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Abstract: Quaternionic Hilbert (Q-Hilbert) spaces are frequently used in applied physical sciences
and especially in quantum physics. In order to solve some problems of many nonlinear physical
systems, the frame theory of Q-Hilbert spaces was studied. Frames in Q-Hilbert spaces not only retain
the frame properties, but also have some advantages, such as a simple structure for approximation. In
this paper, we first characterized Hilbert (orthonormal) bases, frames, dual frames and Riesz bases, and
obtained the accurate expressions of all dual frames of a given frame by taking advantage of pre-frame
operators. Second, we discussed the constructions of frames with the help of the pre-frame operators
and gained some more general methods to construct new frames. Moreover, we obtained a necessary
and sufficient condition for the finite sum of frames to be a (tight) frame, and the obtained results
further enriched and improved the frame theory of the Q-Hilbert space.
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1. Introduction

The concept of frames, which generalizes that of bases, was first introduced in the 1950s when
Duffin and Schaeffer [1] studied some ongoing problems in the nonharmonic Fourier series. Looking
back upon the a sequence {e j : j ∈ J} ⊆ H (Hilbert space), we call {e j : j ∈ J} is a frame forH if the
following inequality holds,

A‖x‖2 ≤
∑
j∈J

|〈x, e j〉|
2 ≤ B‖x‖2, ∀x ∈ H ,

where positive constants A, B are called the frame bounds. Frames have turned into a hot issue even
since 1986 when Daubechies, Crossman and Meyer published their pioneering work [2]. Nowadays,
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great achievements have been made in the research of frame theory [3, 4], and frames have been
heavily used in numerous fields, such as coding and wireless communication [5], image and signal
processing [6], sampling theory [7], quantum measurements [8], and so on ( [9, 10]).

Hilbert space can be defined not only in real field and complex field, but also in quaternion
field [11, 12]. In 1936, Birkhoff and von Neumann [13] in their famous pioneering work on quantum
logic commented that quantum mechanics can also be formulated in Hilbert space where the ground
field of complex numbers is replaced by divisible algebras of quaternions [14]. By now, this opinion
has been confirmed in the reference [15]. However, it is worth noting that most existing works on
the frame theory only focus on real or complex Hilbert spaces instead of quaternionic Hilbert (Q-
Hilbert) spaces. Note that both the real field and the complex field are associative and commutative,
while the quaternion field only constitutes noncommutative associative algebra. This key characteristic
greatly limited mathematicians to establish a complete theory of functional analysis in Q-Hilbert
spaces [16], which affected the development of quantum physics in Q-Hilbert space. Luckily, the
study on quaternion field has been developed from the mathematical point of view, and achievements
in the frames in Q-Hilbert space especially have been obtained in recent. For example, Khokulan,
Thirulogasanthar, Srisatkunarajah [17] and Sharma, Virender [18] introduced and studied frames for
finite dimensional Q-Hilbert spaces, Sharma, Goel [19] and Sharma, Singh, Sahu [20] studied frames
and dual frames for separable Q-Hilbert spaces, and Ellouz [21] introduced K-Frames and Zhang,
Li [22] characterized Riesz bases in Q-Hilbert spaces.

When characterizing dual frames of a frame, constructing new frames is a big issues in frame theory.
Finding suitable frames are of great significance in applications, and plenty of achievements have been
acquired with regard to such issues. For instance, in [7] Li proved that for a given frame, one could
obtain all its dual frames by seeking the left inverse of the invertible operator and then giving the
accurate expression of all dual frames of the given frame. In [23], Guo looked to ways of constructing
(Ω, µ)-frames, consisting of the structures of new (Ω, µ)-frames and the dual (Ω, µ)-frames in some
conditions. In [24], Obeidat, Samarah, Casazza and Tremain went into the sums of frames in Hilbert
spaces, and gave simple necessary and sufficient conditions on Bessel sequences {xi}i∈I and {yi}i∈I as
well as the operators Q1,Q2 on H so that {Q1xi + Q2yi}i∈I formed a new frame for H . In [25, 26]],
the authors discussed the sums of g-frames in Hilbert spaces, it was a simple and effective method
to construct new frames by using the sums of known frames. Inspired by these works on frames,
and aided by the pre-frame operators, we discuss analogous problems on frames in Q-Hilbert spaces.
Especially, we obtain some more general construction methods by means of pre-frame operators (see
Theorems 4.1 and 4.2), and other current methods. Usually, a new frame can be constructed by using
the frame operator and the synthesis (analysis) operator to satisfy certain conditions, such as in [24]
where {x j} j∈J and {y j} j∈J are frames for H with analysis operators T1,T2 and frame operators S 1, S 2,
respectively. {x j + y j} j∈J is a new frame forH if and only if S 1 + S 2 + T ∗1T2 + T ∗2T1 > 0. Comparatively,
the methods we use are more convenient and direct.

In section two, we give some essential notions and existing results for later use. In section there,
we first introduce the notion of the pre-frame operator, which is an important class of operators in
frame theory, and characterize orthonormal bases, frames, dual frames and Riesz bases in terms of
pre-frame operators. We then we obtain the accurate expressions of all dual frames of a given frame
by taking advantage of pre-frame operators. With the help of an operator equation, we also give the
characterization of the dual frames in Q-Hilbert spaces. In section four, we discuss the sum of frames
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and Bessel sequences. By means of pre-frame operators, we gain some more general methods to
construct new frames. Moreover, we obtain a necessary and sufficient condition for the finite sum of
frames to be a (tight) frame.

2. Preliminaries

In this section we arrange some notions and results of frames in Q-Hilbert spaces (see [19, 20]
for details), which are necessary for below. Q denotes a noncommutative quaternion field, and J
is an index set. Let HR(Q), KR(Q) be right Q-Hilbert spaces (or simply R-Q-Hilbert spaces) and
B(HR(Q),KR(Q)) denote the collection of all bounded right Q-linear operators fromHR(Q) toKR(Q),
as a special case, HR(Q) = KR(Q), B(HR(Q),KR(Q)) = B(HR(Q)), and IHR be the identity operator
in HR(Q). For K ∈ B(HR(Q)), the range of K is represented by R(K), and the pseudo-inverse of K is
represented by K† if R(K) is closed.

The noncommutative field of quaternionsQ is a four-dimensional real algebra with unity. InQ, zero
denotes the null element and one denotes the identity with respect to multiplication. It also includes
three so-called imaginary units, denoted by~i, ~j, ~k, i.e.,

Q = {x0 + x1~i + x2~j + x3~k : x0, x1, x2, x3 ∈ R},

where~i2 = ~j2 = ~k2 = −1,~i · ~j = −~j ·~i = ~k, ~j · ~k = −~k · ~j =~i and~i · ~k = −~k ·~i = ~j. For more information
about the properties of quaternions, we refer the readers to [11–16].

