest from the research community [30–32]. The algorithm is built upon two fundamental
assumptions:
Assumption 1. Cluster centers exhibit a higher density compared to their neighboring data points.
Local density ρi is calculated for each data as

ρi =
∑

j
χ
(
di j − dc

)
,

χ (x) =

{
1, x < 0,
0, x ≥ 0,

(2.5)

where di j involves the dissimilarity between objects xi and x j, computed using the Euclidean distance.
The cut-off distance, dc, is a parameter in the DPC algorithm. It is defined as the 2% percentile value
of the similarity matrix, which is obtained by sorting the similarities in ascending order. The cutoff

distance serves as a threshold to determine the neighborhood of each data point. In addition, ρi can be
obtained using a Gaussian kernel function when dealing with a small dataset:

ρi =
∑

j

exp
−di j

2

dc
2

 . (2.6)

Assumption 2. The distance between any two cluster centers is relatively large. For each data point, it
calculates the algorithm calculates the distance to these cluster centers

δi = min
j:ρ j>ρi

(
di j

)
. (2.7)

For the data with the highest density, the following can be observed:

δi = max
j

(
di j

)
. (2.8)

Once the local density ρ and the minimum distance to higher-density neighbors δ are calculated
for all data points, the DPC algorithm constructs a decision graph. Figure 1(a) visually represents this
decision graph, where ρ is plotted on the abscissa (x-axis), and δ is plotted on the ordinate (y-axis). The
decision graph provides valuable insights into the distribution of data points and helps in identifying
cluster centers. Subsequently, the DPC algorithm selects the cluster centers based on Figure 1(b). The
decision graph is generated using parameter γ, which is computed as follows:

γi = ρi · δi. (2.9)
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Figure 1. Different methods of drawing the decision graph; (a) Decision graph based on ρ
and δ; (b) Decision graph based on γ.

Subsequently, in Figure 1(a) or Figure 1(b), data points with higher values of ρ and δ and larger
values of γ can be identified as cluster centers. These points are distinguishable as they are more
separated from the remaining data points. In the figures, the colored objects represent the identified
cluster centers. Finally, the DPC algorithm assigns the non-center points to their nearest neighbors
with higher densities [33]. This step ensures that each data point is allocated to the cluster represented
by its nearest higher-density neighbor, thus completing the clustering process.

It is worth noting that the DPC algorithm’s key advantage lies in its decision graph, which plays a
crucial role in identifying cluster centers based on the parameters ρ and δ, or relying solely on γ [34].
However, one limitation of the decision graph is that the cluster centers it identifies may not always
be distinctly separate from the remaining data points, making it challenging to precisely define the
boundaries of larger clusters [35]. Consequently, correctly determining cluster centers solely based on
a decision graph can be a non-trivial task [36]. Additionally, the performance of the DPC algorithm
can be influenced by the selection of the parameter dc. Imperfect choices of dc may fail to highlight
the characteristics of cluster centers, leading to suboptimal clustering results [37]. The appropriate
selection of dc is crucial for achieving accurate and meaningful cluster assignments.

For example, Figure 2(a)–(f) show different decision graphs generated by the DPC algorithm on
the Aggregation dataset, which consists of 7 clusters [13]. In Figure 2(a)–(c), the decision graphs are
constructed using ρ and δ with dc = 1, dc = 2, and dc = 4, respectively. Figure 2(d)–(f) demonstrate
decision graphs drawn using γwith dc = 1, dc = 2 and dc = 4, respectively. Figure 2(a) and (d) illustrate
the challenge of accurately identifying the actual number of cluster centers, regardless of whether the
decision graph is based on ρ and δ or on γ. The larger values of ρ, δ or γ can lead to ambiguity
in determining the cluster centers. As observed in Figure 2(b) and (e), when dc = 2, according to the
DPC algorithm, 10 data points exhibit both larger ρ and δ values or have larger γ values. Consequently,
misclassification can occur, resulting in the division of the Aggregation dataset into 10 clusters instead
of the correct 7 clusters. Figure 2(c) and (f) demonstrate that by setting dc = 4, seven cluster centers
are identified, accurately capturing the underlying seven clusters in the Aggregation dataset. This
emphasizes the need for an appropriate selection of the parameter dc in order to obtain satisfactory
clustering results with the DPC algorithm. In summary, Figure 2(a)–(f) provide further evidence of
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the limitations of the DPC algorithm, as it struggles to automatically select the optimal number of
cluster centers. Additionally, the selection of dc plays a critical role in achieving desirable clustering
outcomes.

