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1. Introduction

Let ℓ be a prime number and f ∈ S k(Γ1(N)) be a cusp form of weight k and level N. Let ρ f :
Gal(Q/Q) → GL2(Fℓ) be a mod ℓ Galois representation associated to f . Let L be the fixed field of the
kernel of ρ f . Then the representation ρ f factors through as:

Gal(Q/Q)
ρ f //

π
&&

GL2(Fℓ)

Gal(L/Q)

ϕ
88
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where π is the canonical restriction map and ϕ is the isomorphism between Gal(L/Q) and the image
im(ρ f ) of ρ f . Thus to compute ρ f , it suffices to give the Galois extension field L over Q and the
isomorphism ϕ.

In their book [1], Edixhoven et al. propose a polynomial time algorithm to compute ρ f associated
to level one modular forms. They prove that ρ f can be described by a certain polynomial P f ∈ Q[x]
of degree ℓ2 − 1 whose splitting field is the fixed field L of ker(ρ f ). One can obtain L by adjoining
the roots of P f to Q, and the isomorphism ϕ is induced by a bijection between the roots of P f and
a 2-dimensional subspace of the ℓ-torsion of the Jacobian variety J1(ℓ) of the modular curve X1(ℓ)
associated to Γ1(ℓ). This algorithm has been generalized to modular forms of arbitrary levels by Bruin
[2]. Likewise, the associated projective representation ρ̃ f : Gal(Q/Q) → PGL2(Fℓ) can be described
by a suitable polynomial P̃ f ∈ Q[x] of degree ℓ + 1.

The computations depend heavily on ℓ and the genus of the modular curve X1(ℓ), which is equal
to (ℓ − 5)(ℓ − 7)/24. In practice, the most time-consuming part of the algorithm is to approximate
the points of J1(ℓ), and the precision significantly increases when ℓ grows. Consequently, the explicit
computations have been done only for the primes no bigger than 43.

Let ∆k be the unique cusp form of level 1 and weight k with k = 12, 16, 18, 20, 22, 26. In
practice, this algorithm has been first implemented by Bosman [1, Chapter 7] to evaluate the projective
polynomial P̃∆k for ℓ ≤ 23 and k ≤ ℓ + 1. In [3, 4] and the unpublished paper [5], this algorithm has
been improved and more polynomials P̃∆k have been explicitly computed for ℓ ≤ 43.

However, as far as we know, no one has implemented the algorithm to calculate the polynomials
for the cases with ℓ < k − 1. In this paper, we shall discuss the algorithms for computing mod ℓ Galois
representations associated to modular forms of weight k when ℓ < k− 1. We will propose an algorithm
of this case and then do explicit computations of the mod ℓ projective Galois representations ρ̃∆k for
k = 16, 20, 22, 26 and all the unexceptional primes ℓ for which ℓ < k − 1.

In the book [1], the authors deal with the case with ℓ < k − 1 by twisting the representations and
then reduce the computations to the cases with k ≤ ℓ + 1. In fact, for a form of level one and weight
k with ℓ < k − 1, in [1, Proposition 2.5.18] they show a method to obtain a form of weight k′ ≤ ℓ + 1,
such that the two Galois representations associated to the two forms are isomorphic. In this paper, we
will prove this result also holds for modular forms of levels greater than 1.

First, in Section 2, we show a generalization of Sturm bound theorem [6, Theorem 2] to mod ℓ
modular forms, which gives an explicit method to identify two forms by observing a few coefficients
of the q-expansions. Then in Section 3, we use the generalized result to give an explicit method, for
a given modular form of type (N, k, ε), to obtain a twist form of type (N, k′, ε) with k′ ≤ ℓ + 1, such
that the two Galois representations associated to the two forms are isomorphic up to twist. In fact this
is a generalization of [1, Proposition 2.5.18] to modular forms of arbitrary levels. Consequently, the
computations of the cases with ℓ < k − 1 boil down to the cases with k ≤ ℓ + 1.