Let HR(Q) be a linear vector space under right scalar multiplication over the field of quaternions Q.
HR(Q) is called a right quaternionic pre-Hilbert space or right quaternionic inner product space if it is
equipped with a Hermitian quaternionic inner product (or simply the inner product)

〈· | ·〉 : HR(Q) × HR(Q)→ Q

satisfying the following conditions:
(a) 〈φ | ψ〉 = 〈ψ | φ〉 for all φ, ψ ∈ HR(Q);
(b) 〈φ | φ〉 > 0 unless φ = 0;
(c) 〈φ | ψ + ω〉 = 〈φ | ψ〉 + 〈φ | ω〉 for all φ, ψ, ω ∈ HR(Q) ;
(d) 〈φ | ψq〉 = 〈φ | ψ〉q, 〈φq | ψ〉 = q̄〈φ | ψ〉 for all φ, ψ ∈ HR(Q) and q ∈ Q.
Let HR(Q) be a right quaternionic pre-Hilbert space with the inner product 〈· | ·〉. We define the

quaternionic norm ‖ · ‖ : HR(Q)→ R+ on HR(Q) by ‖φ‖ =
√
〈φ | φ〉, φ ∈ HR(Q). If HR(Q) is complete

with respect to the norm ‖ · ‖, it is called an R-Q-Hilbert space and is denoted byHR(Q).

Proposition 2.1. ( [12]) Let HR(Q) be an R-Q-Hilbert space and N ⊆ HR(Q) meet that for z, z′ ∈ N

〈z|z′〉 =

{
1 if z = z′;
0 if z , z′.

Then the following assertions are equivalent:

(i) ∀x, y ∈ HR(Q), the progression
∑

z∈N
〈x|z〉〈z|y〉 is absolute convergence inHR(Q) and it possess:

〈x|y〉 =
∑
z∈N

〈x|z〉〈z|y〉.

(ii) ‖x‖ =
∑

z∈N
|〈z|x〉|2, ∀x ∈ HR(Q).

(iii) N⊥ = {u ∈ HR(Q) : 〈u|z〉 = 0,∀z ∈ N} = {0}.
(iv) spanN is dense inHR(Q).
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Definition 2.1. ( [12]) LetHR(Q) be an R-Q-Hilbert space, andN ⊆ HR(Q) is called a Hilbert basis or

orthonormal basis ofHR(Q) if it satisfies 〈z|z′〉 =

{
1 if z = z′;
0 if z , z′.

for z, z′ ∈ N and all the conditions

in Proposition 2.1. What is more, if N is a Hilbert basis of HR(Q), then arbitrary x ∈ HR(Q), the
decomposition x =

∑
z∈N

z〈z|x〉 is unique and the progression
∑

z∈N z〈z|x〉 is an absolute convergence in

HR(Q).

Compared with complex Hilbert spaces, Q-Hilbert spaces inherit a great deal of standard properties
(see [12, 16]).

Definition 2.2. ( [11]) An operator T : HR(Q) → HR(Q), for arbitrary φ, ψ ∈ HR(Q) and α, β ∈ Q,
if T (φα + ψβ) = T (φ)α + T (ψ)β, then T is called right Q-linear; if there is a constant M > 0 such that
‖Tφ‖ ≤ M‖φ‖, then T is bounded.

Proposition 2.2. ( [12]) Let T ∈ B(HR(Q)), and satisfy T = T ∗, then the norm of T is defined as
follows

‖T‖op = sup
f∈HR(Q),‖x‖=1

|〈T x|x〉|.

Proposition 2.3. ( [12]) LetHR(Q) be an R-Q-Hilbert space, U, V ∈ B(HR(Q)). Then
(i) U + V and UV ∈ B(HR(Q)). In addition,

‖U + V‖op ≤ ‖U‖op + ‖V‖op and ‖UV‖op ≤ ‖U‖op‖V‖op;

(ii) (U + V)∗ = U∗ + V∗;
(iii) (UV)∗ = V∗U∗, (U∗)∗ = U;
(iv) if the operator U is invertible, then (U−1)∗ = (U∗)−1;
(v) I∗

HR
= IHR , where IHR is the identity operator inHR(Q).

For more background information on Q-Hilbert spaces, see [11, 12].
In [19], Sharma and Goel extended the concept of frame in Hilbert space to the Q-Hilbert space, as

described next.

Definition 2.3. ( [19]) Let HR(Q) be an R-Q-Hilbert space. A sequence {x j} j∈J ⊂ HR(Q) is called a
frame forHR(Q) if there are two finite constants with 0 < A ≤ B < ∞ such that

A‖ f ‖2 ≤
∑
j∈J

|〈x j | f 〉|2 ≤ B‖ f ‖2, ∀ f ∈ HR(Q). (2.1)

The numbers A, B are called frame bounds of {x j} j∈J. We call {x j} j∈J a Bessel sequence for HR(Q)
if only the righthand inequality of (2.1) is established in these circumstances, B is called Bessel
bound. We call {x j} j∈J a λ-tight frame for HR(Q) if A = B = λ. What is more, we call {x j} j∈J a
Parseval frame forHR(Q) if λ = 1.

Now define the space l2(Q) by

l2(Q) :=

{q j} j∈J : {q j} j∈J ⊂ Q such that
∑
j∈J

|q j|
2 < +∞

 ,
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and endow l2(Q) with the inner product

〈p | q〉 =
∑
j∈J

p jq j, p = {p j} j∈J and q = {q j} j∈J ∈ l2(Q).

Then l2(Q) is an R-Q-Hilbert space.
If {x j} j∈J is a frame forHR(Q), then the operator S : HR(Q)→ HR(Q) defined by

S f =
∑
j∈J

x j〈x j | f 〉, ∀ f ∈ HR(Q),

and S is called the (right) frame operator related to { f j} j∈J. It is understood that S is a right linear
bounded invertible operator (see [19]).

Definition 2.4. ( [20]) Let {x j} j∈J be a frame forHR(Q). A sequence {y j} j∈J ⊂ HR(Q) fulfills

f =
∑
j∈J

x j〈y j| f 〉 =
∑
j∈J

y j〈x j| f 〉, ∀ f ∈ HR(Q).

Then {y j} j∈J is commonly known as the alternate dual for {x j} j∈J inHR(Q).

Definition 2.5. ( [22]) Let HR(Q) be an R-Q-Hilbert space and {x j} j∈J ⊂ HR(Q). {x j} j∈J has been
described as a Riesz basis forHR(Q) if the following conditions are met

(i) {x j} j∈J is complete, that is, for f ∈ HR(Q), if 〈x j | f 〉 = 0,∀ j ∈ J, then f = 0.
(ii) There are two positive finite constants A and B such that

A
∑
j∈J1

|q j|
2 ≤

∥∥∥∥∥∥∥∑j∈J1

x jq j

∥∥∥∥∥∥∥
2

l2(Q)

≤ B
∑
j∈J1

|q j|
2, (2.2)

where q j ∈ Q, j ∈ J1, J1 is any finite subset of J. A and B are called Riesz bounds of {x j} j∈J.

