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Abstract: If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3}

is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is hyperbolic if
there exists a constant δ ≥ 0 such that any side of any geodesic triangle in X is contained in the
δ-neighborhood of the union of the two other sides. In this paper, we study the hyperbolicity of an
important kind of Euclidean graphs called Delaunay triangulations. Furthermore, we characterize the
Delaunay triangulations contained in the Euclidean plane that are hyperbolic.
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1. Introduction

The concept of Gromov hyperbolicity grasps the essence of negatively curved spaces like the
classical hyperbolic space, Riemannian manifolds of negative sectional curvature, and of discrete
spaces like the Cayley graphs of many finitely generated groups and trees [1–3]. Initially, Gromov
spaces were applied to the study of automatic groups in computer science [4, 5].

The hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related
to it [6]. This conceptualization has multiple practical applications such as networks and algorithms
[7], random graphs [8–10], or real networks [11, 12]. For example, it has been shown in [13, 14]
that the internet topology and the topology of many complex networks embed with better accuracy
into a hyperbolic space than into an Euclidean space of comparable dimension. Another important
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application of Gromov hyperbolic spaces is the study of the spread of viruses through on the internet
[15, 16] and secure transmission of information on the network [17].

By a tessellation graph we mean the 1-skeleton (i.e., the set of 1-cells) of a CW 2-complex contained
in the Euclidean plane R2 such that every point in R2 is contained in some face (2-cell) of the complex.
The edges of a tessellation graph are straight segments and have its Euclidean length. Note that this
class of graphs contains as particular cases many planar graphs.

Delaunay triangulations are an important kind of Euclidean graphs. It is important to note that
Delaunay triangulations are the dual of Voronoi graphs (the 1-skeleton of the Voronoi diagram) in
the Euclidean plane [18–20]. Euclidean graphs have been used as a modeling tool; for example, in
circuit layout [21]. They also arise indirectly in the solution to geometric problems such as motion
planning [22]. Delaunay triangulations are good candidates for approximating graphs, since if S has
N points, then the triangulation contains only a linear number of edges and can be computed from S
in O(N log N) time [23].

Delaunay triangulations tend to have desirable geometric properties, such as maximizing the
minimum angle of the triangles, which leads to more regular and well-conditioned triangles. This
quality is crucial in applications where accurate and robust geometric computations are required.
Delaunay triangulations are widely used for generating triangular meshes. They provide a way to
divide a complex domain into a set of non-overlapping triangles, which is useful in finite element
analysis, computational physics, and computer-aided design (CAD) applications. Also, Delaunay
triangulations can be employed for interpolating values or reconstructing surfaces from scattered data
points. They provide a natural and optimal way to connect data points, allowing for the creation of
smooth surfaces or accurate approximations based on the input data. Besides, Delaunay triangulations
serve as a fundamental building block in many computational geometry algorithms. They are used as a
data structure to efficiently solve problems such as nearest neighbor search, point location, convex hull
computation, and geometric intersection problems.

Since the Euclidean plane is non-hyperbolic, it is natural to conjecture that “every tessellation of
the Euclidean plane with convex tiles induces a non-hyperbolic graph”. In [24] it was shown that the
conjecture is false. However, we prove in this work that it is true for every Delaunay triangulation
which is a triangulation of the Euclidean plane, see Corollary 3.14. Furthermore, Theorem 3.13
characterizes the Delaunay triangulations contained in the Euclidean plane that are hyperbolic in
terms of only two geometric parameters associated with the triangulation (they may or may not be
a tessellation of the plane).

2. Background on hyperbolic spaces

If X is a metric space, the curve γ : [a, b] → X is a geodesic if L(γ|[t,s]) = d(γ(t), γ(s)) = s − t for
every s, t ∈ [a, b] with t < s. The metric space X is said geodesic if for every couple of points in X there
exists a geodesic joining them; we denote by [xy] any geodesic joining x and y. Hence, any geodesic
metric space is connected. If the metric space X is a graph, then the edge joining the vertices u and v
will be denoted by uv.