In the end of Section 3, we prove the corresponding results for the projective representations and
then present the algorithm for the projective case.

In Section 4, we apply the algorithm in Subsection 3.3 to do explicit computations of the mod
ℓ projective Galois representations ρ̃∆k for k = 16, 20, 22, 26 and all the unexceptional primes ℓ for
which ℓ < k − 1. Here ∆k is the normalized cusp form of level one and weight k. The computed
projective polynomials P̃∆k(x) associated to the representations ρ̃∆k are shown in Table 4.

Lehmer [7] conjectures that Ramanujan’s tau function τ(n) is non-vanishing for all n and shows that
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τ(n) , 0 for all n < 3316799. Serre [8] sums up the congruences of τ(p) modulo exceptional primes
of τ(p) and obtains a bound of 15 digits for Lehmer’s conjecture with respect to τ(n). Bosman [1] first
used the results of modular Galois representations to discuss the non-vanishing coefficients of τ(n) and
then this method was developed by others. So far the bound for Lehmer’s conjecture with respect to
τ(n) is up to 24 digits [5].

In [9], the authors discuss non-vanishing Fourier coefficients an(∆k) of ∆k and achieve the bounds
Bk of n such that an(∆k) , 0 for all n < Bk in the cases with k = 16, 18, 20, 22, 26.

In this paper, as an application, we shall discuss the non-vanishing Fourier coefficients of ∆k using
our results. In fact, for k = 16, 20, 22, 26, we obtain higher bounds Bk of n such that an(∆k) , 0 for all
n < Bk. We demonstrate how much the bounds Bk have been improved for k = 16, 20, 22, 26 in Table
1. Note that the last column of Table 1 is the approximate quotients of the new and old bounds.

Table 1. Comparison between the new and old bounds.

k new bound old bound
new bound

≈
old bound

16 169424346446440054199 12604744061516618549 13

20 1222095705994609939349 74201833676082662549 16

22 567829713758553825538049 28265095927027650599999 20

26 3442219356673306598399 818406791865712833299 4

The method in this paper is different with that in the previous papers. In [4], we compute modular
Galois representations only when ℓ ≥ k − 1, in which case we say the prime ℓ is “large enough”.
However, in this paper, we discuss the cases when ℓ < k − 1, that is, the prime ℓ is small. In this case,
we don’t have the weight 2 forms by which we can carry out all the computations. Instead, in this
paper, we use the twists of the forms by the θ operator. In [9], to obtain the new bounds Bk, we discuss
the exceptional primes and observe the congruence formulas, and there is none of new modular Galois
representation being computed. In this paper, we do computations in the cases with unexceptional
primes by using the new modular Galois representations, which are computed in Subsection 4.2.

Throughout this paper, we suppose ℓ ≥ 5 to be a prime and denote Fℓ the algebraic closure of the
finite field Fℓ. All the explicit computations of this paper have been done in the open source software
SAGE [10].

2. Mod ℓ modular forms

2.1. Modular forms of type (N, k, ε)

The mod ℓ modular forms were first developed by Serre [11] and Swinnerton-Dyer [12], and
generalized by Katz [13]. In this subsection we give a brief review of the theory of mod ℓ modular
forms. For the details, we refer to [14] and [15, Section 2].

Let ℓ be a prime and N ≥ 1 be prime to ℓ. The congruence subgroup Γ1(N) of level N is
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Γ1(N) =
{(

a b
c d

)
∈ S L(2,Z) | c ≡ 0 mod N, a ≡ d ≡ 1 mod N

}
. (2.1)

Let X1(ℓ) be the modular curve associated to Γ1(ℓ). Let k > 0 be an even integer. Let E be a
generalized elliptic curve over a scheme S and α : (Z/NZ)S ↪→ E be an embdedding of group schemes.
Denote the relative differentials by Ω1

E/S and zero section by 0. Let ωE/S := 0∗Ω1
E/S . Then a modular

form f of type (N, k) over Fℓ is a law, that assigns to each pair (E/S , α) a section of ω⊗k
E/S .