3. Characterizations of (dual) frames

In this section, we introduce the definition of the pre-frame operators, and utilize the pre-frame
operators for characterizing frames and dual frames in the R-Q-Hilbert space HR(Q). For a given
frame in HR(Q), we also obtain the accurate expression formula about the dual frames. For these
purposes, we first introduce a lemma, which was given by Sharma and Goel in [19].

Lemma 3.1. ( [19]) LetHR(Q) be an R-Q-Hilbert space and {x j} j∈J ⊂ HR(Q). Then { f j} j∈J is a Bessel
sequence for HR(Q) with bound B if and only if the right linear operator T : l2(Q) → HR(Q) defined
by

T ({q j} j∈J) =
∑
j∈J

x jq j, {q j} j∈J ∈ l2(Q),

is well defined, and ‖T‖op ≤
√

B.

Proposition 3.1. Let HR(Q) be an R-Q-Hilbert space and N = {z j} j∈J be a Hilbert basis for HR(Q).
Then {x j} j∈J ⊂ HR(Q) is a Bessel sequence forHR(Q) if and only if there exists a unique bounded right
linear operator V : HR(Q)→ HR(Q) such that x j = Vz j for all j ∈ J.
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Proof. (⇒). Note that N = {z j} j∈J is a Hilbert basis for HR(Q), and therefore {〈z j| f 〉} j∈J ∈ l2(Q) for
each f ∈ HR(Q). If {x j} j∈J ⊂ HR(Q) is a Bessel sequence, then the operator

V : HR(Q)→ HR(Q), V f =
∑
j∈J

x j〈z j| f 〉, ∀ f ∈ HR(Q)

is well defined by Lemma 3.1. We obtain for each f ∈ HR(Q) that

‖V f ‖ = sup
g∈HR(Q),‖g‖=1

∣∣∣∣∣∣∣
〈∑

j∈J

x j〈z j| f 〉

∣∣∣∣∣∣g
〉∣∣∣∣∣∣∣

= sup
g∈HR(Q),‖g‖=1

∣∣∣∣∣∣∣∑j∈J

〈z j| f 〉
〈
x j|g

〉∣∣∣∣∣∣∣
= sup

g∈HR(Q),‖g‖=1

∣∣∣∣∣∣∣∑j∈J

〈 f |z j〉
〈
x j|g

〉∣∣∣∣∣∣∣
≤ sup

g∈HR(Q),‖g‖=1

∑
j∈J

|〈z j| f 〉|2


1
2
∑

j∈J

|
〈
x j|g

〉
|2


1
2

≤
√

B‖ f ‖,

where B is Bessel bound of {x j} j∈J. It follows that V is a bounded right linear operator on HR(Q).
By the definition of Hilbert basis, for an arbitrary f ∈ HR(Q), we obtain that f =

∑
j∈J

z jq j, where

{q j} j∈J ∈ l2(Q) is unique, and

V f = V

∑
j∈J

z jq j

 =
∑
j∈J

x j

〈
z j

∣∣∣∣∑
i∈J

ziqi

〉
=

∑
j∈J

x j

∑
i∈J

〈
z j

∣∣∣zi

〉
qi =

∑
j∈J

x jq j.

Hence
∑
j∈J

Vz jq j =
∑
j∈J

f jq j, which implies that x j = Vz j. Suppose that V1, V2 ∈ B(HR(Q)) and V1z j =

V2z j = x j for all j ∈ J. For f ∈ HR(Q), we have
〈
(V1 − V2)z j

∣∣∣ f 〉 = 0 for all j ∈ J. It follows that

0 =
∑
j∈J

∣∣∣∣〈(V1 − V2)z j

∣∣∣ f 〉∣∣∣∣2 =
∑
j∈J

∣∣∣∣〈z j

∣∣∣(V∗1 − V∗2) f
〉∣∣∣∣2 = ‖(V∗1 − V∗2) f ‖2,

and thus V1 = V2. Hence the operator V is unique.
(⇐). If V ∈ B(HR(Q)) satisfies x j = Vz j for arbitrary j ∈ J, then∑

j∈J

|
〈
x j| f

〉
|2 =

∑
j∈J

|
〈
Vz j| f

〉
|2 =

∑
j∈J

|
〈
z j|V∗ f

〉
|2 = ‖V∗ f ‖2 ≤ ‖V‖2op‖ f ‖

2, ∀ f ∈ HR(Q).

This shows that {x j} j∈J is a Bessel sequence forHR(Q). �
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Definition 3.1. Let N = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert space HR(Q) and {x j} j∈J be a
Bessel sequence in HR(Q). The operator V in Proposition 3.1 is called the (right) pre-frame operator
associated with {x j} j∈J.

Lemma 3.2. LetN = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert spaceHR(Q) and {x j} j∈J be a Bessel
sequence inHR(Q). If V is the pre-frame operator associated with {x j} j∈J and S is the frame operator
associated with {x j} j∈J, then S = VV∗.

Proof. By the definition of V , x j = Vz j for j ∈ J, then

S f =
∑
j∈J

f j〈x j| f 〉 =
∑
j∈J

Vz j〈Vz j| f 〉

=
∑
j∈J

Vz j〈z j|V∗ f 〉 = V

∑
j∈J

z j〈z j|V∗ f 〉

 = VV∗ f

for f ∈ HR(Q). Hence S = VV∗. �

Now, we characterize frames and dual frames in terms of pre-frame operators. We begin with a
lemma.

Lemma 3.3. ( [21]) Let HR(Q),KR(Q) be two R-Q-Hilbert spaces, and K : HR(Q) → KR(Q) be a
bounded operator. If R(K) is closed, then, there is a bounded operator K† : KR(Q)→ HR(Q) for which

KK† f = f , ∀ f ∈ R(K).

Theorem 3.1. Let N = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert space HR(Q) and {x j} j∈J be a
Bessel sequence for HR(Q). If V and S denote the pre-frame operator and frame operator of {x j} j∈J,
respectively, then

(i) {x j} j∈J is a frame forHR(Q) if and only if V is onto.
(ii) {x j} j∈J is a Parseval frame forHR(Q) if and only if V is coisometry (i.e., V∗ is isometry).
(iii) {x j} j∈J is a Riesz basis forHR(Q) if and only if V is invertible.
(iv) {x j} j∈J is a Hilbert basis forHR(Q) if and only if V is unitary.

Proof. (i) If {x j} j∈J is a frame forHR(Q), then S is invertible by (Theorem 3.5 in [19]). By Lemma 3.2,
we have S = VV∗, so V is onto. On the other hand, if V is onto, then {x j} j∈J is a Bessel sequence for
HR(Q) by Lemma 3.1. Next we only need to show the existence of lower frame bound. Note that V is
onto, we have VV† = IHR by Lemma 3.3. It follows that (V†)∗V∗ = IHR . Accordingly,

‖ f ‖2 = ‖(V†)∗V∗ f ‖2 ≤ ‖(V†)∗‖2op‖V
∗ f ‖2, ∀ f ∈ HR(Q).