In order to consider a graph G as a geodesic metric space, we must identify any edge uv ∈ E(G)
with a real interval with length L(uv); thus, any point in the interior of any edge is a point of G.
Any connected graph G is naturally equipped with a distance defined on its points, induced by taking
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shortest paths in G. Therefore, we consider G as a geodesic metric graph.
If X is a geodesic metric space and x1, x2, x3 are points in X, then the union of three geodesics

[x1x2], [x2x3] and [x3x1] is a geodesic triangle, and we denote it by T = {x1, x2, x3} or T =

{[x1x2], [x2x3], [x3x1]}. The geodesic triangle T is δ-thin if any side of T is contained in the δ-
neighborhood of the union of the two other sides. We denote by δ(T ) the sharp thin constant of T ,
i.e., δ(T ) := inf{δ ≥ 0 : T is δ-thin }. We say that the space X is δ-hyperbolic (or satisfies the Rips
condition with constant δ) if every geodesic triangle in X is δ-thin. We will denote by δ(X) the sharp
hyperbolicity constant of X, i.e., δ(X) := sup{δ(T ) : T is a geodesic triangle in X }. We say that X is
hyperbolic if X is δ-hyperbolic for some δ ≥ 0, i.e., if δ(X) < ∞.

Given any graph G and x, y ∈ G, we define the distance dG(x, y) (or simply d(x, y)) as the minimum
of the lengths of the curves in G joining x and y.

Throughout the paper, we deal with graphs that are connected and such that each ball of finite radius
contains just a finite number of edges; we also allow edges of arbitrary length. Then, the graphs are
geodesic metric spaces.

There are several equivalent definitions of hyperbolicity [2, 25–27]. It is natural to chose this
definition by its deep geometric meaning [2]. See [27–31] for more details about hyperbolic graphs.

Given two geodesic metric spaces (X, dX) and (Y, dY), a map f : X −→ Y is said to be an (α, β)-
quasi-isometric embedding, with constants α ≥ 1, β ≥ 0, if the inequalities

α−1dX(x, y) − β ≤ dY( f (x), f (y)) ≤ αdX(x, y) + β.

hold for every x, y ∈ X. We say that f is ε-full if for each y ∈ Y there exists x ∈ X with dY( f (x), y) ≤ ε.
The map f is a quasi-isometry if there exist constants α ≥ 1, β, ε ≥ 0 such that f is an ε-full (α, β)-
quasi-isometric embedding.

A fundamental property of hyperbolic spaces is the following:

Theorem 2.1 (Invariance of hyperbolicity). Let f : X −→ Y be an (α, β)-quasi-isometric embedding
between the geodesic metric spaces X and Y. If Y is hyperbolic, then X is hyperbolic.

Furthermore, if f is ε-full for some ε ≥ 0 (a quasi-isometry), then X is hyperbolic if and only if Y is
hyperbolic.

Given a geodesic triangle T = {x, y, z} in a geodesic metric space X, let TE be an Euclidean triangle
with sides of the same length than T . Since there is no possible confusion, denote the corresponding
points in T and TE by the same letters. The maximum inscribed circle in TE meets the side [xy]
(respectively [yz], [zx]) in a point z′ (respectively x′, y′) such that d(x, z′) = d(x, y′), d(y, x′) = d(y, z′)
and d(z, x′) = d(z, y′). We call the points x′, y′, z′, the internal points of {x, y, z}. By [2, p. 28 and 38],
there is a unique map f of the triangle {x, y, z} onto a tripod (a star graph with one vertex w of degree
3, and three vertices x0, y0, z0 of degree one, such that its restriction on each side of the triangle is an
isometry, d(x0,w) = d(x, z′) = d(x, y′), d(y0,w) = d(y, x′) = d(y, z′) and d(z0,w) = d(z, x′) = d(z, y′)).
Note that d(x, z′) = d(x, y′) = 1/2(d(x, y) + d(x, z) − d(y, z)), this quantity is usually denoted by (y|z)x,
the Gromov product of y and z with base point x. The triangle {x, y, z} is δ-fine if f (p) = f (q) implies
that d(p, q) ≤ δ. The space X is δ-fine if every geodesic triangle in X is δ-fine.