The q-expansions of mod ℓ modular forms f at cusp ∞ of Γ1(N) have been given by evaluating f
on (Eq, α), where q = e2πiz and Eq is the Tate curve over Fℓ[[q]](q−1). More precisely, the q-expansions
of f at∞ are the the power series f (Eq, α)/(dt/t)⊗k ∈ Fℓ[[q]], where dt/t is the standard differential on
Eq. This in fact coincides with the usual q-expansions of modular forms, since (Eq, α) corresponds to
a neighbourhood of the cusp ∞ in the completed up half plane H∗ = H ∪ Q ∪ ∞, where H is the up
half plane. As usual, we denote the n-th coefficient of the q-expansion by an( f ).

Let ε : (Z/(Nℓ)Z)∗ → Fℓ be a Dirichlet character. Define an action of Z/(Nℓ)Z)∗ on mod ℓ form f
by

(⟨a⟩∗)(E/S , α) = f (E/S , aα), a ∈ Z/(Nℓ)Z)∗. (2.2)

A modular form f of type (N, k) is called a form of type (N, k, ε) if it satisfies

(⟨a⟩∗)(E/S , α) = ε(a) f . (2.3)

One can also define Hecke operators Tp that are coincide with the usual Hecke operators. For
instance, we have that all the Tp commute with each other and the eigenvalues determine the q-
expansions of f up to a constant factor.

A modular form f is called cusp form if a0( f ) = 0. A modular form f of type (N, k, ε) is said to be
an eigenform if it is an eigenvector for all the Hecke operators Tp with p ∤ Nℓ. An eigenform f is said
to be normalized if a1( f ) = 1.

2.2. Operator θ and Hasse invariant A

Let θ = q d
dq be the classical differential operator

∑
n>0 an( f )qn 7→

∑
n>0 nan( f )qn. If f is an eigenform

of type (N, k, ε), in [16, Section 2.1], it is shown that θ f is an eigenform of type (N, k + ℓ + 1, ε).
Let A be the Hasse invariant of the Tate curve Eq over Fℓ[[q]](q−1), then we have:

Lemma 2.1. The Hasse invariant A is given by A = (dt/t)⊗ℓ−1. Hence, A is a mod ℓ modular form
of type (1, ℓ − 1, 1).

Proof. This is Proposition 1.9 c) of [14]. □

From this lemma, we know the q-expansion of A is 1. For two forms of types (N, k1, ε) and (N, k2, ε)
with k1 ≡ k2 mod ℓ−1, we can view the two forms as forms of the same type by multiplying one form
by suitable powers of A. This can be used to prove the following proposition, which is a generalization
of Sturm bound theorem to modular forms of different weights:

Proposition 2.2. Let f1 and f2 be two normalized eigenforms of type (N, k1, ε) and (N, k2, ε),
respectively. Let k = max{k1, k2}. Suppose that k1 ≡ k2 mod ℓ − 1 and am( f1) = am( f2) in Fℓ for
all m with m ≤ k[S L2(Z):Γ1(N)]

12 . Then f1 = f2.
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Proof. Let A be the Hasse invariant. Without loss of generality, we suppose k1 ≤ k2. Then by
Lemma 2.1, the form A(k2−k1)/(ℓ−1) f1 is an eigenform of type (N, k2, ε). We know A = 1, and this implies
that the form f1 is also a form of type (N, k2, ε). Since we have am( f1) = am( f2) in Fℓ for all m with
m ≤ k[S L2(Z):Γ1(N)]

12 , it follows from Sturm’s theorem that f1 = f2. □

A proof of this result for classical modular forms can be found in [17].
The following well-known theorem takes an important role for our computations:

Theorem 2.3. Let f be a normalized eigenform of type (N, k, ε), then there exist i and k′ with 0 ≤
i ≤ ℓ − 1, k′ ≤ ℓ + 1, and a normalized eigenform of type (N, k′, ε), such that f = θig.