Thus, ∑
j∈J

|〈x j| f 〉|2 =
∑
j∈J

|〈Vz j| f 〉|2

=
∑
j∈J

|〈z j|V∗ f 〉|2 = ‖V∗ f ‖2 ≥
1

‖(V†)∗‖2op
‖ f ‖2.
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(ii) It is easy to check that {x j} j∈J is a Parseval frame for HR(Q) iff S is an identity operator on
HR(Q). By Lemma 3.2, we have S = VV∗, so S = IHR if and only if V is a coisometry.

(iii) See Theorem 3.7 in [22].
(iv) If {x j} j∈J is a Hilbert basis forHR(Q), then we have for any f ∈ HR(Q) that

‖ f ‖2 =
∑
j∈J

|〈x j| f 〉|2 =
∑
j∈J

|〈Vz j| f 〉|2 =
∑
j∈J

|〈z j|V∗ f 〉|2 = ‖V∗ f ‖2.

Therefore, VV∗ = IHR . It follows that V is a unitary operator. On the contrary, if V is a unitary operator,
then for any f ∈ HR(Q), by simple calculation we have∑

j∈J

|〈x j| f 〉|2 =
∑
j∈J

|〈Vz j| f 〉|2 =
∑
j∈J

|〈z j|V∗ f 〉|2 = ‖V∗ f ‖2 = ‖ f ‖2.

〈xi|x j〉 = 〈Vzi|Vz j〉 = 〈V∗Vzi|z j〉 = 〈zi|z j〉 = δi j, for each i, j ∈ J.

So, {x j} j∈J is a Hilbert basis forHR(Q). �

Theorem 3.2. Let N = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert space HR(Q). Let {x j} j∈J and
{y j} j∈J be Bessel sequences for HR(Q), and let the pre-frame operators related with {x j} j∈J and {y j} j∈J

be V and W, respectively. Then, {x j} j∈J and {y j} j∈J are dual frames if and only if VW∗ = IHR or
WV∗ = IHR .

Proof. Note that V and W are pre-frame operators related with {x j} j∈J and {y j} j∈J, respectively, so we
have

x j = Vz j and y j = Wz j, ∀ j ∈ J.

Hence, for f ∈ HR(Q), we have

∑
j∈J

x j〈y j| f 〉 =
∑
j∈J

Vz j〈Wz j| f 〉 = V

∑
j∈J

z j〈z j

∣∣∣W∗ f 〉

 = VW∗ f .

Similarly,

∑
j∈J

y j〈x j| f 〉 =
∑
j∈J

Wz j〈Vz j| f 〉 = W

∑
j∈J

z j〈z j

∣∣∣V∗ f 〉

 = WV∗ f .

It can be seen from this that {x j} j∈J and {y j} j∈J are dual frames if and only if VW∗ = IHR or WV∗ =

IHR . �

If U,V ∈ B(HR(Q)) and UV = IHR , then U is called a left inverse operator of V . Our next goal is to
characterize dual frames for the existing frame in an R-Q-Hilbert space. The following theorem gave
the characterization of the right linear bounded left inverses of the existing pre-frame operator.

Theorem 3.3. Let N = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert space HR(Q) and {x j} j∈J be a
frame forHR(Q). Suppose that {y j} j∈J ⊂ HR(Q) and the pre-frame operator of {x j} j∈J is V, then {y j} j∈J

is a dual frame of {x j} j∈J if and only if y j = Wz j for an arbitrary j ∈ J, where W is a right linear
bounded left inverse of V∗.
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Proof. (⇒). Let {y j} j∈J be an arbitrary dual frame of {x j} j∈J, and W be the pre-frame operator of {y j} j∈J.
There is a bounded right linear operator W such that y j = Wz j for arbitrary j ∈ J by Proposition 3.1,
and so for f ∈ HR(Q), we have

f =
∑
j∈J

x j〈y j| f 〉 =
∑
j∈J

y j〈x j| f 〉.

Note as V as the pre-frame operator of {x j} j∈J, we have x j = Vz j for arbitrary j ∈ J, so

f =
∑
j∈J

x j〈y j| f 〉 =
∑
j∈J

Vz j〈Wz j| f 〉 = V

∑
j∈J

z j〈z j

∣∣∣W∗ f 〉

 = VW∗ f .

This implies that VW∗ = IHR . Therefore, WV∗ = IHR , as required.
(⇐). Let y j = Wz j for any j ∈ J, where the bounded right linear operator W is a left inverse of V∗.

Since WV∗ = IHR , W ∈ B(HR(Q)) is surjective. Hence {y j} j∈J is a frame for HR(Q) by Theorem 3.1
(i). For all f ∈ HR(Q), we have

∑
j∈J

x j〈y j| f 〉 =
∑
j∈J

Vz j〈Wz j| f 〉 = V

∑
j∈J

z j〈z j

∣∣∣W∗ f 〉

 = VW∗ f = WV∗ f = f .

Thus, {y j} j∈J is an arbitrary dual frame of {x j} j∈J by Definition 2.4. �

Theorem 3.3 suggests the operator W has great independent interest. To have a better understanding
of W, we prove the following lemma.

Lemma 3.4. Let {x j} j∈J be a frame for an R-Q-Hilbert space HR(Q), and its pre-frame operator and
frame operator are V and S , respectively. Then W ∈ B(HR(Q)) is a left invertible operator of V∗ if
and only if

W = S −1V + U(IHR − V∗S −1V),

where U ∈ B(HR(Q)).

Proof. Suppose that W ∈ B(HR(Q)) is an arbitrary left invertible of V∗. Let U = W, then

S −1V + U(IH − V∗S −1V) = S −1V + W −WV∗S −1V

= S −1V + W − S −1V = W.

Conversely, we suppose that W = S −1V + U(IHR − V∗S −1V), by Lemma 3.2, and we have

WV∗ = S −1VV∗ + U(IHR − V∗S −1V)V∗

= S −1S + U(V∗ − V∗S −1VV∗)
= IHR + UV∗ − UV∗S −1VV∗ = IHR .

Hence W is a bounded right linear left inverse of V∗. �

Based on Theorem 3.3 and Lemma 3.4, we characterize all dual frames for an arbitrarily given
frame in R-Q-Hilbert spaces, and give the accurate expressions of all dual frames by taking advantage
of pre-frame operators.
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Theorem 3.4. LetN = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert spaceHR(Q). If {x j} j∈J is a frame
for HR(Q), V and S are the pre-frame operator and frame operator of {x j} j∈J, respectively, then the
sequence {y j} j∈J ⊂ HR(Q) is a dual frame for {x j} j∈J if and only if

y j = S −1x j + Uz j − UV∗S −1x j, ∀ j ∈ J,

where U ∈ B(HR(Q)) is a right linear operator.