To address the limitations mentioned above, this paper introduces an improved ADPC algorithm
based on the DDC index. To obtain DDC values iteratively, the DPC algorithm is executed multiple
times using different values of the parameter dc and varying the number of cluster centers. Finally,
satisfactory clustering results can be achieved by identifying the optimal DDC index, along with
selecting a suitable value for the parameter dc and determining the optimal number of clusters.
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Figure 2. Decision graphs of DPC on Aggregation; (a) Decision graph based on ρ and δ with
dc = 1; (b) Decision graph based on ρ and δ with dc = 2; (c) Decision graph based on ρ and δ
with dc = 4; (d) Decision graph based on γ with dc = 1; (e) Decision graph based on γ with
dc = 2; (f) Decision graph based on γ with dc = 4.

3. ADPC algorithm

3.1. Design of DDC index

Absolutely, assessing within-cluster similarity and between-cluster dissimilarity are essential
aspects when evaluating clustering algorithms [38]. In the case of the DPC algorithm, the
optimal partitioning of data should maximize within-cluster similarity while minimize between-
cluster similarity [39]. Furthermore, DPC is grounded on density and distance assumptions, wherein
cluster centers exhibit higher local density and are relatively distant from each other. Consequently,
to effectively capture within-cluster compactness and between-cluster separation in datasets while

AIMS Mathematics Volume 8, Issue 12, 28926–28950.



28932

adhering to the characteristics of higher local density and larger distance, a novel clustering validity
index, known as the density-distance clustering (DDC) index, is introduced.

Let X= {x1, x2, · · · , xn} represents the set of data samples. Assuming that there are n samples
clustered into k clusters, we denote the cluster center in the ith cluster as ui. In the subsequent
definitions, d(xi, x j) denotes the dissimilarity between xi and x j, which is computed using the Euclidean
distance.

Definition 1. We take the average similarity between each data samples of ith cluster and its
corresponding cluster center ui as the within-cluster similarity a(i):

a(i) =
1
|Ci|

|Ci |∑
j=1

d(x j, ui), (3.1)

where |Ci| represents the scale of the ith cluster, the smaller a(i) is, the higher the local density is.

Definition 2. The between-cluster similarity, denoted as b(i), is defined as the minimum similarity
between the cluster center ui of the ith cluster and each cluster center um of other clusters. It can be
calculated as:

b(i) = min
1≤m≤k,m,i

d(ui, um). (3.2)

The larger b(i) is, the larger the relative distance between cluster centers is.

Definition 3. To optimize the within-cluster similarity while minimizing the between-cluster similarity,
we define the DDC(i) of the ith cluster as follows:

DDC(i) =
b(i) − a(i)

max(b(i), a(i))
. (3.3)

The denominator is set to ensure that the DDC(i) ranges from -1 to 1.

Definition 4. We define the average DDC(i) of the k clusters obtained as the DDC of this data partition:

DDCk =
1
k

k∑
i=1

DDC(i). (3.4)

Definition 5. The number of clusters corresponding to the maximum average DDC value is determined
as the optimal number of clusters, denoted as k:

kbest = arg max
3≤k<n

{DDCk}. (3.5)

The DDC index is illustrated in Figure 3, which depicts the clustering of all data samples into three
clusters: A, B and C. The cluster centers corresponding to these clusters are denoted as a, b and c,
respectively. In addition, let’s assume that there are eight data points in cluster A. Consequently, we
can assess the within-cluster similarity of cluster A by computing the average distance between each
data sample and the cluster center a.

a(A) =
d(a, a1) + d(a, a2) + d(a, a3) + d(a, a4) + d(a, a5) + d(a, a6) + d(a, a7) + d(a, a8)

8
. (3.6)
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Figure 3. Illustration of DDC index.