Proof. See [15, Theorem 3.4]. □

3. Computing mod ℓ Galois representations for small ℓ

In this section, we shall describe the algorithm for computing mod ℓ Galois representations
associated to modular forms of weight k when ℓ < k − 1. We also prove the corresponding results
for the projective representations and then present the algorithm for the projective case.

3.1. Modular Galois representations and θ twists

Deligne [18] proves the following well known theorem:

Theorem 3.1 (Deligne). Let f be an eigenform of type (N, k, ε). Then there exists a continuous
semi-simple representation

ρ f : Gal(Q/Q)→ GL2(Fℓ), (3.1)

which is unramified outside Nℓ, and for all primes p ∤ Nℓ the characteristic polynomial of ρ f (Frobp)
satisfies in Fℓ

charpol(ρ f (Frobp)) = x2 − ap( f )x + ε(p)pk−1. (3.2)

Moreover, ρ f is unique up to isomorphism.

Let f =
∑

n>0 an( f )qn be an eigenform. Then by definition, the eigenform θ f has q-expansion∑
n>0 nan( f )qn. It follows from the above theorem that

ρθ f = ρ f ⊗ χℓ,

where χ is the mod ℓ cyclotomic character. Then for an eigenform f of type (N, k, ε) with ℓ < k − 1,
it follows from Theorem 2.3 that there exist an integer i and an eigenform g of type (N, k′, ε) with
k′ ≤ ℓ + 1, such that ρ f is a twist of ρg by χi

ℓ, i. e.,

ρ f � ρg ⊗ χ
i
ℓ. (3.3)

Moreover, we have the following theorem to determine such i and k′:

Theorem 3.2. Let f1 and f2 be two normalized eigenforms of type (N, k1, ε) and (N, k2, ε),
respectively. Let i be an integer with 0 ≤ i ≤ ℓ − 1. Then f1 = θ

i f2 if and only if k1 ≡ k2 + 2i
mod ℓ − 1 and ap( f1) = piap( f2) in Fℓ for all primes p with p ≤ ℓ(ℓ+1)[S L2(Z):Γ1(N)]

12 .
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Proof. We first assume that f1 = θ
i f2. By the argument above, it follows that ρ f1 and ρ f2 ⊗ χ

i
ℓ are

isomorphic. Then by (3.2), we have
εχk1−1
ℓ = εχk2−1+2i

ℓ .

Hence we have k1 ≡ k2 + 2i mod ℓ − 1. Since ap(θi f2) = piap( f2) for all primes p, in Fℓ we have

ap( f1) = piap( f2)

for all primes p with p ≤ ℓ(ℓ+1)[S L2(Z):Γ1(N)]
12 .

For the other direction, we assume that

k1 ≡ k2 + 2i mod ℓ − 1,

and ap( f1) = piap( f2) for all primes p with p ≤ ℓ(ℓ+1)[S L2(Z):Γ1(N)]
12 .

It follows from Theorem 2.3 that there exist an integer j with 0 ≤ j ≤ ℓ − 1 and a normalized
eigenform g1 of type (N, kg1 , ε) with kg1 ≤ ℓ + 1 such that f1 = θ

jg1 in Fℓ. This implies that f1 = θ
jg1 is

a form of type (N, k1, ε) with k1 ≤ ℓ(ℓ + 1).
We set f ′2 = θ

i f2. Then for the same reason as above, the form f ′2 is of type (N, k′2, ε) with k′2 ≤
ℓ(ℓ + 1). Moreover, we have that ρ f ′2

is isomorphic to ρ f2 ⊗ χ
i
ℓ. By the argument in the first paragraph

of the proof, we have
k′2 ≡ k2 + 2i mod ℓ − 1. (3.4)

Then by the assumption and (3.4), we have

k1 ≡ k2 + 2i ≡ k′2 mod ℓ − 1,

and
ap( f1) = piap( f2) = ap( f ′2)

for all primes p with p ≤ ℓ(ℓ+1)[S L2(Z):Γ1(N)]
12 .