Proof. (⇒). Suppose that the sequence {y j} j∈J ⊂ HR(Q) is an arbitrary dual frame for {x j} j∈J. The
results in Theorem 3.3 show that y j = Wz j for arbitrary j ∈ J, where W is a left inverse of V∗. By
Lemma 3.4, we have

W = S −1V + U(IHR − V∗S −1V)

for some right linear operator U ∈ B(HR(Q)). Hence, for any j ∈ J, we have

y j = Wz j = (S −1V + U(IH − V∗S −1V))z j

= S −1Vz j + U(IHR − V∗S −1V)z j

= S −1x j + Uz j − UV∗S −1Vz j

= S −1x j + Uz j − UV∗S −1x j.

(⇐). Assume that
y j = S −1x j + Uz j − UV∗S −1 j j, for all j ∈ J.

where U ∈ B(HR(Q)) is a right linear operator. Next to prove that {y j} j∈J is an arbitrary dual frame for
{x j} j∈J, note that V is the pre-frame operator of {x j} j∈J, then

y j = S −1x j + Uz j − UV∗S −1x j

= S −1Vz j + Uz j − UV∗S −1Vz j

= (S −1V + U − UV∗S −1V)z j.

It is easy to prove that {y j} j∈J is a Bessel sequence forHR(Q). Let W denote the pre-frame operator of
{y j} j∈J, then

W = S −1V + U − UV∗S −1V = S −1V + U(IH − V∗S −1V).

Thus, W is a bounded right linear left inverse of V∗ by Lemma 3.4. We conclude that {y j} j∈J is what
we are looking for by Theorem 3.3. �

At the end of this section, we give some characterizations of dual frames by taking advantage of
operator equations.

Theorem 3.5. Let {x j} j∈J be a Parseval frame for an R-Q-Hilbert spaceHR(Q), and {y j} j∈J be a frame
for HR(Q). Use Tx, Ty to denote the pre-frame operators of {x j} j∈J and {y j} j∈J, respectively. Suppose
that Px is the orthogonal projection: l2(Q) → R(T ∗x ), then {y j} j∈J is a dual frame of {x j} j∈J if and only
if PxT ∗y = T ∗x .

Proof. (⇒). Note that {x j} j∈J is a Parseval frame for HR(Q), TxT ∗x = IHR by Lemma 3.2. Hence
T ∗xTx = Px. If {y j} j∈J is a dual frame of {x j} j∈J, then TxT ∗y = IHR . It follows that PxT ∗y = T ∗xTxT ∗y = T ∗x .

(⇐). Since T ∗x = PxT ∗y = T ∗xTxT ∗y , T ∗x − T ∗xTxT ∗y = 0, i.e., T ∗x (IHR − TxT ∗y ) = 0. By Theorem 3.12
in [19], we know that T ∗x is onto, so we have TxT ∗y = IHR . Therefore, {y j} j∈J is a dual frame of
{x j} j∈J. �
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Theorem 3.6. Let {x j} j∈J and {y j} j∈J be frames for an R-Q-Hilbert space HR(Q), and their pre-frame
operators be Tx and Ty, respectively. If Px is an orthogonal projection from l2(Q) to R(T ∗x ), then {y j} j∈J

is a dual frame of {x j} j∈J if and only if PxT ∗y = T ∗xS −1
x , where S x denotes the frame operator of {x j} j∈J.

Proof. In accordance with Theorem 3.9 in [19], we have {S −
1
2

x fx} j∈J is a Parseval frame for HR(Q) if
{x j} j∈J is a frame forHR(Q). The rest is similar to the proof of Theorem 3.5. �

4. Sums of frames in R-Q-Hilbert spaces

In application, constructing new frames is one of the active research directions. In [24], the authors
debated the constructions of frames by means of the sum of frames in Hilbert spaces. Inspired by
their work, in this section, we will apply the pre-frame operators to discuss the finite sum of frames in
R-Q-Hilbert spaces, which generalize the corresponding results on general frames in Hilbert spaces.
At first, we give an example.

Example 4.1. Let N = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert space HR(Q). Define two
sequences {x j} j∈J, {y j} j∈J ⊂ HR(Q) byx1 = z1,

x j = z j−1, for j ≥ 2, j ∈ J ,

and y j = −x j for all j ∈ J. Through simple calculation, we know that {x j} j∈J and {y j} j∈J are frames for
HR(Q), but {x j + y j} j∈J is not frame for HR(Q). Define x j = z j for every j ∈ J and y j = 1

j z j for every
j ∈ J, then {x j + y j} j∈J is frame for HR(Q). However, {y j} j∈J is not a frame but a Bessel sequence for
HR(Q).

By Example 4.1, it shows that the sum of frames forHR(Q) is not a new frame. It is natural to ask for
some proper conditions, and when the conditions have been established, the sum of frames is a frame
in R-Q-Hilbert spaces. The following theorems give some sufficient conditions on the frame {x j} j∈J

and Bessel sequence {y j} j∈J, which lead to new frames of the form {αx j + βy j} j∈J or {α jx j + β jy j} j∈J.

Theorem 4.1. Suppose that {x j} j∈J is a frame for an R-Q-Hilbert space HR(Q), and its frame bounds
are A and B; {y j} j∈J is a Bessel sequence forHR(Q) and its Bessel bound is B1. If A, B and B1 satisfy

A|α|2 − 2B1|β|
2 > 0

for non-zero constants α, β ∈ Q, then a new frame of the form {αx j + βy j} j∈J can be constructed for
HR(Q).

Proof. To prove that {αx j + βy j} j∈J is a newly constructed frame for HR(Q), we must find the upper
and lower bounds of {αx j + βy j} j∈J. For ∀ f ∈ HR(Q), we have∑

j∈J

∣∣∣〈(αx j + βy j)
∣∣∣ f 〉∣∣∣2 ≤∑

j∈J

(∣∣∣〈αx j

∣∣∣ f 〉∣∣∣ +
∣∣∣〈βy j

∣∣∣ f 〉∣∣∣)2

=
∑
j∈J

∣∣∣〈αx j

∣∣∣ f 〉∣∣∣2 +
∑
j∈J

∣∣∣〈βy j

∣∣∣ f 〉∣∣∣2 + 2
∑
j∈J

∣∣∣〈αx j

∣∣∣ f 〉∣∣∣ ∣∣∣〈βy j

∣∣∣ f 〉∣∣∣
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≤
∑
j∈J

∣∣∣〈αx j

∣∣∣ f 〉∣∣∣2 +
∑
j∈J

∣∣∣〈βy j

∣∣∣ f 〉∣∣∣2 + 2

∑
j∈J

∣∣∣〈αx j

∣∣∣ f 〉∣∣∣2
1
2
∑

j∈J

∣∣∣〈βy j

∣∣∣ f 〉∣∣∣2
1
2

≤ 2
∑
j∈J

∣∣∣〈αx j

∣∣∣ f 〉∣∣∣2 + 2
∑
j∈J

∣∣∣〈βy j

∣∣∣ f 〉∣∣∣2
= 2|α|2

∑
j∈J

∣∣∣〈x j

∣∣∣ f 〉∣∣∣2 + 2|β|2
∑
j∈J

∣∣∣〈y j

∣∣∣ f 〉∣∣∣2
≤ 2(|α|2B + |β|2B1)‖ f ‖2.

