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1. Introduction

Throughout the paper, we denote by C and Z the sets of complex numbers and integers, respectively.
All vector spaces and algebras are over C. The extended Schrödinger-Virasoro Lie algebra s̃v is an
infinite-dimensional algebra that was introduced in [1] in the context of the two-dimensional conformal
field theory and statistical physics, and s̃v can be viewed as an extension of the Schrödinger-Virasoro
Lie algebra by a conformal current with conformal weight 1. The Schrödinger-Virasoro Lie algebra
sv, originally introduced by Henkel [2], has been widely studied in [3–8] in recent years.

The extended Schrödinger-Virasoro Lie algebra s̃v is a vector space spanned by a basis
{Ln,Mn,Nn,Yn+ 1

2
|n ∈ Z} with the following brackets

[Lm, Ln] = (n − m)Lm+n, [Mm,Mn] = 0, [Nm,Nn] = 0,

[Ym+ 1
2
,Yn+ 1

2
] = (n − m)Mm+n+1, [Lm,Mn] = nMm+n,

[Lm,Nn] = nNm+n, [Lm,Yn+ 1
2
] = (n +

1 − m
2

)Ym+n+ 1
2
, [Nm,Mn] = 2Mm+n,

[Nm,Yn+ 1
2
] = Ym+n+ 1

2
, [Mm,Yn+ 1

2
] = 0,
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where n, m ∈ Z. It is clear that s̃v is finitely generated with a set of generators {L−2, L−1, L1, L2,N1,Y 1
2
}

and is a perfect Lie algebra, i.e., [s̃v, s̃v] = s̃v [9]. Clearly, the center of s̃v is zero, i.e., Z(s̃v)=0.
In [9], authors studied the derivations, the central extensions and the automorphism group of

the extended Schrödinger-Virasoro Lie algebra. In [10], Lie bialgebra structures on the extended
Schrödinger-Virasoro Lie algebra were classified. n-derivations of the extended Schrödinger-Virasoro
Lie algebra were investigated in [11], and the main result when n = 2 was applied to characterize the
linear commuting maps and the commutative post-Lie algebra structures on s̃v. In this article, we will
study the skew-symmetric biderivations and the linear commuting maps of the extended Schrödinger-
Virasoro Lie algebra.

It is well know that the derivation algebra of an algebra A plays an important role in the study of the
structure of A. As generalizations of derivations, the study of biderivations was initiated by Bres̆ar [12].
In [13], Wang et al. introduced the notion of biderivation of a Lie algebra and showed that the skew-
symmetric biderivation of finite-dimensional complex simple Lie algebra is inner. There has been a lot
of interest in studying biderivations on the Schrödinger-Virasoro Lie algebra, the conformal Galilei
algebra, Kac-Moody algebras and the deformative Schrödinger-Virasoro Lie algebra in [6,14–16],
respectively. The case of the deformative Schrodinger-Virasoro Lie algebras yield examples for skew
biderivations that are not inner [16].

Let L be a Lie algebra. We call a bilinear map φ : L×L −→ L a biderivation if it’s a derivation with
respect to both components:

φ([x, y], z) = [x, φ(y, z)] + [φ(x, z), y], (1.1)

φ(x, [y, z]) = [φ(x, y), z] + [y, φ(x, z)],∀x, y, z ∈ L.

Moreover, a biderivation φ is called skew-symmetric if φ(x, y) = −φ(y, x),∀x, y ∈ L. The biderivation
φλ : L × L −→ L for λ ∈ F, satisfying φλ(x, y) = λ[x, y], is called inner.

A map ψ : L −→ L is called a linear commuting map if [ψ(x), x] = 0 for all x ∈ L. Linear
commuting maps on the Schrödinger-Virasoro Lie algebra, the conformal Galilei algebra, Kac-Moody
algebras and the deformative Schrödinger-Virasoro Lie algebra were extensively studied in [6,14–16],
respectively.

The paper is organized as follows. We will introduce some basic conclusions on biderivations of
s̃v in Section 2. In Section 3, we will prove that every biderivation of s̃v is inner, and then we will
give the form of each linear commuting map on s̃v in Section 4. In Section 5, in order to find some
differences, we compare our main results with those for the Schrödinger-Virasoro Lie algebra in [6]
and the deformative Schrödinger-Virasoro Lie algebras in [16].

