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Abstract: The Kronecker product of two matrices is known as a special algebraic operation
of two arbitrary matrices in the computational aspect of matrix theory. This kind of matrix
operation has some interesting and striking operation properties, one of which is given by
(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) and is often called the mixed-product equality. In view of this
equality, the Kronecker product A1 ⊗ A2 of any two matrices can be rewritten as the dilation
factorization A1 ⊗A2 = (A1 ⊗ Im2)(In1 ⊗A2), and the Kronecker product A1 ⊗A2 ⊗A3 can be rewritten as
the dilation factorization A1 ⊗A2 ⊗A3 = (A1 ⊗ Im2 ⊗ Im3)(In1 ⊗A2 ⊗ Im3)(In1 ⊗ In2 ⊗A3). In this article, we
proposed a series of concrete problems regarding the dilation factorizations of the Kronecker products
of two or three matrices, and established a collection of novel and pleasing equalities, inequalities,
and formulas for calculating the ranks, dimensions, orthogonal projectors, and ranges related to the
dilation factorizations. We also present a diverse range of interesting results on the relationships
among the Kronecker products Im1 ⊗ A2 ⊗ A3, A1 ⊗ Im2 ⊗ A3 and A1 ⊗ A2 ⊗ Im3 .

Keywords: dilation factorization; dimension; Kronecker product; orthogonal projector; range; rank
Mathematics Subject Classifications: 15A09, 15A10, 15A24

1. Introduction

Throughout this article, Cm×n denotes the collection of all m × n matrices over the field of complex
numbers, A∗ denotes the conjugate transpose of A ∈ Cm×n, r(A) denotes the rank of A ∈ Cm×n, R(A)
denotes the range of A ∈ Cm×n, Im denotes the identity matrix of order m, and [ A, B ] denotes a
row block matrix consisting of A ∈ Cm×n and B ∈ Cm×p. The Moore-Penrose generalized inverse of
A ∈ Cm×n, denoted by A†, is the unique matrix X ∈ Cn×m satisfying the four Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.
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Further, we denote by

PA = AA†, EA = Im − AA† (1.1)

the two orthogonal projectors induced from A ∈ Cm×n. For more detailed information regarding
generalized inverses of matrices, we refer the reader to [2–4].

Recall that the well-known Kronecker product of any two matrices A = (ai j) ∈ Cm×n and B = (bi j) ∈
Cp×q is defined to be

A ⊗ B = (ai jB) =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

 ∈ Cmp×nq.

The Kronecker product, named after German mathematician Leopold Kronecker, was classified to
be a special kind of matrix operation, which has been regarded as an important matrix operation
and mathematical technique. This product has wide applications in system theory, matrix calculus,
matrix equations, system identification and more (cf. [1, 5–14, 16, 18–21, 23–25, 27, 28, 33, 34]). It has
been known that the matrices operations based on Kronecker products have a series of rich and good
structures and properties, and thus they have many significant applications in the research areas of both
theoretical and applied mathematics. In fact, mathematicians established a variety of useful formulas
and facts related to the products and used them to deal with various concrete scientific computing
problems. Specifically, the basic facts on Kronecker products of matrices in the following lemma were
highly appraised and recognized (cf. [15, 17, 21, 32, 34]).

Fact 1.1. Let A ∈ Cm×n, B ∈ Cp×q, C ∈ Cn×s, and D ∈ Cq×t. Then, the following equalities hold:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), (1.2)
(A ⊗ B)∗ = A∗ ⊗ B∗, (A ⊗ B)† = A† ⊗ B†, (1.3)
PA⊗B = PA ⊗ PB, r(A ⊗ B) = r(A)r(B). (1.4)

In addition, the Kronecker product of matrices has a rich variety of algebraic operation properties.
For example, one of the most important features is that the product A1 ⊗ A2 can be factorized as certain
ordinary products of matrices:

A1 ⊗ A2 = (A1 ⊗ Im2)(In1 ⊗ A2) = (Im1 ⊗ A2)(A1 ⊗ In2) (1.5)

for any A1 ∈ C
m1×n1 and A2 ∈ C

m2×n2 , and the triple Kronecker product A1 ⊗ A2 ⊗ A3 can be written as

A1 ⊗ A2 ⊗ A3 = (A1 ⊗ Im2 ⊗ Im3)(In1 ⊗ A2 ⊗ Im3)(In1 ⊗ In2 ⊗ A3), (1.6)
A1 ⊗ A2 ⊗ A3 = (In1 ⊗ A2 ⊗ Im3)(In1(In1 ⊗ In2 ⊗ A3)(A1 ⊗ Im2 ⊗ Im3), (1.7)
A1 ⊗ A2 ⊗ A3 = (Im1 ⊗ Im2 ⊗ A3)(A1 ⊗ In2 ⊗ In3)(Im1 ⊗ A2 ⊗ In3) (1.8)