The following is an important result in the theory of hyperbolicity (see, e.g, [2, Proposition 2.21,
p.41]):
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Theorem 2.2. Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-fine.
(2) If X is δ-fine, then it is δ-hyperbolic.

Given a geodesic metric space X and a geodesic triangle T in X, let us define the fine constant of T
as δ f ine(T ) := inf

{
δ : T is δ-fine

}
, and the fine constant of X as

δ f ine(X) := sup
{
δ f ine(T ) : T is a geodesic triangle in X

}
.

3. Hyperbolicity of Delaunay triangulations in R2

In this section, we deal with triangulations contained in the Euclidean plane.
A Voronoi diagram V(S ) of a set S of points in the plane is a partition of the plane into regions

{Vs}s∈S , called Voronoi cells, each corresponding to a point s in S , such that for each s ∈ S , every point
within its corresponding region Vs is closer to s than to any other point of S .

We say that S ⊂ R2 is a set in general position if it is not contained in a straight line, it contains at
least three points and if no four points of S belongs to some circle. S is locally finite if any Euclidean
ball in R2 contains just a finite amount of points in S .

Although Voronoi diagrams can be defined for any set S in any metric space, the more usual
framework is R2 with a finite set S in general position. We consider along this work locally finite
sets S in general position in R2.

In this paper, we study the dual graph T (S ) of the Voronoi diagram V(S ): Consider the straight-line
embedding of T (S ), where the vertex corresponding to the Voronoi cell Vs is the point s, and the edge
connecting the vertices s1 and s2 is the Euclidean segment s1s2 (with its Euclidean length) when Vs1

and Vs2 share a side. We call this embedding the Delaunay graph T (S ) of S . Note that this definition
makes sense since S is a locally finite set, although T (S ) is an infinite graph when S is an infinite set.

Recall that the convex hull CH(P) of P ⊂ Rd is the intersection of all convex sets containing P.
Thus,

CH(P) =
∞⋃

n=2

{ n∑
j=1

λ j p j : p j ∈ P, λ j ≥ 0,
n∑

j=1

λ j = 1
}
,

since this union is a convex set, and every convex set containing P must contain every point
∑n

j=1 λ j p j

with p j ∈ P, λ j ≥ 0 and
∑n

j=1 λ j = 1.
In [23, pp. 206–207], the following results are found for finite sets. The arguments in their proofs

allow to prove the same conclusions for locally finite sets.
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Proposition 3.1. Let S be a locally finite set in general position in R2.
(1) Every vertex of the Voronoi diagram V(S ) is the common intersection of exactly three edges of

the diagram.
(2) Every vertex v in the Voronoi diagram V(S ) is the center of a circumference C(v) defined by

three points of S , and the Voronoi graph (the 1-skeleton of V(S )) is regular of degree three.
(3) For each vertex v in the Voronoi diagram, the circumference C(v) contains no other point of S .
(4) Every nearest neighbor of s ∈ S defines an edge of the Voronoi polygon ∂Vs.
(5) The polygon ∂Vs is unbounded if and only if s is a point on the boundary of the convex hull

CH(S ) of the set S .

The following theorem of Delaunay [32] shows the importance of the Delaunay graph.

Theorem 3.2. Let S be a finite set in general position in R2. Then the Delaunay graph T (S ) is a
triangulation of the convex hull CH(S ) of S .

The Delaunay graph T (S ), which can be written also as

{T (v) : v is a Voronoi vertex },

is a triangulation of CH(S ), where T (v) denotes the triangle in T (S ) associated to the Voronoi vertex
v, see [23, pp. 209–210]. Note that item (2) in Proposition 3.1 gives that the Voronoi graph is regular
of degree three.