Similarly, ∑
j∈J

∣∣∣〈αx j

∣∣∣ f 〉∣∣∣2 =
∑
j∈J

∣∣∣〈(αx j + βy j)
∣∣∣ f 〉 − 〈βy j

∣∣∣ f 〉∣∣∣2
≤ 2

∑
j∈J

∣∣∣〈(αx j + βy j)
∣∣∣ f 〉∣∣∣2 + 2

∑
j∈J

∣∣∣〈βy j

∣∣∣ f 〉∣∣∣2 ,
and it follows that

2
∑
j∈J

∣∣∣〈(αx j + βy j)
∣∣∣ f 〉∣∣∣2 ≥∑

j∈J

∣∣∣〈αx j

∣∣∣ f 〉∣∣∣2 − 2
∑
j∈J

∣∣∣〈βy j

∣∣∣ f 〉∣∣∣2
= |α|2

∑
j∈J

∣∣∣〈x j

∣∣∣ f 〉∣∣∣2 − 2|β|2
∑
j∈J

∣∣∣〈y j

∣∣∣ f 〉∣∣∣2
≥ (|α|2A − 2|β|2B1)‖ f ‖2.

Thus, we have

1
2

(|α|2A − 2|β|2B1)‖ f ‖2 ≤
∑
j∈J

∣∣∣〈(αx j + βy j)
∣∣∣ f 〉∣∣∣2 ≤ 2(|α|2B + |β|2B1)‖ f ‖2.

Observe that A|α|2 − 2B1|β|
2 > 0, then {αx j + βy j} j∈J is a newly constructed frame forHR(Q). �

Theorem 4.2. LetN = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert spaceHR(Q). Suppose that {x j} j∈J

is a frame for HR(Q), and its frame bounds are A and B; {y j} j∈J is a Bessel sequence for HR(Q) and
its pre-frame operator is V. For any two families {α j} j∈J and {β j} j∈J (α j, β j ∈ Q, j ∈ J), if

‖V‖2 <
A inf

j∈J
|α j|

2

2 sup
j∈J
|β j|

2 ,

then {α jx j + β jy j} j∈J is a newly constructed frame forHR(Q).

Proof. For all f ∈ HR(Q), we have

∑
j∈J

∣∣∣〈(αx j + βy j)
∣∣∣ f 〉∣∣∣2 ≤ 2

∑
j∈J

∣∣∣〈αx j

∣∣∣ f 〉∣∣∣2 +
∑
j∈J

∣∣∣〈βy j

∣∣∣ f 〉∣∣∣2
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≤ 2

(sup
j∈J
|α j|

2
)∑

j∈J

∣∣∣〈x j

∣∣∣ f 〉∣∣∣2 +

(
sup
j∈J
|β j|

2
)∑

j∈J

∣∣∣〈y j

∣∣∣ f 〉∣∣∣2
= 2

(sup
j∈J
|α j|

2
)∑

j∈J

∣∣∣〈x j

∣∣∣ f 〉∣∣∣2 +

(
sup
j∈J
|β j|

2
)∑

j∈J

∣∣∣〈Vz j

∣∣∣ f 〉∣∣∣2
≤ 2

((
sup
j∈J
|α j|

2
)

B‖ f ‖2 +

(
sup
j∈J
|β j|

2
)
‖V∗ f ‖2

)
≤ 2

((
sup
j∈J
|α j|

2
)

B +

(
sup
j∈J
|β j|

2
)
‖V‖2

)
‖ f ‖2.

On the other hand, since∑
j∈J

∣∣∣〈αx j

∣∣∣ f 〉∣∣∣2 =
∑
j∈J

∣∣∣〈(αx j + βy j)
∣∣∣ f 〉 − 〈βy j

∣∣∣ f 〉∣∣∣2
≤ 2

∑
j∈J

∣∣∣〈(αx j + βy j)
∣∣∣ f 〉∣∣∣2 + 2

∑
j∈J

∣∣∣〈βy j

∣∣∣ f 〉∣∣∣2 ,
then,

2
∑
j∈J

∣∣∣〈(αx j + βy j)
∣∣∣ f 〉∣∣∣2 ≥∑

j∈J

∣∣∣〈αx j

∣∣∣ f 〉∣∣∣2 − 2
∑
j∈J

∣∣∣〈βy j

∣∣∣ f 〉∣∣∣2
≥

(
inf
j∈J
|α j|

2
)∑

j∈J

∣∣∣〈x j

∣∣∣ f 〉∣∣∣2 − 2
(
sup
j∈J
|β j|

2
)∑

j∈J

∣∣∣〈Vz j

∣∣∣ f 〉∣∣∣2
=

(
inf
j∈J
|α j|

2
)∑

j∈J

∣∣∣〈x j

∣∣∣ f 〉∣∣∣2 − 2
(
sup
j∈J
|β j|

2
)
‖V∗ f ‖2

≥

(
A

(
inf
j∈J
|α j|

2
)
− 2

(
sup
j∈J
|β j|

2
)
‖V‖2

)
‖ f ‖2.

If ‖V‖2 <
A inf

j∈J
|α j |

2

2 sup
j∈J
|β j |2

, then A
(
inf
j∈J
|α j|

2

)
− 2

(
sup
j∈J
|β j|

2

)
‖V‖2 > 0, so {α jx j + β jy j} j∈J is a newly constructed

frame forHR(Q). �

From Theorem 4.2, we have the following corollary.

Corollary 4.1. Let N = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert space HR(Q). Suppose that
{x j} j∈J is a frame forHR(Q), and its frame bounds are A and B; {y j} j∈J is a Bessel sequence forHR(Q)
with the pre-frame operator V. If ‖V‖2 < A

2 , then {x j + y j} j∈J is a new frame forHR(Q).

Theorem 4.3. LetN = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert spaceHR(Q). Assume that {x j} j∈J

and {y j} j∈J are both frames for HR(Q), and Vx, Vy are their pre-frame operators, respectively. If the
condition VyV∗x = 0 is met, then {x j +y j} j∈J is a newly constructed frame forHR(Q). Moreover, if {x j} j∈J

and {y j} j∈J are both one-tight frames forHR(Q) and VyV∗x = 0, then {x j + y j} j∈J is a two-tight frame for
HR(Q).
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Proof. Note that the pre-frame operators of {x j} j∈J and {y j} j∈J are Vx and Vy, respectively. It can be
seen from their definitions

x j = V f z j and y j = Vgz j, for all j ∈ J.