for any A1 ∈ C
m1×n1 , A2 ∈ C

m2×n2 and A3 ∈ C
m3×n3 , where the five matrices in the parentheses on the

right hand sides of (1.5)–(1.8) are usually called the dilation expressions of the given three matrices A1,
A2 and A3, and the four equalities in (1.5)–(1.8) are called the dilation factorizations of the Kronecker
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products A1 ⊗ A2 and A1 ⊗ A2 ⊗ A3, respectively. A common feature of the four matrix equalities
in (1.5)–(1.8) is that they factorize Kronecker products of any two or three matrices into certain
ordinary products of the dilation expressions of A1, A2 and A3. Particularly, a noticeable fact we have
to point out is that the nine dilation expressions of matrices in (1.5)–(1.8) commute each other by the
well-known mixed-product property in (1.2) when A1, A2 and A3 are all square matrices. It can further
be imagined that there exists proper extension of the dilation factorizations to Kronecker products of
multiple matrices. Although the dilation factorizations in (1.5)–(1.8) seem to be technically trivial in
form, they can help deal with theoretical and computational issues regarding Kronecker products of
two or three matrices through the ordinary addition and multiplication operations of matrices.

In this article, we provide a new analysis of performances and properties of Kronecker products
of matrices, as well as present a wide range of novel and explicit facts and results through the
dilation factorizations described in (1.5)–(1.8) for the purpose of obtaining a deeper understanding and
grasping of Kronecker products of matrices, including a number of analytical formulas for calculating
ranks, dimensions, orthogonal projectors, and ranges of the dilation expressions of matrices and their
algebraic operations.

The remainder of article is organized as follows. In section two, we introduce some preliminary
facts and results concerning ranks, ranges, and generalized inverses of matrices. In section three, we
propose and prove a collection of useful equalities, inequalities, and formulas for calculating the ranks,
dimensions, orthogonal projectors, and ranges associated with the Kronecker products A1 ⊗ A2 and
A1 ⊗ A2 ⊗ A3 through the dilation expressions of A1, A2 and A3 and their operations. Conclusions and
remarks are given in section four.

2. Some preliminaries

One of the remarkable applications of generalized inverses of matrices is to establish various exact
and analytical expansion formulas for calculating the ranks of partitioned matrices. As convenient
and skillful tools, these matrix rank formulas can be used to deal with a wide variety of theoretical
and computational issues in matrix theory and its applications (cf. [22]). In this section, we present a
mixture of commonly used formulas and facts in relation to ranks of matrices and their consequences
about the commutativity of two orthogonal projectors, which we shall use as analytical tools to
approach miscellaneous formulas related to Kronecker products of matrices.

Lemma 2.1. [22, 29] Let A ∈ Cm×n and B ∈ Cm×k. Then, the following rank equalities

r[A, B] = r(A) + r(EAB) = r(B) + r(EBA), (2.1)
r[A, B] = r(A) + r(B) − 2r(A∗B) + r[PAPB, PBPA], (2.2)
r[A, B] = r(A) + r(B) − r(A∗B) + 2−1r(PAPB − PBPA), (2.3)
r[A, B] = r(A) + r(B) − r(A∗B) + r(P[A, B] − PA − PB + PAPB) (2.4)

hold. Therefore,

PAPB = PBPA ⇔ P[A, B] = PA + PB − PAPB

⇔ r(EAB) = r(B) − r(A∗B)
⇔ r[A, B] = r(A) + r(B) − r(A∗B)
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⇔ R(PAPB) = R(PBPA). (2.5)

If PAPB = PBPA, PAPC = PCPA and PBPC = PCPB, then

P[A, B,C] = PA + PB + PC − PAPB − PAPC − PBPC + PAPBPC. (2.6)

Lemma 2.2. [30] Let A, B and C ∈ Cm×m be three idempotent matrices. Then, the following rank
equality

r[A, B, C] = r(A) + r(B) + r(C) − r[AB, AC] − r[BA, BC] − r[CA, CB]
+ r[AB, AC, BA, BC, CA, CB] (2.7)

holds. As a special instance, if AB = BA, AC = CA and BC = CB, then

r[A, B, C] = r(A) + r(B) + r(C) − r[AB, AC] − r[BA, BC] − r[CA, CB] + r[AB, AC, BC]. (2.8)

The formulas and facts in the above two lemmas belong to mathematical competencies and
conceptions in ordinary linear algebra. Thus they can easily be understood and technically be utilized
to establish and simplify matrix expressions and equalities consisting of matrices and their generalized
inverses.

3. Main results

We first establish a group of formulas and facts associated with the orthogonal projectors, ranks,
dimensions, and ranges of the matrix product in (1.5).

Theorem 3.1. Let A1 ∈ C
m1×n1 and A2 ∈ C

m2×n2 , and denote by

M1 = A1 ⊗ Im2 , M2 = Im1 ⊗ A2

the two dilation expressions of A1 and A2, respectively. Then, we have the following results.