The following fact is direct when S is a finite set, as is the case in Theorem 3.2.

Proposition 3.3. Let S be a locally finite set in general position in R2. Then, for each x, q ∈ CH(S )
there exists just a finite amount of Voronoi vertices v1, . . . , vk, such that T (v j) intersects the Euclidean
segment xq.

Proof. Since x, q ∈ CH(S ), there exist two convex polygons Px, Pq with points in S and such that
x ∈ Px, q ∈ Pq. The third item in Proposition 3.1 gives that for each vertex v in the Voronoi diagram,
the circumference C(v) contains no other point of S . The result follows from these facts since the
Euclidean segment xq is a compact set and S is a locally finite set. □

Proposition 3.3 is a useful technical result, since an Euclidean ball can intersect infinitely many
triangles of a Delaunay graph, as the following example shows:

Example 3.4. If
S = {(0, 1)}

⋃{
(k, 0) : k ∈ Z+

}
,

then any ball centered at (0, 1) intersects infinitely many triangles in T (S ).

The extended results for locally finite set of points in general position in Proposition 3.1, Proposition
3.3 and the argument in the proof of Theorem 3.2 in [23, pp. 209-210] give the following result.

Proposition 3.5. Let S be a locally finite set in general position in R2. Then the Delaunay graph T (S )
is a triangulation of the convex hull CH(S ) of S .

By Theorem 3.2 and Proposition 3.5, from now on we call Delaunay triangulation given by S to
the Delaunay graph T (S ).
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Note that if T (S ) is a triangulation of R2, then Proposition 3.5 gives that CH(S ) = R2 and so, S is
not a finite set.

Recall that if V0 is a subset of the vertices of a graph G, the subgraph G0 induced by V0 is the
subgraph of G with vertices V0 and edges {uv ∈ E(G) : u, v ∈ V0}.

Lemma 3.6. Let S be a locally finite set in general position in R2 and S 1 ⊆ S . Then the subgraph of
T (S ) induced by S 1 is also a subgraph of T (S 1).

Proof. Assume that p, q ∈ S 1 and pq ∈ E(T (S )). Thus, the Voronoi cells of p and q in V(S ) share a
Voronoi edge e, and

|x − p| = |x − q| ≤ |x − s|

for every x ∈ e and s ∈ S . Therefore,

|x − p| = |x − q| ≤ |x − s|

for every x ∈ e and s ∈ S 1, and so, e is contained in the Voronoi cells of p and q in V(S 1). This implies
that pq ∈ E(T (S 1)). Hence, the subgraph of T (S ) induced by S 1 is also a subgraph of T (S 1). □

In [33] appears the following result.

Lemma 3.7. Given a set S of n points in the plane, for any two points p, q ∈ S ,

dT (S )(p, q)
|p − q|

≤
2π

3 cos π6
≈ 2.42,

independent of S and n.

Next, we prove a similar result for locally finite sets.

Theorem 3.8. Let S be a locally finite set in general position in R2. Then, for any two points p, q ∈ S ,

dT (S )(p, q)
|p − q|

≤
2π

3 cos π6
≈ 2.42.

Proof. Fix p, q ∈ S , and let B1 be the Euclidean closed ball with center p and radius dT (S )(p, q). Note
that any geodesic in T (S ) joining p and q is contained in B1, and so, q ∈ B1.

Since S is a locally finite set, S 1 = S ∩ B1 is a finite set. Let us define r = max{dT (S )(p, v) : v ∈ S 1},
B2 the Euclidean closed ball with center p and radius r, and S 2 = S ∩ B2.

Let T be the set of triangles of T (S ) containing at least an edge in B2. Since T (S ) is a triangulation
of CH(S ) by Proposition 3.5, each edge in T (S ) belongs at most to two triangles in T (S ), and so, T is
a finite set of triangles. Let S 3 be the union of S 2 and the set of vertices of the triangles in T.