Since f1 and f ′2 are normalized eigenforms, this implies that am( f1) = am( f ′2) for all m ∈ Z with
m ≤ ℓ(ℓ+1)[S L2(Z):Γ1(N)]

12 . By Proposition 2.2, we then have that f1 = f ′2 and therefore f1 = θ
i f2. This

completes the proof. □

This theorem also provides a method to calculate the values of i and k′ for which (3.3) is satisfied.
From this point of view, this theorem is a generalization of [1, Proposition 2.5.18] from level one
to arbitrary levels. In [2, Theorem 3.5], the author gives an elaborate result of the generalization
of [1, Proposition 2.5.18], which is used to theoretically prove that the algorithm described in [2]
is in polynomial time. However, it is quite convenient to apply Theorem 3.2 when we do explicit
computations.

3.2. The algorithm

In this subsection, we shall describe the algorithm for computing the mod ℓ Galois representations
associated to modular forms. This algorithm was first proposed by Edixhoven and Couveignes [1]
for modular forms of level one and then generalized to forms of arbitrary levels by Bruin [2]. The
algorithm that we shall present is slightly different. In fact, we shall apply Theorem 3.2 instead when
we reduce the computations to the cases with 2 ≤ k ≤ ℓ + 1.
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Now let f be a cuspidal normalized eigenform of type (N, k, ε) with ℓ < k − 1. Theorem 2.3 and 3.2
allow us to explicitly obtain a normalized eigenform f ′ of type (N, k′, ε) with 2 ≤ k′ ≤ ℓ + 1 such that
ρ f and ρ f ′ ⊗ χ

i
ℓ are isomorphic. Thus it suffices to compute ρ f ′ and the question boils down to the case

with 2 ≤ k′ ≤ ℓ + 1.
In [19, Theorem 2.2], the author shows that if 2 < k ≤ ℓ + 1 and ρ f ,λ is ireducible, then there is a

cuspidal normalized eigenform f2 of type (Nℓ, 2, ε2) such that ρ f is isomorphic to ρ f2 . Therefore, for
any p ∤ Nℓ, this reduces the questions to the case with k = 2.

Now suppose that ρ f is a mod ℓ Galois representation associated to a cuspidal normalized eigenform
of type (N, 2, ε). Let X1(ℓ) be the modular curve associated to Γ1(ℓ) and let J1(ℓ) denote its Jacobian.
Denote T the subring of End(J1(ℓ)) generated by the Hecke operators Tp over Z. Then

T = Z[Tn, ⟨n⟩ : n ∈ Z+ and (n, ℓ) = 1].

Define a ring homomorphism
θ : T→ Fλ,

given by
⟨d⟩ 7→ ε(d) and Tn 7→ an( f ).

Let m denote the maximal ideal kerθ and then T/m ⊂ Fℓ. Moreover, we let

V = J1(ℓ)(Q)[m] = {x ∈ J1(ℓ)(Q) | tx = 0 for all t in m}.

Then we have:

Theorem 3.3. The set V is a 2-dimensional T/m-linear subspace of J1(ℓ)(Q)[ℓ]. Moreover, the
representation

ρ : Gal(Q/Q)→ Aut(V)

is isomorphic to the modular Galois representation ρ f .

Proof. See [20, Section 3.2 and 3.3]). □

Let L be the fixed field of ker(ρ f ) of the Galois representation ρ f . Then the representation ρ f can
factor through as:

Gal(Q/Q)
ρ f //

π
&&

GL2(Fℓ)

Gal(L/Q)

ϕ
88

where π is the canonical restriction map and ϕ is the isomorphism between Gal(L/Q) and the image
im(ρ f ) of ρ f . It can be shown that, to compute ρ f , it suffices to compute a suitable polynomial P f (x) ∈
Q[x] of degree ℓ2 − 1 with