(a) The following orthogonal projector equalities hold:

PA1⊗A2 = PM1 PM2 = PM2 PM1 = PA1 ⊗ PA2 . (3.1)

(b) The following four rank equalities hold:

r[A1 ⊗ Im2 , Im1 ⊗ A2] = m1m2 − (m1 − r(A1))(m2 − r(A2)), (3.2)
r[A1 ⊗ Im2 , Im1 ⊗ EA2] = m1m2 − (m1 − r(A1))r(A2), (3.3)
r[EA1 ⊗ Im2 , Im1 ⊗ A2] = m1m2 − r(A1)(m2 − r(A2)), (3.4)

r[EA1 ⊗ Im2 , Im1 ⊗ EA2] = m1m2 − r(A1)r(A2), (3.5)

and the following five dimension equalities hold:

dim(R(M1) ∩R(M2)) = r(M1M2) = r(A1)r(A2), (3.6)
dim(R(M1) ∩R⊥(M2)) = r(M1EM2) = r(A1)(m2 − r(A2)), (3.7)
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dim(R⊥(M1) ∩R(M2)) = r(EM1 M2) = (m1 − r(A1))r(A2), (3.8)
dim(R⊥(M1) ∩R⊥(M2)) = r(EM1 EM2) = (m1 − r(A1))(m2 − r(A2)), (3.9)

dim(R(M1) ∩R(M2)) + dim(R(M1) ∩R⊥(M2)) + dim(R⊥(M1) ∩R⊥(M2))
+ dim(R⊥(M1) ∩R⊥(M2)) = m1m2. (3.10)

(c) The following range equalities hold:

R(M1) ∩R(M2) = R(M1M2) = R(M2M1) = R(A1 ⊗ A2), (3.11)
R(M1) ∩R⊥(M2) = R(M1EM2) = R(EM2 M1) = R(A1 ⊗ EA2), (3.12)
R⊥(M1) ∩R(M2) = R(EM1 M2) = R(M2EM1) = R(EA1 ⊗ A2), (3.13)

R⊥(M1) ∩R⊥(M2) = R(EM1 EM2) = R(EM2 EM1) = R(EA1 ⊗ EA2), (3.14)

(R(M1) ∩R(M2)) ⊕ (R⊥(M1) ∩R(M2)) ⊕ (R(M1) ∩R⊥(M2)) ⊕ (R⊥(M1) ∩R⊥(M2))
= Cm1m2 . (3.15)

(d) The following orthogonal projector equalities hold:

PR(M1)∩R(M2) = PM1 PM2 = PA1 ⊗ PA2 , (3.16)
PR(M1)∩R⊥(M2) = PM1 EM2 = PA1 ⊗ EA2 , (3.17)
PR⊥(M1)∩R(M2) = EM1 PM2 = EA1 ⊗ PA2 , (3.18)
PR⊥(M1)∩R⊥(M2) = EM1 EM2 = EA1 ⊗ EA2 , (3.19)
PR(M1)∩R(M2) + PR⊥(M1)∩R(M2) + PR(M1)∩R⊥(M2) + PR⊥(M1)∩R⊥(M2) = Im1m2 . (3.20)

(e) The following orthogonal projector equalities hold:

P[A1⊗Im2 , Im1⊗A2] = PA1 ⊗ Im2 + Im1 ⊗ PA2 − PA1 ⊗ PA2 = Im1m2 − EA1 ⊗ EA2 , (3.21)

P[A1⊗Im2 , Im1⊗EA2 ] = PA1 ⊗ Im2 + Im1 ⊗ EA2 − PA1 ⊗ EA2 = Im1m2 − EA1 ⊗ PA2 , (3.22)

P[EA1⊗Im2 , Im1⊗A2] = EA1 ⊗ Im2 + Im1 ⊗ PA2 − EA1 ⊗ PA2 = Im1m2 − PA1 ⊗ EA2 , (3.23)

P[EA1⊗Im2 , Im1⊗EA2 ] = EA1 ⊗ Im2 + Im1 ⊗ EA2 − EA1 ⊗ EA2 = Im1m2 − PA1 ⊗ PA2 . (3.24)

Proof. It can be seen from (1.2) and (1.4) that

PM1 PM2 = (A1 ⊗ Im2)(A1 ⊗ Im2)
†(Im1 ⊗ A2)(Im1 ⊗ A2)†

= (A1 ⊗ Im2)(A
†

1 ⊗ Im2)(Im1 ⊗ A2)(Im1 ⊗ A†2)
= (PA1 ⊗ Im2)(Im1 ⊗ PA2)
= PA1 ⊗ PA2 ,

PM2 PM1 = (Im1 ⊗ A2)(Im1 ⊗ A2)†(A1 ⊗ Im2)(A1 ⊗ Im2)
†

= (Im1 ⊗ A2)(Im1 ⊗ A†2)(A1 ⊗ Im2)(A
†

1 ⊗ Im2)
= (Im1 ⊗ PA2)(PA1 ⊗ Im2)
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= PA1 ⊗ PA2 ,

thus establishing (3.1).
Applying (2.1) to [A1 ⊗ Im2 , Im1 ⊗ A2] and then simplifying by (1.2)–(1.4) yields

r[A1 ⊗ Im2 , Im1 ⊗ A2] = r(A1 ⊗ Im2) + r((Im1m2 − (A1 ⊗ Im2)(A1 ⊗ Im2)
†)(Im1 ⊗ A2))