Lemma 3.6 gives that the subgraph Γ of T (S ) induced by S 3 (which includes any geodesic in T (S )
joining p and any point in S 1) is also a subgraph of T (S 3). Hence, dT (S 3)(p, q) = dT (S )(p, q).

Seeking a contradiction assumes that there exists an edge uv ∈ E(T (S 3)) \ E(T (S )) with u, v ∈ S 1.
Since Γ ∩ B2 includes any geodesic in T (S ) joining p and any point in S 1, there exists a curve g in
Γ ∩ B2 joining u and v. Since Γ is a subgraph of the planar graph T (S 3), we have uv ∩ g = {u, v}.

Let F be the compact set in R2 bounded by g and uv. Fix an edge e in g. Since F ⊆ CH(S ), there
exists a triangle T1 in the Delaunay triangulation T (S ) such that e is a side of T1 and the interior of T1
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intersects the interior of F. Let s1 be the vertex of T1 in the interior of F (recall that T (S 3) is a planar
graph). Let g1 be the curve obtained from g by replacing e for the two other sides of the triangle T1,
and F1 the compact set in R2 bounded by g1 and uv.

Fix an edge e1 in g1. Since F1 ⊆ CH(S ), there exists a triangle T2 in the Delaunay triangulation
T (S ) such that e1 is a side of T2 and the interior of T2 intersects the interior of F1. Let s2 be the vertex
of T2 in the interior of F1. Let g2 be the curve obtained from g1 by replacing e1 by the two other sides
of the triangle T2, and F2 the compact set in R2 bounded by g2 and uv.

By iterating this argument we obtain an infinite sequence {sn} ⊂ S contained in the compact set F.
This is a contradiction since S is a locally finite set, and so, E(T (S 3)) ∩ B1 = E(T (S )) ∩ B1.

Seeking for a contradiction assume that dT (S 3)(p, q) < dT (S )(p, q). Hence, there exists a geodesic η
in T (S 3) joining p and q, with L(η) < dT (S )(p, q). Note that η is contained in B1 ∩ E(T (S 3)) and it is
not contained in E(T (S )). Therefore, η contains an edge in

B1 ∩
(
E(T (S 3)) \ E(T (S ))

)
,

a contradiction. Thus, dT (S 3)(p, q) = dT (S )(p, q).
Since S is a locally finite set, S 3 is a finite set. Thus, the inequality for finite sets in Lemma 3.7

gives
dT (S )(p, q)
|p − q|

=
dT (S 3)(p, q)
|p − q|

≤
2π

3 cos π6
.

This finishes the proof, since p and q are arbitrary points in S . □

Corollary 3.9. Let S be a locally finite set in general position in R2. If d2 denotes the Euclidean
distance, then

d2(p, q) ≤ dT (S )(p, q) ≤
2π

3 cos π6
d2(p, q)

for any two points p, q ∈ S . Consequently, the identity map is a quasi-isometry between the metric
spaces (S , dT (S )) and (S , d2).

In Proposition 3.12 below, we need the following definition. Given a normed vector space (X, ∥ ∥),
we denote by B(x, r) the ball of radius r centered at x with respect to ∥ ∥. If K is a convex set in a
normed vector space X, we define

R(K) := sup
{
r : there exist a two-dimensional affine subspace L ⊆ X

and x ∈ K ∩ L with B(x, r) ∩ L ⊆ K
}
.

Remark 3.10. Note that if X = R2, then

R(K) = sup
{
r : B(x, r) ⊆ K for some x ∈ K

}
.

Example 3.11. (1) If K0 is any convex set in Rn−1 ⊂ X = Rn, then

R
(
K0 × [0,∞)

)
< ∞, R

(
K0 × R

)
< ∞.