Hence x j + y j = Vxz j + Vyz j = (Vx + Vy)z j for any j ∈ J. To show {x j + y j} j∈J is a frame for HR(Q), it
is sufficient to show Vx + Vy is onto by Theorem 3.1. Using VyV∗x = 0, we have

(Vx + Vy)V∗x = VxV∗x + VyV∗x = VxV∗x .

Once again, to utilize the invertibility of VxV∗x , for an arbitrary element g in HR(Q), taking f =

V∗x (VxV∗x )−1g, undoubtedly, f ∈ HR(Q) satisfies

(Vx + Vy) f = (Vx + Vy)V∗x (VxV∗x )−1g = (VxV∗x )(VxV∗x )−1g = g.

Thus Vx + Vy is onto.
Especially, if {x j} j∈J and {y j} j∈J are both one-tight frames for HR(Q), and their pre-frame satisfies

operators VyV∗x = 0, then {x j + y j} j∈J is a frame for HR(Q) by the proof of the previous part. Letting
S 〈x+y〉 denote the frame operator of {x j + y j} j∈J, for any f ∈ HR(Q), we know that

S 〈x+y〉 f =
∑
j∈J

(x j + y j)
〈
(x j + y j)| f

〉
=

∑
j∈J

x j
〈
x j| f

〉
+

∑
j∈J

x j
〈
y j| f

〉
+

∑
j∈J

y j
〈
x j| f

〉
+

∑
j∈J

y j
〈
y j| f

〉
= VxV∗x f +

∑
j∈J

Vxz j
〈
Vyz j| f

〉
+

∑
j∈J

Vyz j
〈
Vxz j| f

〉
+ VyV∗y f

= 2 f + VxV∗y f + VyV∗x f + = 2 f .

Thus, ∑
j∈J

∣∣∣〈(x j + y j)
∣∣∣ f 〉∣∣∣2 = 〈S 〈x+y〉 f | f 〉 = 〈2 f | f 〉 = 2‖ f ‖2.

It follows that {x j + y j} j∈J is a two-tight frame forHR(Q). �

Extend the number of frames to a finite number and we have the following corollary.

Corollary 4.2. Let N = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert space HR(Q). Suppose that
{x1, j} j∈J, {x2, j} j∈J, · · ·, {xl, j} j∈J are frames for HR(Q), and V1, V2, · · ·, Vl are pre-frame operators
associated with {x1, j} j∈J, {x2, j} j∈J, · · ·, {xl, j} j∈J, respectively. If VmV∗n = 0, m, n = 1, 2, · · ·, l, then
{x1, j + x2, j + · · ·+ xl, j} j∈J is a frame forHR(Q). Moreover, if {x1, j} j∈J, {x2, j} j∈J, · · ·, {xl, j} j∈J are one-tight
frames forHR(Q) and VmV∗n = 0, m, n = 1, 2, · · ·, l, then {x1, j + x2, j + · · · + xl, j} j∈J is an l-tight frame
forHR(Q).

More generally, we have the following theorem.

Theorem 4.4. LetN = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert spaceHR(Q). Assume that {x j} j∈J

and {y j} j∈J are both frames for HR(Q), and Vx, Vy are their pre-frame operators, respectively, and
satisfy VyV∗x = 0. If P, Q ∈ B(HR(Q)), and P or Q is onto, then {Px j + Qy j} j∈J is a frame forHR(Q).
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Proof. Note that the pre-frame operators of {x j} j∈J and {y j} j∈J are Vx and Vy, respectively. It can be
seen from their definitions

x j = Vxz j and y j = Vyz j, for all j ∈ J.

After a simple calculation,

Px j + Qy j = PVxz j + QVyz j = (PVx + QVy)z j.

To show {Px j + Qy j} j∈J is a frame for HR(Q), it is sufficient to show that the operator PVx + QVy is
onto by Theorem 3.1. By Lemma 3.2, we know that VxV∗x is invertible. Without loss of generality, let
us suppose P is onto. For an arbitrary element g ∈ HR(Q), there is always f ∈ HR(Q) meets P f = g.
Thus, for any g ∈ HR(Q) and taking h = V∗x (VxV∗x )−1 f , undoubtedly, h ∈ HR(Q) satisfies

(PVx + QVy)h = (PVx + QVy)V∗x (VxV∗x )−1 f

= PVxV∗x (VxV∗x )−1 f + QVyV∗x (VxV∗x )−1 f

= PVxV∗x (VxV∗x )−1 f = P f = g.

So PVx + QVy is onto. �

In particular, to two one-tight frames in an R-Q-Hilbert space, a necessary and sufficient condition
is given, for which the new frame is tight.

Theorem 4.5. LetN = {z j} j∈J be a Hilbert basis for an R-Q-Hilbert spaceHR(Q). Assume that {x j} j∈J

and {y j} j∈J are two one-tight frames forHR(Q), Vx, Vy are their pre-frame operators, respectively, and
satisfy VyV∗x = 0. Let U1, U2 ∈ B(HR(Q)), then {U1x j + U2y j} j∈J is a λ-tight frame for HR(Q) if and
only if U1U∗1 + U2U∗2 = λIHR .

Proof. Note that Vx and Vy are pre-frame operators associated with {x j} j∈J and {y j} j∈J, respectively. For
every j ∈ J, we have

x j = Vxz j and y j = Vyz j.

For any f ∈ HR(Q), we have∑
j∈J

∣∣∣〈(U1x j + U2y j)
∣∣∣ f 〉∣∣∣2 =

∑
j∈J

〈
f
∣∣∣(U1x j + U2y j)

〉 〈
(U1x j + U2y j)

∣∣∣ f 〉
=

∑
j∈J

(〈
f
∣∣∣U1x j

〉
+

〈
f
∣∣∣U2y j

〉) (〈
U1x j

∣∣∣ f 〉 +
〈
U2y j

∣∣∣ f 〉)
=

∑
j∈J

∣∣∣〈U1x j

∣∣∣ f 〉∣∣∣2 +
∑
j∈J

〈
f
∣∣∣U1x j

〉 〈
U2y j

∣∣∣ f 〉
+

∑
j∈J

〈
f
∣∣∣U2y j

〉 〈
U1x j

∣∣∣ f 〉 +
∑
j∈J

∣∣∣〈U2y j

∣∣∣ f 〉∣∣∣2
=

∑
j∈J

∣∣∣〈x j

∣∣∣U∗1 f 〉
∣∣∣2 +

∑
j∈J

〈
U∗1 f

∣∣∣x j

〉 〈
y j

∣∣∣U∗2 f
〉

+
∑
j∈J

〈
U∗2 f

∣∣∣y j

〉 〈
x j

∣∣∣U∗1 f
〉

+
∑
j∈J

∣∣∣〈y j

∣∣∣U∗2 f 〉
∣∣∣2
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= ‖U∗1 f ‖2 + ‖U∗2 f ‖2 +
∑
j∈J

〈
V∗xU∗1 f

∣∣∣z j

〉 〈
z j

∣∣∣V∗y U∗2 f
〉

+
∑
j∈J

〈
V∗y U∗2 f

∣∣∣z j

〉 〈
z j

∣∣∣V∗xU∗1 f
〉

= ‖U∗1 f ‖2 + ‖U∗2 f ‖2 + 〈V∗xU∗1 f
∣∣∣V∗y U∗2 f 〉 + 〈V∗y U∗2 f

∣∣∣V∗xU∗1 f 〉

= ‖U∗1 f ‖2 + ‖U∗2 f ‖2 + 〈VyV∗f U
∗
1 f

∣∣∣U∗2 f 〉 + 〈U∗2 f
∣∣∣VyV∗xU∗1 f 〉

= ‖U∗1 f ‖2 + ‖U∗2 f ‖2 = 〈(U1U∗1 + U2U∗2) f
∣∣∣ f 〉.