= r(A1 ⊗ Im2) + r((Im1m2 − (A1 ⊗ Im2)(A
†

1 ⊗ Im2))(Im1 ⊗ A2))

= r(A1 ⊗ Im2) + r((Im1m2 − (A1A†1) ⊗ Im2)(Im1 ⊗ A2))

= m2r(A1) + r((Im1 − A1A†1) ⊗ Im2)(Im1 ⊗ A2))

= m2r(A1) + r((Im1 − A1A†1) ⊗ A2))

= m2r(A1) + r(Im1 − A1A†1)r(A2)
= m2r(A1) + (m1 − r(A1))r(A2)
= m1m2 − (m1 − r(A1))(m2 − r(A2)),

as required for (3.2). In addition, (3.2) can be directly established by applying (2.5) to the left hand
side of (3.2). Equations (3.3)–(3.5) can be obtained by a similar approach. Subsequently by (3.2),

dim(R(M1) ∩R(M2)) = r(M1) + r(M2) − r[M1, M2] = r(A1)r(A2),

as required for (3.6). Equations (3.7)–(3.9) can be established by a similar approach. Adding (3.7)–
(3.9) leads to (3.10).

The first two equalities in (3.11) follow from (3.6), and the last two range equalities follow
from (3.1).

Equations (3.12)–(3.14) can be established by a similar approach. Adding (3.11)–(3.14) and
combining with (3.10) leads to (3.15).

Equations (3.16)–(3.19) follow from (3.11)–(3.14). Adding (3.16)–(3.19) leads to (3.20).
Under (3.1), we find from (2.5) that

P[M1,M2] = PM1 + PM2 − PM1 PM2 = PA1 ⊗ Im2 + Im1 ⊗ PA2 − PA1 ⊗ PA2 = Im1m2 − EA1 ⊗ EA2 ,

as required for (3.21). Equations (3.22)–(3.24) can be established by a similar approach. �

Equation (3.2) was first shown in [7]; see also [27] for some extended forms of (3.2). Obviously,
Theorem 3.1 reveals many performances and properties of Kronecker products of matrices, and it is
no doubt that they can be used as analysis tools to deal with various matrix equalities composed of
algebraic operations of Kronecker products of matrices. For example, applying the preceding results
to the Kronecker sum and difference A1 ⊗ Im2 ± Im1 ⊗ A2 for two idempotent matrices A1 and A2, we
obtain the following interesting consequences.

Theorem 3.2. Let A1 ∈ C
m1×m1 and A2 ∈ C

m2×m2 . Then, the following rank inequality

r(A1 ⊗ Im2 + Im1 ⊗ A2) ≥ m1r(A2) + m2r(A1) − 2r(A1)r(A2) (3.25)

holds. If A1 = A2
1 and A2 = A2

2, then the following two rank equalities hold:

r(A1 ⊗ Im2 + Im1 ⊗ A2) = m1r(A2) + m2r(A1) − r(A1)r(A2), (3.26)
r(A1 ⊗ Im2 − Im1 ⊗ A2) = m1r(A2) + m2r(A1) − 2r(A1)r(A2). (3.27)
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Proof. Equation (3.25) follows from applying the following well-known rank inequality (cf. [22])

r(A + B) ≥ r
[
A
B

]
+ r[A, B] − r(A) − r(B)

and (2.1) to A1 ⊗ Im2 + Im1 ⊗ A2. Specifically, if A1 = A2
1 and A2 = A2

2, then it is easy to verify that
(A1 ⊗ Im2)

2 = A2
1 ⊗ Im2 = A1 ⊗ Im2 and (Im1 ⊗ A2)2 = Im1 ⊗ A2

2 = Im1 ⊗ A2 under A2
1 = A1 and A2

2 = A2. In
this case, applying the following two known rank formulas

r(A + B) = r
[
A B
B 0

]
− r(B) = r

[
B A
A 0

]
− r(A),

r(A − B) = r
[
A
B

]
+ r[A, B] − r(A) − r(B),

where A and B are two idempotent matrices of the same size (cf. [29, 31]), to A1 ⊗ Im2 ± Im1 ⊗ A2 and
then simplifying by (2.1) and (3.2) yields (3.26) and (3.27), respectively. �

Undoubtedly, the above two theorems reveal some essential relations among the dilation forms of
two matrices by Kronecker products, which demonstrate that there still exist various concrete research
topics on the Kronecker product of two matrices with analytical solutions that can be proposed and
obtained. As a natural and useful generalization of the preceding formulas, we next give a diverse
range of results related to the three-term Kronecker products of matrices in (1.6).