The between-cluster similarity of cluster A can be measured by determining the minimum similarity
between the cluster center a and the other cluster centers b and c:

b(A) = min(d(a, b), d(a, c)). (3.7)

Then, we calculate DDC(A) for cluster A according to (3.3). As for calculating DDC(A), we can obtain
DDC(B) and DDC(C). The DDC of this partition is the average of DDC(A), DDC(B) and DDC(C)
according to (3.4):

DDC3 =
DDC(A) + DDC(B) + DDC(C)

3
. (3.8)

The DDC index is designed to effectively optimize the within-cluster similarity while minimizing
the between-cluster similarity by incorporating both local density and distance characteristics in DPC.
In Figure 3, a(i) represents intra-class point aggregation, indicating how closely the points within
a cluster are grouped together. A smaller value of a(i) signifies higher similarity among the points
within the cluster, indicating a higher local density around that cluster center. This observation aligns
with Assumption 1 of the DPC algorithm. On the other hand, b(i) represents inter-class distinctions,
indicating the dissimilarity between objects in different clusters. A higher value of b(i) implies greater
distinctiveness between the clusters, indicating that the cluster center is farther away from other centers.
This aligns with the distance assumption of the DPC algorithm. In summary, the DDC index not only
fulfills the objectives of the clustering algorithm by optimizing similarity and dissimilarity measures
but also aligns with the two fundamental assumptions of the DPC algorithm. It can be considered a
novel clustering index suitable for the DPC algorithm.

3.2. Main processes of ADPC algorithm

Using the DDC index as a foundation, we propose the Automatic Density Peaks Clustering (ADPC)
algorithm to enhance the DPC algorithm. Algorithm 1 summarizes the steps involved in the ADPC
algorithm.
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Algorithm 1 ADPC algorithm
Input: Dataset X = {x1, x2, · · · , xn};
Output: The optimal number of clusters and optimal dc and the clustering result.
Step 1: For k = 3 to k =

√
n;

a: Select one unvisited value from dc = [1, 2, 4];
b: Use (2) to calculate ρi for each data sample;
c: Use (3) and (4) to calculate δi for each data sample;
d: Use (5) to calculate γi for each data sample;
e: Sort γ as a decreasing order;
f: Take k points corresponding to the first γ values as the cluster centers;
g: Class the dataset into k clusters;
h: Use (8) to calculate the DDC value of a single cluster;
i: Use (9) to calculate the average DDC value of k clusters as DDC for this clustering partition;
j: If dc has been not traversed, then go to a;

Step 2: Use (10) to obtain the optimal number of clusters;
Step 3: Output suitable dc and clustering results.

In the ADPC algorithm, there are three major processes. First, it takes the number of clusters k, as an
input parameter. The algorithm allows k to range from 3 to

√
n, where n represents the number of data

samples. Through experience and literature [13, 30], DPC performances satisfactory when dc = 1, or
dc = 2, or dc = 4 generally. To avoid an increase in algorithm complexity, ADPC set dc to be the same
as in DPC. The algorithm performs DPC iteratively with different combinations of k and dc, obtaining
multiple clustering results. Second, after obtaining each clustering result from the DPC process, the
DDC index is calculated for each clustering result. This index quantifies the within-cluster similarity
and between-cluster dissimilarity, considering the density and distance characteristics. It allows for
an objective evaluation of the quality of each clustering result. Finally, based on the calculated DDC
index values, the clustering result with the best DDC value is selected. This indicates the clustering
result that achieves satisfactory performance, with an optimal number of clusters and a suitable dc

value. By considering the DDC index, ADPC aims to find the clustering configuration that maximizes
within-cluster similarity while minimizing between-cluster similarity.

Through these three processes, the ADPC algorithm iteratively explores different combinations of
k and dc, calculates the DDC index for each clustering result and selects the clustering configuration
with the best DDC value. This approach helps in achieving satisfactory clustering performance with
an optimal number of clusters and an appropriate dc value.

3.3. Analysis of ADPC algorithm

The primary principle of the ADPC algorithm is to iteratively search for the best DDC value. The
DDC index is specifically designed to be applicable to the DPC algorithm, considering the local density
and distance characteristics. The best DDC value represents the optimal performance of the clustering
algorithm. This optimal performance corresponds to the ideal number of clusters and parameter values.