(2) If
K =
{
(x, y) ∈ R2 : −1 ≤ x ≤ 1, y ≥ −

√
1 − x2 },

then R(K) = 1 < ∞.
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The following technical result is interesting by itself.

Proposition 3.12. If K is a convex set in a normed finite-dimensional vector space X, then δ f ine(K) ≤
2R(K) and R(K) ≤ 4δ(K)/3, and so, K is hyperbolic if and only if R(K) < ∞.

Proof. Let T be a geodesic triangle in K. Since K is a convex set in X, T is also a geodesic triangle
in X. Let r be the radius of the maximum inscribed circle in T , and x its center. Let L be the two-
dimensional affine subspace of X containing T . Thus, this inscribed circle to T , i.e., B(x, r) ∩ L, is
contained in K and

δ f ine(T ) ≤ 2r ≤ 2R(K).

Hence, δ f ine(K) ≤ 2R(K).
If B(x, r) ∩ L ⊆ K for some two-dimensional affine subspace L ⊆ X and x ∈ K ∩ L, then let T be an

equilateral triangle such that ∂B(x, r) is its circumcircle; thus, T is contained in K ∩ L. The length of
any side of T is

√
3 r and δ(T ) is the distance of the midpoint of any side of T to the union of the other

sides, i.e., δ(T ) = 3r/4. Therefore, δ(K) ≥ δ(T ) = 3r/4 and so, δ(K) ≥ 3R(K)/4. □

Although most of the graphs embedded in R2 are not hyperbolic, there are many hyperbolic graphs,
as the Cayley graphs of the groups Z and Z × Zm (m ∈ Z+) embedded in R2. Also, one of the authors
shows in [24] a hyperbolic tessellation of the Euclidean plane with convex tiles. The following result
characterizes the Delaunay triangulations contained in the Euclidean plane that are hyperbolic.

For each locally finite set S in general position in R2, let us define

ℓ(S ) := sup
{
L(e) : e ∈ E(T (S ))

}
< ∞.

Theorem 3.13. Let S be a locally finite set in general position in R2. Then, T (S ) is hyperbolic if and
only if R(CH(S )) < ∞ and ℓ(S ) < ∞.

Proof. Assume first that R(CH(S )) < ∞ and ℓ(S ) < ∞. Since R(CH(S )) < ∞, Proposition 3.12 gives
that CH(S ), with its induced Euclidean metric, is hyperbolic.

Let us consider the inclusion i : T (S ) → CH(S ) ⊆ R2. It is clear that |x − y| ≤ dT (S )(x, y) for
every x, y ∈ T (S ). Fix x, y ∈ T (S ). Let p and q be two vertices in S with dT (S )(x, p) ≤ ℓ(S )/2 and
dT (S )(y, q) ≤ ℓ(S )/2. If we define

c0 :=
2π

3 cos π6
,

then Theorem 3.8 gives

dT (S )(x, y) ≤ dT (S )(x, p) + dT (S )(p, q) + dT (S )(q, y)
≤ ℓ(S ) + c0|p − q|

≤ ℓ(S ) + c0
(
|x − y| + ℓ(S )

)
.

Hence,
1
c0

dT (S )(x, y) −
c0 + 1

c0
ℓ(S ) ≤ |x − y| ≤ dT (S )(x, y),

for every x, y ∈ T (S ), and the inclusion is a ℓ(S )-full (c0, (c0+1)ℓ(S )/c0)-quasi-isometry. Since CH(S )
is hyperbolic, Theorem 2.1 gives that T (S ) is hyperbolic.
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Assume now that T (S ) is hyperbolic. Given any edge e in T (S ), let us choose a triangle T0 =

{e, e1, e2} in the Delaunay triangulation T (S ). Note that T0 is a geodesic triangle in T (S ). If x is the
midpoint of e, then

L(e)
2
= dT (S )(x, e1 ∪ e2) ≤ δ(T0) ≤ δ(T (S )),

and so, ℓ(S ) ≤ 2δ(T (S )) < ∞. We have proved that the inclusion i : T (S ) → CH(S ) is a ℓ(S )-full
(c0, (c0 + 1)ℓ(S )/c0)-quasi-isometry between T (S ) and CH(S ). Since T (S ) is hyperbolic, Theorem 2.1
gives that CH(S ) is hyperbolic. Finally, Proposition 3.12 gives R(CH(S )) < ∞. □

The following result shows that the Delaunay triangulations of the Euclidean plane are not
hyperbolic.