Theorem 3.3. Let A1 ∈ C
m1×n1 , A2 ∈ C

m2×n2 and A3 ∈ C
m3×n3 , and let

X1 = A1 ⊗ Im2 ⊗ Im3 , X2 = Im1 ⊗ A2 ⊗ Im3 , X3 = Im1 ⊗ Im2 ⊗ A3 (3.28)

denote the three dilation expressions of A1, A2 and A3, respectively. Then, we have the following results.

(a) The following three orthogonal projector equalities hold:

PX1 = PA1 ⊗ Im2 ⊗ Im3 , PX2 = Im1 ⊗ PA2 ⊗ Im3 , PX3 = Im1 ⊗ Im2 ⊗ PA3 , (3.29)

the following equalities hold:

PX1 PX2 = PX2 PX1 = PA1 ⊗ PA2 ⊗ Im3 , (3.30)
PX1 PX3 = PX3 PX1 = PA1 ⊗ Im2 ⊗ PA3 , (3.31)
PX2 PX3 = PX3 PX2 = Im1 ⊗ PA2 ⊗ PA3 , (3.32)

and the equalities hold:

PA1⊗A2⊗A3 = PX1 PX2 PX3 = PA1 ⊗ PA2 ⊗ PA3 . (3.33)

(b) The following eight rank equalities hold:

r[A1 ⊗ Im2 ⊗ Im3 , Im1 ⊗ A2 ⊗ Im3 , Im1 ⊗ Im2 ⊗ A3]
= m1m2m3 − (m1 − r(A1))(m2 − r(A2))(m3 − r(A3)), (3.34)
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r[A1 ⊗ Im2 ⊗ Im3 , Im1 ⊗ A2 ⊗ Im3 , Im1 ⊗ Im2 ⊗ EA3]
= m1m2m3 − (m1 − r(A1))(m2 − r(A2))r(A3), (3.35)

r[A1 ⊗ Im2 ⊗ Im3 , Im1 ⊗ EA2 ⊗ Im3 , Im1 ⊗ Im2 ⊗ A3]
= m1m2m3 − (m1 − r(A1))r(A2)(m3 − r(A3)), (3.36)

r[EA1 ⊗ Im2 ⊗ Im3 , Im1 ⊗ A2 ⊗ Im3 , Im1 ⊗ Im2 ⊗ A3]
= m1m2m3 − r(A1)(m2 − r(A2))(m3 − r(A3)), (3.37)

r[A1 ⊗ Im2 ⊗ Im3 , Im1 ⊗ EA2 ⊗ Im3 , Im1 ⊗ Im2 ⊗ EA3]
= m1m2m3 − (m1 − r(A1))r(A2)r(A3), (3.38)

r[EA1 ⊗ Im2 ⊗ Im3 , Im1 ⊗ A2 ⊗ Im3 , Im1 ⊗ Im2 ⊗ EA3]
= m1m2m3 − r(A1)(m2 − r(A2))r(A3), (3.39)

r[EA1 ⊗ Im2 ⊗ Im3 , Im1 ⊗ EA2 ⊗ Im3 , Im1 ⊗ Im2 ⊗ A3]
= m1m2m3 − r(A1)r(A2)(m3 − r(A3)), (3.40)

r[EA1 ⊗ Im2 ⊗ Im3 , Im1 ⊗ EA2 ⊗ Im3 , Im1 ⊗ Im2 ⊗ EA3]
= m1m2m3 − r(A1)r(A2)r(A3), (3.41)

the following eight dimension equalities hold:

dim(R(X1) ∩R(X2) ∩R(X3)) = r(A1)r(A2)r(A3), (3.42)
dim(R(X1) ∩R(X2) ∩R⊥(X3)) = r(A1)r(A2)(m3 − r(A3)), (3.43)
dim(R⊥(X1) ∩R⊥(X2) ∩R(X3)) = r(A1)(m2 − r(A2))r(A3), (3.44)
dim(R⊥(X1) ∩R⊥(X2) ∩R(X3)) = (m1 − r(A1))r(A2)r(A3), (3.45)
dim(R(X1) ∩R⊥(X2) ∩R⊥(X3)) = r(A1)(m2 − r(A2))(m3 − r(A3)), (3.46)
dim(R⊥(X1) ∩R(X2) ∩R⊥(X3)) = (m1 − r(A1))r(A2)(m3 − r(A3)), (3.47)
dim(R⊥(X1) ∩R⊥(X2) ∩R(X3)) = (m1 − r(A1))(m2 − r(A2))r(A3), (3.48)
dim(R⊥(X1) ∩R⊥(X2) ∩R⊥(X3)) = (m1 − r(A1))(m2 − r(A2))(m3 − r(A3)), (3.49)

and the following dimension equality holds:

dim(R(X1) ∩R(X2) ∩R(X3)) + dim(R(X1) ∩R(X2) ∩R⊥(X3))
+ dim(R⊥(X1) ∩R⊥(X2) ∩R(X3)) + dim(R⊥(X1) ∩R⊥(X2) ∩R(X3))
+ dim(R(X1) ∩R⊥(X2) ∩R⊥(X3)) + dim(R⊥(X1) ∩R(X2) ∩R⊥(X3))
+ dim(R⊥(X1) ∩R⊥(X2) ∩R(X3)) + dim(R⊥(X1) ∩R⊥(X2) ∩R⊥(X3)