Throughout this paper, we work over the field C.

2. General results on biderivations of Lie algebra s̃v

In this section, we give some general results on skew-symmetric biderivations of s̃v.

Lemma 2.1. Let φ be a skew-symmetric biderivation on s̃v, then

[φ(x, y), [u, v]] = [[x, y], φ(u, v)],∀x, y, u, v ∈ s̃v.
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In particular, [φ(x, y), [x, y]] = 0.
The proof is similar to that of Corollary 2.2 in [7].

Lemma 2.2. Suppose that φ is a skew-symmetric biderivation on s̃v. If [x, y] = 0 for x, y ∈ s̃v, then
φ(x, y) = 0.

Proof. By Lemma 2.1, we have

[φ(x, y), [u, v]] = [[x, y], φ(u, v)],

for all u, v, x, y ∈ s̃v. Since [x, y] = 0, then [φ(x, y), [u, v]] = 0. Thus, φ(x, y) commutes with [s̃v, s̃v].
Since [s̃v, s̃v] coincides with the Lie algebra s̃v [9], we get that φ(x, y) ∈ Z(s̃v) = 0. This concludes the
proof. □

3. Skew-symmetric biderivations of s̃v

Theorem 3.1. Let φ be a skew-symmetric biderivation of s̃v. We have

φ(x, y) = λ[x, y], ∀x, y ∈ s̃v,

where λ ∈ C.

Proof. This will be completed by verifying the following arguments.

Claim 1. There exists λ ∈ C such that

φ(Lm, Ln) = λ(n − m)Lm+n = λ[Lm, Ln],∀m, n ∈ Z.

We write φ(Lm, Ln) in terms of the basis as follows

φ(Lm, Ln) =
∑
i∈Z

a(1)
i,m,nLi +

∑
j∈Z

b(1)
j,m,nM j +

∑
k∈Z

c(1)
k,m,nNk +

∑
l∈Z

d(1)
l,m,nYl+ 1

2
,

where a(1)
i,m,n, b

(1)
j,m,n, c

(1)
k,m,n, d

(1)
l,m,n ∈ C, i, j, k, l,m, n ∈ Z.

If n = m, then [Lm, Ln] = 0, and based on Lemma 2.2 we have φ(Lm, Ln) = 0, so this claim holds.
Next, we assume n , m. By Lemma 2.1, we have

1
n − m

[[Lm, Ln], φ(Lm, Ln)] = 0,

then we get
[Lm+n,

∑
i∈Z

a(1)
i,m,nLi +

∑
j∈Z

b(1)
j,m,nM j +

∑
k∈Z

c(1)
k,m,nNk +

∑
l∈Z

d(1)
l,m,nYl+ 1

2
] = 0,

then∑
i∈Z

a(1)
i,m,n(i−m− n)Lm+n+i +

∑
j∈Z

b(1)
j,m,n jMm+n+ j +

∑
k∈Z

c(1)
k,m,nkNm+n+k +

∑
l∈Z

d(1)
l,m,n(l+

1 − m − n
2

)Ym+n+l+ 1
2
= 0.
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Considering the coefficients of terms ‘L’, ‘M’, ‘N’ and ‘Y’, we conclude that

a(1)
i,m,n(i − m − n) = 0, b(1)

j,m,n j = 0, c(1)
k,m,nk = 0, d(1)

l,m,n(l +
1 − m − n

2
) = 0.

Thus, a(1)
i,m,n = 0 if m + n , i, b(1)

j,m,n = 0 if j , 0, c(1)
k,m,n = 0 if k , 0, d(1)

l,m,n = 0 if l , m+n−1
2 . Then,

φ(Lm, Ln) = a(1)
m+n,m,nLm+n + b(1)

0,m,nM0 + c(1)
0,m,nN0 + d(1)

m+n−1
2 ,m,n

Y m+n−1
2 + 1

2
.