It follows that {U1x j + U2y j} j∈J is a λ-tight frame forHR(Q) if and only if U1U∗1 + U2U∗2 = λIHR . �

In the end, a necessary and sufficient condition is given, for which the finite sum of frames to be a
frame in an R-Q-Hilbert space.

Theorem 4.6. Let {x1, j} j∈J, {x2, j} j∈J, · · ·, {xl, j} j∈J be frames for an R-Q-Hilbert space HR(Q), and Ai

and Bi be the lower and upper bounds of the frame {xi,J} j∈J for each i ∈ {1, 2, · · ·, l}, respectively. Let

{α1, α2, · · ·, αl} (αi ∈ Q, i = 1, 2, · · ·, l) be any given scalars, then
{

l∑
i=1
αixi, j

}
j∈J

is a frame forHR(Q)

if and only if there exists an M > 0 and some p ∈ {1, 2, · · ·, l} such that

M
∑
j∈J

∣∣∣〈xp, j

∣∣∣ f 〉∣∣∣2 ≤∑
j∈J

∣∣∣∣∣∣∣
〈 l∑

i=1

αixi, j

∣∣∣ f 〉∣∣∣∣∣∣∣
2

, f ∈ HR(Q).

Proof. (⇒). Note that {xi, j} j∈J (i = 1, 2, · · ·, l) is a frame forHR(Q) with frame bounds Ai and Bi. We
have for some p ∈ {1, 2, · · ·, l} that

Ap‖ f ‖2 ≤
∑
j∈J

∣∣∣〈xp, j

∣∣∣ f 〉∣∣∣2 ≤ Bp‖ f ‖2, ∀ f ∈ HR(Q).

It follows that
1
Bp

∑
j∈J

∣∣∣〈xp, j

∣∣∣ f 〉∣∣∣2 ≤ ‖ f ‖2, ∀ f ∈ HR(Q).

Assume that
{

l∑
i=1
αixi, j

}
j∈J

is a frame for HR(Q) with the lower and upper bounds A and B,

respectively. We have for each f ∈ HR(Q) that

A‖ f ‖2 ≤
∑
j∈J

∣∣∣∣∣∣∣
〈 l∑

i=1

αixi, j

∣∣∣ f 〉∣∣∣∣∣∣∣
2

≤ B‖ f ‖2,

so

‖ f ‖2 ≤
1
A

∑
j∈J

∣∣∣∣∣∣∣
〈 l∑

i=1

αixi, j

∣∣∣ f 〉∣∣∣∣∣∣∣
2

,

for f ∈ HR(Q). Therefore, we can conclude that

A
Bp

∑
j∈J

∣∣∣〈xp, j

∣∣∣ f 〉∣∣∣2 ≤∑
j∈J

∣∣∣∣∣∣∣
〈 l∑

i=1

αixi, j

∣∣∣ f 〉∣∣∣∣∣∣∣
2

,
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for f ∈ HR(Q). Taking M = A
Bp
> 0, we have for any f ∈ HR(Q) that

M
∑
j∈J

∣∣∣〈xp, j

∣∣∣ f 〉∣∣∣2 ≤∑
j∈J

∣∣∣∣∣∣∣
〈 l∑

i=1

αixi, j

∣∣∣ f 〉∣∣∣∣∣∣∣
2

.

(⇐). For each i ∈ {1, 2, · · ·, l}, let M > 0 be a constant such that for some p ∈ {1, 2, · · ·, l},

M
∑
j∈J

∣∣∣〈xp, j

∣∣∣ f 〉∣∣∣2 ≤∑
j∈J

∣∣∣∣∣∣∣
〈 l∑

i=1

αixi, j

∣∣∣ f 〉∣∣∣∣∣∣∣
2

, f ∈ HR(Q).

Since {xi, j} j∈J (i = 1, 2, · · ·, l) is a frame, we have

Ap‖ f ‖2 ≤
∑
j∈J

∣∣∣〈xp, j

∣∣∣ f 〉∣∣∣2 ≤ Bp‖ f ‖2, ∀ f ∈ HR(Q),

so

MAp‖ f ‖2 ≤ M
∑
j∈J

∣∣∣〈xp, j

∣∣∣ f 〉∣∣∣2 ≤∑
j∈J

∣∣∣∣∣∣∣
〈 l∑

i=1

αixi, j

∣∣∣ f 〉∣∣∣∣∣∣∣
2

, ∀ f ∈ HR(Q),

and the lower bound of
{

l∑
i=1
αixi, j

}
j∈J

exists. Next, we look for the upper bound of
{

l∑
i=1
αixi, j

}
j∈J

, we

will show that
{

l∑
i=1

aixi, j

}
j∈J

is a Bessel sequence forHR(Q), we have for all f ∈ HR(Q) that

∑
j∈J

∣∣∣∣∣∣∣
〈 l∑

i=1

αixi, j

∣∣∣ f 〉∣∣∣∣∣∣∣
2

≤
∑
j∈J

l

 l∑
i=1

∣∣∣∣〈αixi, j

∣∣∣ f 〉∣∣∣∣2
= l

l∑
i=1

|αi|
2
∑
j∈J

∣∣∣∣〈xi, j

∣∣∣ f 〉∣∣∣∣2
= l(max

1≤i≤l
{|αi|

2})

 l∑
i=1

Bi

 ‖ f ‖2
≤ l2 max

1≤i≤l
{|αi|

2}max
1≤i≤l
{Bi}‖ f ‖2.

Therefore,
{

l∑
i=1

aixi, j

}
j∈J

is a frame forHR(Q). �

5. Conclusions

Frames in Q-Hilbert spaces both retain the frame properties, and also have some advantages, such as
simple structure for approximation. In this paper, the definition of pre-frame operator was introduced.
We characterized the Hilbert (orthonormal) bases, frames, dual frames and Riesz bases, and obtained
the accurate expressions of all dual frames of a given frame by taking advantage of pre-frame operators.
We also discussed the constructions of frames with the help of the pre-frame operators, and gained
some more general methods to construct new frames. The obtained results further enriched the frame
theory in Q-Hilbert spaces.
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