Assume that |Ci| is the size of the ith cluster, and k stands for the number of clusters. In the
ADPC algorithm, the time complexity is determined by both the DDC and DPC processes. The major
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time-consuming tasks in DPC include constructing the similarity matrix and calculating density and
distance. Each operation has a time complexity of O(n2), where n is the number of data samples.
Therefore, the total time complexity of DPC is O(n2). As for the DDC process, the time complexity
is determined by both a(i) and b(i). It takes O(|Ci|) to compute a(i) and O(k − 1) to compute b(i).
Since k and |Ci| are typically much smaller than n(|Ci| � n, k � n), the time complexity of DDC is
approximately O(k(|Ci| + k)), ensuring that the algorithm maintains efficiency.

The ADPC algorithm achieves the optimal number of clusters using the novel DDC index and
suitable dc automatically, surpassing the performance of DPC. Additionally, the ADPC algorithm
provides satisfactory clustering results without the need for any parameters, while maintaining the
same level of efficiency as DPC.

4. Experiments and results

4.1. Experimental design

The effectiveness of the proposed ADPC algorithm was demonstrated through extensive
experimentation on a diverse set of datasets, including eight synthetic datasets, eight real-world datasets
and the well-known Olivetti face dataset [40]. Table 1 provides a description of these datasets,
including the number of clusters and the scale, which vary from small to large. To compare the
performance of ADPC with DPC, we also applied a widely used AP algorithm [41] and the DBSCAN
algorithm [42] on the UCI datasets and the Olivetti face dataset. These two algorithms, AP and
DBSCAN, do not require prior determination of cluster centers, thus serving as benchmarks to validate
the superiority of the proposed ADPC algorithm. Furthermore, we provide a discussion on the DDC
index to demonstrate its applicability to the DPC algorithm.

The experiments were conducted on a desktop computer equipped with a 3.10 GHz Intel Core
i5 processor, running the MacOS 10.14.6 operating system and equipped with 4 GB of RAM. The
experiments were executed using MATLAB 2015 as the programming environment.

4.2. Results and discussion

4.2.1. Experiments on synthetic datasets

Table 1 presents the different characteristics of the eight synthetic datasets used in the experiments.
These datasets consist of clusters with various shapes and densities, allowing for a comprehensive
evaluation of clustering algorithm performance. To showcase the effectiveness of our ADPC algorithm
in achieving satisfactory clustering results with the optimal number of clusters and a suitable parameter,
Table 2 presents the number of clusters achieved by different algorithms. Additionally, the value of dc

obtained by ADPC is also included in Table 2.
Given that the datasets are two-dimensional, visualizing the clustering results of the ADPC

algorithm, along with the compared DPC, AP and DBSCAN algorithms, using colored plots
would offer a more straightforward interpretation. This visualization method allows for a clearer
understanding of the performance of each algorithm. Additionally, we have considered the
references [13,41,42] to determine the parameters of the DPC, AP and DBSCAN algorithms. Through
careful selection, we have chosen the optimal parameters for these algorithms to ensure fair and
accurate comparisons in our experiments.
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Table 1. Characteristics of different datasets.

Datasets Samples Attributes Clusters
Aggregation 788 2 7
D31 3100 2 31
S 1765 2 5
Twenty 1000 2 20
Square 1000 2 4
S1 5000 2 15
A3 7500 2 50
S3 5000 2 15
Iris 150 4 3
Seeds 210 7 3
Waveform 5000 21 3
Vertebral 310 6 3
Soybean 47 35 4
X8D5K 1000 8 5
Leuk 72 39 3
Wine 178 13 3
Olivetti face 100 92×112 10

Table 2. Number of clusters on synthetic datasets obtained by different algorithms.

Datasets ADPC/dc DPC AP
Aggregation 7/4 10 17
D31 31/1 31 31
S 5/4 6 27
Twenty 20/4 20 20
Square 4/4 4 20
S1 15/1 15 24
A3 50/1 32 50
S3 15/1 15 53

As shown in Table 2, ADPC effectively determines the optimal number of clusters for the eight
datasets. Additionally, ADPC can determine a suitable value for dc, rather than relying on the default
parameter dc=2 used in DPC. If DPC is applied with dc=2 as described in reference [13], it fails to
produce a reasonable number of clusters for the Aggregation, S and A3 datasets, as indicated by the
decision graph. This means that DPC, relying on visual identification of cluster centers based on a
decision graph, suffers from a significant limitation. Furthermore, the AP and DBSCAN algorithms
only determine the optimal number of clusters for the Twenty dataset. Moreover, these algorithms
require parameter adjustments and are sensitive to the chosen parameters [41, 42]. As a result, ADPC
outperforms DPC, AP and DBSCAN in terms of clustering results, as demonstrated in Figures 4–11.
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Figure 4. Clustering results on Aggregation.