By Lemma 2.1, we obtain that

[φ(Lm, Ln), [L0, L1]] = [[Lm, Ln], φ(L0, L1)],

so

[a(1)
m+n,m,nLm+n+b(1)

0,m,nM0+c(1)
0,m,nN0+d(1)

m+n−1
2 ,m,n

Y m+n−1
2 + 1

2
, L1] = [(n−m)Lm+n, a

(1)
1,0,1L1+b(1)

0,0,1M0+c(1)
0,0,1N0+d(1)

0,0,1Y 1
2
],

and we get

a(1)
m+n,m,n(1 − m − n)Lm+n+1 + d(1)

m+n−1
2 ,m,n,

m + n − 1
2

Y m+n
2 +1

= a(1)
1,0,1(n − m)(1 − m − n)Lm+n+1 + d(1)

0,0,1(n − m)
1 − m − n

2
Ym+n+ 1

2
.

Considering the two sides of the equation, we have that a(1)
m+n,m,n = (n − m)a(1)

1,0,1 if m + n , 1,
d(1)

m+n−1
2 ,m,n

= 0 if m + n , 1 and d(1)
0,0,1 = 0. Then,

φ(Lm, Ln) = a(1)
m+n,m,nLm+n + b(1)

0,m,nM0 + c(1)
0,m,nN0.

By Lemma 2.1, we obtain that

[φ(Lm, Ln), [L0, L2]] = [[Lm, Ln], φ(L0, L2)];

that is,

[a(1)
m+n,m,nLm+n + b(1)

0,m,nM0 + c(1)
0,m,nN0, 2L2] = [(n − m)Lm+n, a

(1)
2,0,2L2 + b(1)

0,0,2M0 + c(1)
0,0,2N0],

thus, we get
2a(1)

m+n,m,n(2 − m − n)Lm+n+2 = a(1)
2,0,2(n − m)(2 − m − n)Lm+n+2.

We have that a(1)
m+n,m,n =

1
2 (n − m)a(1)

2,0,2 if m + n , 2, so a(1)
m+n,m,n = (n − m)a(1)

1,0,1,

φ(Lm, Ln) = (n − m)a(1)
1,0,1Lm+n + b(1)

0,m,nM0 + c(1)
0,m,nN0.

Taking λ = a(1)
1,0,1, thus

φ(Lm, Ln) = (n − m)λLm+n + b(1)
0,m,nM0 + c(1)

0,m,nN0. (3.1)
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Next, we will prove that b(1)
0,m,n = 0 and c(1)

0,m,n = 0. We write φ(Lm,Mn) in terms of the basis as
follows

φ(Lm,Mn) =
∑
i∈Z

a(2)
i,m,nLi +

∑
j∈Z

b(2)
j,m,nM j +

∑
k∈Z

c(2)
k,m,nNk +

∑
l∈Z

d(2)
l,m,nYl+ 1

2
,

where a(2)
i,m,n, b

(2)
j,m,n, c

(2)
k,m,n, d

(2)
l,m,n ∈ C, i, j, k, l,m, n ∈ Z. If n = 0, then [Lm,M0] = 0, and based on

Lemma 2.2 we have φ(Lm,M0) = 0. We let n , 0. By Lemma 2.1, we also have

[φ(Lm,Mn), [L−1, L1]] = [[Lm,Mn], φ(L−1, L1)];

that is,

[
∑
i∈Z

a(2)
i,m,nLi +

∑
j∈Z

b(2)
j,m,nM j +

∑
k∈Z

c(2)
k,m,nNk +

∑
l∈Z

d(2)
l,m,nYl+ 1

2
, 2L0] = [nMm+n, 2λL0 + b(1)

0,−1,1M0 + c(1)
0,−1,1N0],

then,∑
i∈Z

a(2)
i,m,niLi+1+

∑
j∈Z

b(2)
j,m,n jM j+1+

∑
k∈Z

c(2)
k,m,nkNk+1+

∑
l∈Z

d(2)
l,m,n(l+

1
2

)Yl+ 1
2
= nλ(m+n)Mm+n+1+nc(1)

0,−1,1Mm+n.

Hence, ∑
j∈Z

b(2)
j,m,n jM j = nλ(m + n)Mm+n + nc(1)

0,−1,1Mm+n.

This means b(2)
m+n,m,n(m + n) = nλ(m + n) + nc(1)

0,−1,1 if j = m + n. Based on the arbitrariness of m, n,
we obtain c(1)

0,−1,1 = 0. Thus, c(1)
0,m,n = 0.