= m1m2m3. (3.50)

(c) The following eight groups of range equalities hold:

R(X1) ∩R(X2) ∩R(X3) = R(X1X2X3) = R(A1 ⊗ A2 ⊗ A3), (3.51)
R(X1) ∩R(X2) ∩R⊥(X3) = R(X1X2EX3) = R(A1 ⊗ A2 ⊗ EA3), (3.52)
R(X1) ∩R⊥(X2) ∩R(X3) = R(X1EX2 X3) = R(A1 ⊗ EA2 ⊗ A3), (3.53)
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R⊥(X1) ∩R(X2) ∩R(X3) = R(EX1 X2X3) = R(EA1 ⊗ A2 ⊗ A3), (3.54)
R(X1) ∩R⊥(X2) ∩R⊥(X3) = R(X1EX2 EX3) = R(A1 ⊗ EA2 ⊗ EA3), (3.55)
R⊥(X1) ∩R(X2) ∩R⊥(X3) = R(EX1 X2EX3) = R(EA1 ⊗ A2 ⊗ EA3), (3.56)
R⊥(X1) ∩R⊥(X2) ∩R(X3) = R(X1EX2 X3) = R(EA1 ⊗ EA2 ⊗ A3), (3.57)

R⊥(X1) ∩R⊥(X2) ∩R⊥(X3) = R(EX1 EX2 EX3) = R(EA1 ⊗ EA2 ⊗ EA3), (3.58)

and the following direct sum equality holds:

(R(X1) ∩R(X2) ∩R(X3)) ⊕ (R⊥(X1) ∩R(X2) ∩R(X3))
⊕ (R(X1) ∩R⊥(X2) ∩R(X3)) ⊕ (R(X1) ∩R(X2) ∩R⊥(X3))
⊕ (R⊥(X1) ∩R⊥(X2) ∩R(X3)) ⊕ (R⊥(X1) ∩R(X2) ∩R⊥(X3))
⊕ (R(X1) ∩R⊥(X2) ∩R⊥(X3)) ⊕ (R⊥(X1) ∩R⊥(X2) ∩R⊥(X3))
= Cm1m2m3 . (3.59)

(d) The following eight orthogonal projector equalities hold:

PR(X1)∩R(X2)∩R(X3) = PA1 ⊗ PA2 ⊗ PA3 , (3.60)
PR(X1)∩R(X2)∩R⊥(X3) = PA1 ⊗ PA2 ⊗ EA3 , (3.61)
PR(X1)∩R⊥(X2)∩R(X3) = PA1 ⊗ EA2 ⊗ PA3 , (3.62)
PR⊥(X1)∩R(X2)∩R(X3) = EA1 ⊗ PA2 ⊗ PA3 , (3.63)

PR(X1)∩R⊥(X2)∩R⊥(X3) = PA1 ⊗ EA2 ⊗ EA3 , (3.64)
PR⊥(X1)∩R(X2)∩R⊥(X3) = EA1 ⊗ PA2 ⊗ EA3 , (3.65)
PR⊥(X1)∩R⊥(X2)∩R(X3) = EA1 ⊗ EA2 ⊗ PA3 , (3.66)

PR⊥(X1)∩R⊥(X2)∩R⊥(X3) = EA1 ⊗ EA2 ⊗ EA3 , (3.67)

and the following orthogonal projector equality holds:

PR(X1)∩R(X2)∩R(X3) + PR(X1)∩R(X2)∩R⊥(X3)

+ PR(X1)∩R⊥(X2)∩R(X3) + PR⊥(X1)∩R(X2)∩R(X3)

+ PR(X1)∩R⊥(X2)∩R⊥(X3) + PR⊥(X1)∩R(X2)∩R⊥(X3)

+ PR⊥(X1)∩R⊥(X2)∩R(X3) + PR⊥(X1)∩R⊥(X2)∩R⊥(X3) = Im1m2m3 . (3.68)

(e) The following eight orthogonal projector equalities hold:

P[A1⊗Im2⊗Im3 , Im1⊗A2⊗Im3 , Im1⊗Im2⊗A3] = Im1m2m3 − EA1 ⊗ EA2 ⊗ EA3 , (3.69)

P[A1⊗Im2⊗Im3 , Im1⊗A2⊗Im3 , Im1⊗Im2⊗EA3 ] = Im1m2m3 − EA1 ⊗ EA2 ⊗ PA3 , (3.70)

P[A1⊗Im2⊗Im3 , Im1⊗EA2⊗Im3 , Im1⊗Im2⊗A3] = Im1m2m3 − EA1 ⊗ PA2 ⊗ EA3 , (3.71)