0 5 10 15 20 25 30
0

5

10

15

20

25

30
ADPC

0 5 10 15 20 25 30
0

5

10

15

20

25

30
DPC

0 5 10 15 20 25 30
0

5

10

15

20

25

30
AP

0 5 10 15 20 25 30
0

5

10

15

20

25

30
DBSCAN

Figure 5. Clustering results on D31.
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Figure 7. Clustering results on Twenty.
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Figure 9. Clustering results on S1.

AIMS Mathematics Volume 8, Issue 12, 28926–28950.



28940

0 1 2 3 4 5 6 7

104

0

1

2

3

4

5

6

7
104 ADPC

0 1 2 3 4 5 6 7

104

0

1

2

3

4

5

6

7
104 DPC

0 1 2 3 4 5 6 7

104

0

1

2

3

4

5

6

7
104 AP

0 1 2 3 4 5 6 7

104

0

1

2

3

4

5

6

7
104 DBSCAN

Figure 10. Clustering results on A3.
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Figure 11. Clustering results on S3.
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Figures 4–11 display the clustering performance of the ADPC, DPC, AP and DBSCAN algorithms
on each of the synthetic datasets. In these figures, each color represents a distinct cluster. It is evident
that the ADPC algorithm consistently achieves satisfactory clustering results across all eight synthetic
datasets. On the other hand, the DPC algorithm fails to produce reasonable clustering results on
the Aggregation, S and A3 datasets. Similarly, the AP and DBSCAN algorithms only exhibit good
clustering performance on the Twenty dataset. These findings further validate the effectiveness of the
ADPC algorithm, which utilizes the DDC index, as it consistently outperforms DPC, AP and DBSCAN
in terms of clustering accuracy and robustness across diverse synthetic datasets.

4.2.2. Experiments on UCI datasets

In this subsection, we present the results of applying the introduced ADPC algorithm on eight real-
world datasets to demonstrate its superiority. Table 3 provides a comparison of the number of clusters
obtained by the ADPC, DPC, AP and DBSCAN algorithms on these datasets (‘-’ means the algorithm
either identifies only one cluster or fails to find any clusters).

Table 3. The number of clusters on the UCI datasets obtained through different algorithms.

Datasets ADPC DPC AP DBSCAN
Iris 3 2 6 2
Seeds 3 3 11 -
Waveform 3 2 139 -
Vertebral 3 2 21 -
Soybean 4 4 5 -
X8D5K 5 5 14 2
Leuk 3 2 6 3
Wine 3 7 8 -

Table 3 shows that the AP and DBSCAN algorithms are unable to determine the optimal number of
clusters for the eight UCI datasets. Additionally, these algorithms require parameter adjustments and
exhibit sensitivity to the chosen parameters. On the contrary, DPC fails to obtain a reasonable number
of clusters among the UCI datasets, with the exception of Soybean, X8D5K and Seeds datasets. To
gain deeper insights into the challenges faced by DPC in accurately identifying the number of clusters
on these datasets, refer to Figure 12, which showcases the decision graphs produced by DPC for the
same datasets. The decision graphs vividly demonstrate the difficulties and limitations encountered by
DPC in cluster determination for these specific datasets.

AIMS Mathematics Volume 8, Issue 12, 28926–28950.