We write φ(Lm,Nn) in terms of the basis as follows

φ(Lm,Nn) =
∑
i∈Z

a(3)
i,m,nLi +

∑
j∈Z

b(3)
j,m,nM j +

∑
k∈Z

c(3)
k,m,nNk +

∑
l∈Z

d(3)
l,m,nYl+ 1

2
,

where a(3)
i,m,n, b

(3)
j,m,n, c

(3)
k,m,n, d

(3)
l,m,n ∈ C, i, j, k, l,m, n ∈ Z. If n = 0, then [Lm,N0] = 0, and based on

Lemma 2.2 we have φ(Lm,N0) = 0. We let n , 0. By Lemma 2.1, we have

[φ(Lm,Nn), [L−1, L1]] = [[Lm,Nn], φ(L−1, L1)];

that is,

[
∑
i∈Z

a(3)
i,m,nLi +

∑
j∈Z

b(3)
j,m,nM j +

∑
k∈Z

c(3)
k,m,nNk +

∑
l∈Z

d(3)
l,m,nYl+ 1

2
, 2L0] = [nNm+n, 2λL0 + b(1)

0,−1,1M0],

then

−
∑
i∈Z

a(3)
i,m,niLi −

∑
j∈Z

b(3)
j,m,n jM j −

∑
k∈Z

c(3)
k,m,nkNk −

∑
l∈Z

d(3)
l,m,n(l +

1
2

)Yl+ 1
2
= −nλ(m + n)Nm+n + nb(1)

0,−1,1Mm+n.

It follows that a(3)
i,m,n = 0 if i , 0 and c(3)

k,m,n = nλ if k = m+ n , 0. Since l+ 1
2 , 0, then d(3)

l,m,n = 0. We
obtain that

−
∑
j∈Z

b(3)
j,m,n jM j = nb(1)

0,−1,1Mm+n.
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This means b(3)
j,m,n = 0 if j , m + n. Now, we conclude that

φ(Lm,Nn) = a(3)
0,m,nL0 + b(3)

m+n,m,nMm+n + nλNm+n + c(3)
0,m,nN0.

By Lemma 2.1, we have

[φ(Lm,Nn), [L0, L1]] = [[Lm,Nn], φ(L0, L1)];

that is,
[a(3)

0,m,nL0 + b(3)
m+n,m,nMm+n + nλNm+n + c(3)

0,m,nN0, L1] = [nNm+n, λL1 + b(1)
0,0,1M0],

then,

a(3)
0,m,nL1 − (m + n)b(3)

m+n,m,nMm+n+1 − n(m + n)λNm+n+1 = −nλ(m + n)Nm+n+1 + 2nb(1)
0,0,1Nm+n.

It follows that b(1)
0,0,1 = 0. Thus, b(1)

0,m,n = 0.
Taking c(1)

0,m,n = 0 and b(1)
0,m,n = 0 into (3.1), we get the following

φ(Lm, Ln) = λ(n − m)Lm+n = λ[Lm, Ln]. (3.2)

Claim 2. φ(x, y) = λ[x, y] for all x, y ∈ s̃v.

Based on (3.2), we can assume that φ1(x, y) = φ(x, y) − λ[x, y]. Thus, φ1(x, y) is also a skew-
symmetric biderivation of s̃v, and φ1(Li, L j) = 0. The result to be proved now is that this new
biderivation φ1 is zero.

Lemma 2.1 is applied to [φ1(x, y), [Lm, Ln]]. Since

[φ1(x, y), [Lm, Ln]] = [[x, y], φ1(Lm, Ln)],

then
(n − m)[φ1(x, y), Lm+n] = 0.

Hence, we have [φ1(x, y), Li] = 0 for all x, y ∈ s̃v and i ∈ Z. This shows that φ1(x, y) belongs to
< M0,N0 >, where < M0,N0 > is the subspace generated by M0,N0, for any x, y ∈ s̃v.

Based on (1.1), we have

φ1([Li, u], v) = [Li, φ1(u, v)] + [φ1(Li, v), u].