P[EA1⊗Im2⊗Im3 , Im1⊗A2⊗Im3 , Im1⊗Im2⊗A3] = Im1m2m3 − PA1 ⊗ EA2 ⊗ EA3 , (3.72)

P[A1⊗Im2⊗Im3 , Im1⊗EA2⊗Im3 , Im1⊗Im2⊗EA3 ] = Im1m2m3 − EA1 ⊗ PA2 ⊗ PA3 , (3.73)

P[EA1⊗Im2⊗Im3 , Im1⊗A2⊗Im3 , Im1⊗Im2⊗EA3 ] = Im1m2m3 − PA1 ⊗ EA2 ⊗ PA3 , (3.74)

P[EA1⊗Im2⊗Im3 , Im1⊗EA2⊗Im3 , Im1⊗Im2⊗A3] = Im1m2m3 − PA1 ⊗ PA2 ⊗ EA3 , (3.75)

P[EA1⊗Im2⊗Im3 , Im1⊗EA2⊗Im3 , Im1⊗Im2⊗EA3 ] = Im1m2m3 − PA1 ⊗ PA2 ⊗ PA3 . (3.76)
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Proof. By (1.1)–(1.3),

PX1 = (A1 ⊗ Im2 ⊗ Im3)(A1 ⊗ Im2 ⊗ Im3)
†

= (A1 ⊗ Im2 ⊗ Im3)(A
†

1 ⊗ Im2 ⊗ Im3)

= (A1A†1) ⊗ Im2 ⊗ Im3

= PA1 ⊗ Im2 ⊗ Im3 ,

thus establishing the first equality in (3.29). The second and third equalities in (3.29) can be shown in
a similar way. Also by (1.1)–(1.3),

PA1⊗A2⊗A3 = (A1 ⊗ A2 ⊗ A3)(A1 ⊗ A2 ⊗ A3)†

= (A1 ⊗ A2 ⊗ A3)(A†1 ⊗ A†2 ⊗ A†3)

= (A1A†1) ⊗ (A2A†2) ⊗ (A3A†3)
= PA1 ⊗ PA2 ⊗ PA3 , (3.77)

and by (1.2) and (3.29),

PX1 PX2 PX3 = (PA1 ⊗ Im2 ⊗ Im3)(Im1 ⊗ PA2 ⊗ Im3)(Im1 ⊗ Im2 ⊗ PA3) = PA1 ⊗ PA2 ⊗ PA3 . (3.78)

Combining (3.77) and (3.78) leads to (3.33).
By (2.1), (1.2)–(1.4) and (3.2),

r[A1 ⊗ Im2 ⊗ Im3 , Im1 ⊗ A2 ⊗ Im3 , Im1 ⊗ Im2 ⊗ A3]

= r(A1 ⊗ Im2 ⊗ Im3) + r((Im1 − A1A†1) ⊗ [A2 ⊗ Im3 , Im2 ⊗ A3])

= m2m3r(A1) + r(Im1 − A1A†1)r[A2 ⊗ Im3 , Im2 ⊗ A3]
= m2m3r(A1) + (m1 − r(A1))(m2m3 − (m2 − r(A2))(m3 − r(A3)))
= m1m2m3 − (m1 − r(A1))(m2 − r(A2))(m3 − r(A3)),

thus establishing (3.34). Equations (3.35)–(3.41) can be established in a similar way.
By (3.11), we are able to obtain

R(X1) ∩R(X2) = R(X1X2) = R(X2X1) = R(A1 ⊗ A2 ⊗ Im3).

Consequently,

R(X1) ∩R(X2) ∩R(X3) = R(X1X2) ∩R(X3) = R(X1X2X3) = R(A1 ⊗ A2 ⊗ A3),

as required for (3.51). Equations (3.52)–(3.58) can be established in a similar way. Adding (3.51)–
(3.58) leads to (3.59).

Taking the dimensions of both sides of (3.51)–(3.58) and applying (1.4), we obtain (3.42)–(3.50).
Equations (3.60)–(3.68) follow from (3.51)–(3.59).
Equations (3.69)–(3.77) follow from (2.6) and (3.30)–(3.32). �
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In addition to (3.28), we can construct the following three dilation expressions

Y1 = Im1 ⊗ A2 ⊗ A3, Y2 = A1 ⊗ Im2 ⊗ A3 and Y3 = A1 ⊗ A2 ⊗ Im3 (3.79)

from any three matrices A1 ∈ C
m1×n1 , A2 ∈ C

m2×n2 and A3 ∈ C
m3×n3 . Some concrete topics on rank

equalities for the dilation expressions under vector situations were considered in [26]. Below, we give
a sequence of results related to the three dilation expressions.

Theorem 3.4. Let Y1, Y2 and Y3 be the same as given in (3.79). Then, we have the following results.