28942

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3
Iris

(a)

0 2 4 6 8 10 12
0

1

2

3

4

5

6
Seeds

(b)

100 200 300 400 500 600 700 800 900
2

3

4

5

6

7

8
Waveform

(c)

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300
Vertebral

(d)

0 0.5 1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Soybean

(e)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
X8D5K

(f)

1 2 3 4 5 6 7 8 9
2

3

4

5

6

7

8

9

10

11

12
Leuk

(g)

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400
Wine

(h)
Figure 12. Decision graphs of DPC on UCI datasets.
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We can see from Figure 12(b), (e), (g) and (h) that the cluster centers in these decision graphs are
not clearly separated from the surrounding points. This lack of clear separation makes it difficult to
accurately identify the correct number of cluster centers. Similarly, in Figure 12(a), (c) and (d), the
correct number of cluster centers may be challenging to determine due to the use of dc=2 as described
in reference [13]. The reliance of DPC on human-based selection represents a significant limitation.
In contrast, the ADPC algorithm can automatically determine the optimal number of clusters on these
eight UCI datasets and establish correct clusters without the need for any parameters. Consequently,
the ADPC algorithm outperforms DPC, AP and DBSCAN in terms of clustering results, offering a
more effective and reliable approach.

To provide further evidence of the superiority of the introduced ADPC algorithm, we present a
detailed comparison with the DPC algorithm in Table 4. The table presents the clustering results of
ADPC and DPC on all eight UCI datasets, measured in terms of Accuracy (Acc) [43], Adjusted Mutual
Information (AMI) [44] and Adjusted Rand Index (ARI) [45].

Table 4. Clustering results of ADPC and DPC on UCI datasets.

ADPC DPC
ACC AMI ARI dc NC ACC AMI ARI dc NC

Iris 0.9067 0.7960 0.7592 2 3 0.6667 1 0.5681 2 2
Seeds 0.8952 0.6741 0.7170 1 3 0.8857 0.6926 0.7027 2 3
Waveform 0.5794 0.3482 0.2962 1 3 0.582 0.4978 0.2422 2 2
Vertebral 0.6387 0.2618 0.2850 4 3 0.4806 0.0054 -0.0022 2 2
Soybean 0.8936 0.8061 0.7251 1 4 0.8936 0.8061 0.7251 2 4
X8D5K 1 1 1 1 5 1 1 1 2 5
Leuk 0.9583 0.8573 0.8809 1 3 0.7083 0.0781 0.5413 2 2
Wine 0.7921 0.5534 0.5054 1 3 0.5393 0.3168 0.2802 2 7

Table 4 indicates that ADPC generally outperforms DPC on most datasets, demonstrating superior
results. ADPC has the ability to automatically adjust the value of dc to achieve optimal clustering
outcomes. The only exception is observed in the Waveform datasets, where DPC performs slightly
better than ADPC. This can be attributed to the fact that Waveform comprises three clusters, with each
cluster occupying approximately 33% of the data. Additionally, ADPC yields consistent results with
DPC on the Soybean and X8D5K datasets. This consistency arises from the fact that DPC produces
the same outcomes regardless of whether dc=1 or dc=2. These findings further validate that our ADPC
algorithm, based on the DDC index, can effectively determine the optimal number of clusters and
adjust without the need for additional parameters.

4.2.3. Experiments on Olivetti Face datasets

To further evaluate the performance of ADPC, the ADPC algorithm is tested on the famous Olivetti
Face Database. The database consists of 40 subjects, each having 10 different images. For this
evaluation, we utilized the first 100 images, dividing them into 10 clusters. To measure the similarity
between each pair of images, we utilized the Structural Similarity Index (SSIM) [46], defined by

AIMS Mathematics Volume 8, Issue 12, 28926–28950.



28944

formula (4.1)

S S IM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx
2 + µy

2 + c1)(σx
2 + σy

2 + c2)
, (4.1)

where c1 and c2 are the constants taken to maintain the stability. µx and µy represent the average of
x and y, σx and σy respectively represent the variances of x and y, σxy represents the covariance of x
and y. Images were allocated to a cluster only if their distance is less than dc. Figure 13 depicts the
cluster allocation results obtained through the ADPC algorithm on the Olivetti Face Dataset. On the
other hand, Figure 14 shows the clustering outcomes achieved through the DPC algorithm on the same
dataset. In both figures, images belonging to the same cluster are represented with the same color.
However, images displayed in gray indicate incorrect classifications.

Figure 13. ADPC clustering on Olivetti Face Database (the first 100 images).

Figure 14. DPC clustering on Olivetti Face Database (the first 100 images).