Thus,

φ1([Li, u], v) = [φ1(Li, v), u] (3.3)

for any u, v ∈ s̃v and i ∈ Z. The left hand side of (3.3) is in < M0,N0 > and the righthand side of (3.3)
is in < [M0, u], [N0, u] >. Thus, there exists complex numbers a, b, c, d such that

φ1([Li, u], v) = aM0 + bN0, (3.4)
[φ1(Li, v), u] = c[M0, u] + d[N0, u], (3.5)

AIMS Mathematics Volume 8, Issue 12, 28808–28817.
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for any u, v ∈ s̃v and i ∈ Z. It follows that

aM0 + bN0 = c[M0, u] + d[N0, u]. (3.6)

By replacing u by Y 1
2

in (3.6)

aM0 + bN0 = c[M0,Y 1
2
] + d[N0,Y 1

2
] = dY 1

2
,

we get that a = b = d = 0. Hence, φ1([Li, u], v) = 0 for any u, v ∈ s̃v and i ∈ Z.
On the other hand, based on

[L0, Ln] = nLn, [L0,Mn] = nMn, [L0,Nn] = nNn, [L0,Yn+ 1
2
] = (n +

1
2

)Yn+ 1
2
,

we have that
Yn+ 1

2
=

1
(n + 1

2 )
[L0,Yn+ 1

2
],

and if n , 0,

Ln =
1
n

[L0, Ln], Mn =
1
n

[L0,Mn], Nn =
1
n

[L0,Nn].

So, for any x ∈ {Ln, Mn, Nn | n , 0, n ∈ Z}
⋃
{Yn+ 1

2
| n ∈ Z}, there exists complex numbers a , 0 such

that x = a[L0, x]. Then,
φ1(x, y) = aφ1([L0, x], y) = 0, f or y ∈ s̃v.

Moreover, L0 =
1
2 [L−1, L1], M0 = [L−1,M1], N0 = [L−1,N1]. Hence,

φ1(L0, y) =
1
2
φ1([L−1, L1], y) = 0,

φ1(M0, y) = φ1([L−1,M1], y) = 0,
φ1(N0, y) = φ1([L−1,N1], y) = 0,

for y ∈ s̃v. Therefore, we have checked all cases for φ1(x, y) = 0. This completes the proof.
□

4. Linear commuting map of s̃v

In this section, we study the linear commuting maps of s̃v based on Theorem 3.1. Recall the concept
of linear commuting map ψ on the Lie algebra s̃v. We have

[ψ(x), x] = 0

for all x ∈ s̃v. Undoubtedly, if ψ on s̃v is such a map, then,

[ψ(x), y] = [x, ψ(y)]

for all x, y ∈ s̃v.
A linear commuting map ψ(x) on L is said to be standard if it has the following form ψ(x) =

λx + f (x),∀x ∈ L, where λ ∈ C, f : L → Z(L). All commuting maps of other forms are called
non-standard. If Z(L) = 0, then f (x) = 0, and thus ψ is standard if and only if ψ(x) = λx for ∀x ∈ L.

AIMS Mathematics Volume 8, Issue 12, 28808–28817.
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Theorem 4.1. Let ψ be a linear commuting map of s̃v. Then, ψ has the following form

ψ(x) = λx

for all x ∈ s̃v, where λ ∈ C. This means all commuting maps of s̃v are standard.
The proof of this theorem is similar to that of Theorem 3.1 in [6].

5. Discussion

In Tables 1 and 2, we denote sv by the Schrödinger-Virasoro Lie algebra and denote L(λ, µ, s) by
the deformative Schrödinger-Virasoro Lie algebras. Comparing our main result with those for sv in [6]
and L(λ, µ, s) in [16], we find some differences.

Table 1. (Q1) Whether all the skew-symmetric biderivations of L are inner.

Answer for question Q1
sv inner (see [6])
L(λ, µ, s) exist non-inner for the certain L(λ, µ, s) (see [16])
s̃v inner (this paper)

Table 2. (Q2) Whether all the linear commuting maps on L are standard.

Answer for question Q2
sv non-standard (see [6])
L(λ, µ, s) non-standard (see [16])
s̃v standard (this paper)

6. Conclusions

In this work, we mainly determined the skew-symmetric biderivations of the Lie algebra s̃v. The
results showed that all the skew-symmetric biderivations of the Lie algebra s̃v are inner. Furthermore,
we proved that every linear commuting map ψ on s̃v had the form ψ(x) = λx, where λ ∈ C, which
indicated that all linear commuting maps of s̃v are standard.
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