Corollary 3.14. Let S be a locally finite set in general position in R2 such that T (S ) is a triangulation
of the Euclidean plane. Then T (S ) is not hyperbolic.

Proof. Since T (S ) is a triangulation of R2, we have CH(S ) = R2 and, since R(CH(S )) = R(R2) = ∞,
Theorem 3.13 gives that T (S ) is not hyperbolic. □

4. Conclusions

In conclusion, this work investigates the concept of hyperbolicity in geodesic metric spaces, with
a specific focus on Delaunay triangulations within the Euclidean plane. The study presented here
explores the hyperbolicity of Delaunay triangulations and provides insights into the conditions under
which Delaunay triangulations in the Euclidean plane are hyperbolic. This research contributes to our
understanding of geometric structures and their hyperbolicity, in Gromov sense.

Open problem

Note that part of the arguments in the proofs of the results in this paper work for n-dimensional
space. It therefore seems natural to raise the open problem of generalising our results to dimension n.
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27. Á. Martı́nez, Quasi-isometries between visual hyperbolic spaces, Manus. Math., 137 (2012), 195–
213 https://doi.org/10.1007/s00229-011-0463-8

28. S. Bermudo, J. M. Rodrı́guez, J. M. Sigarreta, J. M. Vilaire, Gromov hyperbolic graphs, Discret.
Math., 313 (2013), 1575–1585. https://doi.org/10.1016/j.disc.2013.04.009

29. A. Cantón, A. Granados, D. Pestana, J. M. Rodrı́guez, Gromov hyperbolicity of periodic graphs,
Acta. Math. Sin. English Ser., 30 (2014), 79–90. https://doi.org/10.1007/s10114-013-2370-2

30. J. M. Rodrı́guez, J. M. Sigarreta, Y. Torres-Nuñez, Computing the hyperbolicity constant of a cubic
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32. D. Delaunay, Sur la sphère vide: A la mémoire de Georges Voronoı̈, Bull. Acad. Sci. URSS, Classe
Sci. Math. Natur., 6 (1934), 793–800.

33. J. M. Keil, C. A. Gutwin, Classes of graphs which approximate the Complete Euclidean Graph,
Discr. Comput. Geom., 7 (1992), 13–28. https://doi.org/10.1007/BF02187821

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 12, 28780–28790.

http://dx.doi.org/https://doi.org/10.1103/physreve.84.066108
http://dx.doi.org/https://doi.org/10.1145/116873.116880
http://dx.doi.org/https://doi.org/10.1515/crll.1908.134.198
http://dx.doi.org/ https://doi.org/10.1109/sfcs.1984.715943
http://dx.doi.org/ https://doi.org/10.1109/sfcs.1984.715943
http://dx.doi.org/https://doi.org/10.1145/10515.10534 
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-1098-6
http://dx.doi.org/https://doi.org/10.1007/s10474-016-0677-z
http://dx.doi.org/https://doi.org/10.1007/s00229-011-0463-8
http://dx.doi.org/https://doi.org/10.1016/j.disc.2013.04.009
http://dx.doi.org/https://doi.org/10.1007/s10114-013-2370-2
http://dx.doi.org/https://doi.org/10.37236/530
http://dx.doi.org/https://doi.org/10.1007/BF02187821
http://creativecommons.org/licenses/by/4.0

	Introduction
	Background on hyperbolic spaces
	Hyperbolicity of Delaunay triangulations in R2
	Conclusions