In accordance with reference [13], the optimal number of clusters for DPC on the Olivetti Face
dataset is determined to be 7. Remarkably, ADPC has also successfully identified 7 subjects out of
10, aligning with the results achieved by the DPC algorithm. However, upon examining Figure 15,
we observe that when relying on ρ and δ or γ = ρ · δ to draw decision graphs, the DPC algorithm
fails to accurately select cluster centers. In contrast, although ADPC’s accuracy may not be as
high as that of DPC, it compensates for the limitations of DPC by automatically identifying clusters.
Consequently, the ADPC algorithm improves upon the challenge faced by DPC in establishing clusters
automatically. Through this comparison, it becomes evident that ADPC offers a valuable enhancement
to DPC, enabling the automatic identification of clusters and addressing the shortcomings of DPC in
this particular context.
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Figure 15. DPC clustering on Olivetti Face Database (the first 100 images); (a) Decision
graph based on ρ and δ; (b) Decision graph based on γ.

4.2.4. Discussion of the DDC index

In this section, we discuss the applicability of the DDC index to DPC. First, in order to verify
the advantages of using the density and distance characteristics of the cluster centers, we plotted the
clustering accuracy of DPC with other similar assumptions on the two-dimensional datasets in Table 1
based on DDC and Silhouette Coefficient, as shown in Figures 16 and 17. Using visualizations will
provide a more direct performance comparison.
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Figure 16. DPC clustering results based on the DDC index.
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Figure 17. DPC clustering results based on the Silhouette Coefficient.

From Figures 16 and Figure 17, it is evident that the DDC index is more suitable for the DPC
algorithm than the Silhouette Coefficient and achieves better clustering accuracy. This is because
the DDC index not only considers within-cluster similarity and between-cluster dissimilarity, but also
effectively utilizes the density and distance characteristics of cluster centers, which is more in line
with the cluster center hypothesis in DPC. The Silhouette Coefficient cannot guide the DPC algorithm
in finding the optimal number of clusters on Aggregation, S and S1. To further demonstrate the
effectiveness of the DDC index, we present a comparison of the clustering time between them in
Figure 18. Both algorithms are run 10 times to obtain the average results.

Figure 18. Clustering time comparison.

We can see from Figure 18 that the execution efficiency of DDC is higher because it does not need
to calculate the similarity between all data points, and its complexity O(k(|Ci| + k)) is much smaller
than the complexity O(n2) of the Silhouette Coefficient. Therefore, the DDC index is more suitable for
DPC regarding clustering accuracy and efficiency, and its design is reasonable.
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5. Conclusions

We introduce a novel clustering validity index called the DDC index, specifically designed for the
DPC algorithm. Building upon the concept of the DDC index, we propose a new algorithm called
ADPC. The ADPC algorithm aims to achieve desirable clustering results by determining the optimal
number of clusters and identifying a suitable parameter. ADPC begins with a similar approach as DPC,
utilizing DPC to calculate the DDC values iteratively and considering different numbers of clusters and
parameters. The DDC value serves as an indicator of the quality of the clustering results, with larger
DDC values indicating better clustering outcomes.

ADPC successfully addresses two significant limitations of DPC. First, it resolves the issue of
inaccurate visual identification of cluster centers on the decision graph. Second, it tackles the
problem of selecting an unsuitable parameter dc, which can negatively impact the clustering results.
The DDC index, which constitutes the foundation of ADPC, consists of two essential evaluation
factors for clustering algorithms: the within-cluster parameter and the between-cluster parameter. By
incorporating these factors, the DDC index not only aligns with the assumptions of DPC but also
remains consistent with the objectives of clustering algorithms. Experimental evaluations conducted
on both synthetic and real-world datasets demonstrate that ADPC outperforms conventional DPC.
ADPC not only automatically selects the optimal number of clusters but also determines a suitable
value for the parameter dc. Notably, ADPC achieves this without the need for additional parameters.

Indeed, while the ADPC and DPC algorithms have shown promising results in clustering tasks,
they may still encounter challenges when applied to manifold datasets, such as S4-D and S5-B in the
paper describing the original DP algorithm. These challenges arise due to the inherent complexities
and intricacies present in such datasets. In order to improve the clustering performance on complex
datasets, further exploration and research are necessary.
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