(a) The following three projector equalities hold:

PY1 = Im1 ⊗ PA2 ⊗ PA3 , PY2 = PA1 ⊗ Im2 ⊗ PA3 and PY3 = PA1 ⊗ PA2 ⊗ Im3 . (3.80)

(b) The following twelve matrix equalities hold:

PY1 PY2 = PY2 PY1 = PY1 PY3 = PY3 PY1 = PY2 PY3 = PY3 PY2

= PY1 PY2 PY3 = PY1 PY3 PY2 = PY2 PY1 PY3 = PY2 PY3 PY1

= PY3 PY1 PY2 = PY3 PY2 PY1 = PA1 ⊗ PA2 ⊗ PA3 . (3.81)

(c) The following rank equality holds:

r[Y1, Y2, Y3] = m1r(A2)r(A3) + m2r(A1)r(A3) + m3r(A1)r(A2) − 2r(A1)r(A2)r(A3). (3.82)

(d) The following range equality holds:

R(Y1) ∩R(Y2) ∩R(Y3) = R(A1 ⊗ A2 ⊗ A3). (3.83)

(e) The following dimension equality holds:

dim(R(Y1) ∩R(Y2) ∩R(Y3)) = r(A1)r(A2)r(A3). (3.84)

(f) The following projector equality holds:

PR(Y1)∩R(Y2)∩R(Y3) = PA1 ⊗ PA2 ⊗ PA3 . (3.85)

(g) The following projector equality holds:

P[Y1,Y2,Y3] = Im1 ⊗ PA2 ⊗ PA3 + PA1 ⊗ Im2 ⊗ PA3 + PA1 ⊗ PA2 ⊗ Im3 − 2(PA1 ⊗ PA2 ⊗ PA3). (3.86)

Proof. Equation (3.80) follows directly from (3.79), and (3.81) follows from (3.80). Since PY1 , PY2 and
PY3 are idempotent matrices, we find from (2.8) and (3.80) that

r[Y1, Y2, Y3] = r[PY1 , PY2 , PY3] = r(PY1) + r(PY2) + r(PY3)
− r[PY1 PY2 , PY1 PY3] − r[PY2 PY1 , PY2 PY3] − r[PY3 PY1 , PY3 PY1]
+ r[PY1 PY2 , PY1 PY3 , PY2 PY2]

= r(PY1) + r(PY2) + r(PY3) − 2r(PA1 ⊗ PA2 ⊗ PA3)
= m1r(A2)r(A3) + m2r(A1)r(A3) + m3r(A1)r(A2) − 2r(A1)r(A2)r(A3),

thus establishing (3.82). Equations (3.83)–(3.86) are left as exercises for the reader. �
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There are some interesting consequences to Theorems 3.3 and 3.4. For example, applying the
following well-known rank inequality (cf. [22]):

r(A + B + C) ≥ r


A
B
C

 + r[A, B, C] − r(A) − r(B) − r(C)

to the sums of matrices in (3.28) and (3.80) yields the two rank inequalities

r(A1 ⊗ Im2 ⊗ Im3 + Im1 ⊗ A2 ⊗ Im3 + Im1 ⊗ Im2 ⊗ A3)
≥ m1m2r(A3) + m1m3r(A2) + m2m3r(A1) − 2m1r(A2)r(A3) − 2m2r(A1)r(A3)
− 2m3r(A1)r(A2) + 2r(A1)r(A2)r(A3)

and

r(Im1 ⊗ A2 ⊗ A3 + A1 ⊗ Im2 ⊗ A3 + A1 ⊗ A2 ⊗ Im3)
≥ m1r(A2)r(A3) + m2r(A1)r(A3) + m3r(A1)r(A2) − 4r(A1)r(A2)r(A3),

respectively, where A1 ∈ C
m1×m1 , A2 ∈ C

m2×m2 and A3 ∈ C
m3×m3 .

4. Conclusions

We presented a new analysis of the dilation factorizations of the Kronecker products of two or
three matrices, and obtained a rich variety of exact formulas and facts related to ranks, dimensions,
orthogonal projectors, and ranges of Kronecker products of matrices. Admittedly, it is easy to
understand and utilize these resulting formulas and facts in dealing with Kronecker products of
matrices under various concrete situations. Given the formulas and facts in the previous theorems,
there is no doubt to say that this study clearly demonstrates significance and usefulness of the dilation
factorizations of Kronecker products of matrices. Therefore, we believe that this study can bring
deeper insights into performances of Kronecker products of matrices, and thereby can lead to certain
advances of enabling methodology in the domain of Kronecker products. We also hope that the findings
in this resultful study can be taken as fundamental facts and useful supplementary materials in matrix
theory when identifying and approaching various theoretical and computational issues associated with
Kronecker products of matrices.

Moreover, the numerous formulas and facts in this article can be extended to the situations for
dilation factorizations of multiple Kronecker products of matrices, which can help us a great deal
in producing more impressive and useful contributions of researches related to Kronecker products
of matrices and developing other relevant mathematical techniques applicable to solving practical
topics. Thus, they can be taken as a reference and a source of inspiration for deep understanding
and exploration of numerous performances and properties of Kronecker products of matrices.
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