P f (x) =
∏

P∈V−{0}

(x − h(P))

for some suitable function h in the function field of X1(ℓ). Here h(P) =
∑g

i=1 h(Pi) where g is the
genus of X1(ℓ), and Pi are the points on X1(ℓ) such that each divisor P ∈ V − {0} can be written as∑g

i=1(Pi) − gO.
In fact, it can be shown that the fixed field of ρ f is actually the splitting field of P f ∈ Q[x]. Then

one can obtain L by adjoining the roots of P f to Q, and the isomorphism ϕ is induced by the bijection
between the roots of P f and the points of the 2-dimensional T/m-linear subspace V of J1(ℓ)(Q)[ℓ].
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3.3. Computations of projective Galois representations

Composed with the canonical projection map GL2(Fλ) → PGL2(Fλ), the representation ρ f in (3.1)
gives a projective representation

ρ̃ f : Gal(Q/Q)→ PGL2(Fℓ).

Now we apply Theorem 3.2 to the projective representation cases and then we have:

Theorem 3.4. Let f1 and f2 be two normalized eigenforms of type (N, k1, ε) and (N, k2, ε),
respectively. Let i be an integer with 0 ≤ i ≤ ℓ − 1. Suppose that k1 ≡ k2 + 2i mod ℓ − 1 and
ap( f1) = piap( f2) in Fℓ for all primes p with p ≤ ℓ(ℓ+1)[S L2(Z):Γ1(N)]

12 . Then ρ̃ f1 and ρ̃ f2 are isomorphic.

Proof. It follows from Theorem 3.2 that ρ̃ f1 and ρ̃ f2 ⊗ χ
i
ℓ are isomorphic. For any σ ∈ Gal(Q/Q), we

have
ρ f2 ⊗ χ

i
ℓ(σ) = ρ f2(σ) · χi

ℓ(σ).

In PGL2(Fλ), we have
ρ f2(σ) = ρ f2(σ) · χi

ℓ(σ),

where, as usual, the bar denotes the quotient by the subgroup of GL2(Fℓ) consisting of scalar matrices.
Hence we have ρ̃ f2 ⊗ χ

i
ℓ = ρ̃ f2 and this implies ρ̃ f1 and ρ̃ f2 are isomorphic. □

Now we can describe the algorithm for computing the projective Galois representation ρ̃ f associated
to an normalized eigenform of type (N, k, ε) with ℓ < k − 1.

First, by Theorems 2.3 and 3.4, we can explicitly obtain a normalized eigenform f ′ of type (N, k′, ε)
with 2 ≤ k′ ≤ ℓ + 1 such that ρ̃ f and ρ̃ f ′ are isomorphic. Thus our computations boil down to the
case with 2 ≤ k′ ≤ ℓ + 1. Then again we can reduce the question to the weight 2 case using the same
arguments in the previous subsection. Finally, we can compute a suitable polynomial instead for the
following reason:

Let K be the fixed field of ker(ρ̃ f ), then the representation ρ̃ f can factor through as:

GL2(Fλ)

&&
Gal(Q/Q)

ρ̃ f ,λ //

π
&&

ρ f ,λ
88

PGL2(Fλ)

Gal(K/Q)

φ
88

where π is the canonical restriction map and φ is the isomorphism between Gal(L/Q) and im(ρ̃ f ).
Let V = J1(ℓ)(Q)[m] be the 2-dimensional T/m-linear subspace of J1(ℓ)(Q)[ℓ] as in Theorem 3.3. Then
the projective line P(V) has ℓ + 1 points, and it follows that the fixed field of ρ̃ f is in fact the splitting
field K of a certain polynomial P̃ f ∈ Q[x] of degree ℓ + 1, which is given by

P̃ f (x) =
∏

A⊂P(V)

(x −
∑

P∈A−{0}

h(P)). (3.5)

Moreover, one can obtain K by adjoining the roots of P̃ f ,ℓ to Q and, the isomorphism φ is induced by
the bijection between the roots of P̃ f and the points of the projective line P(V). This implies that the
projective representation ρ̃ f can be described by the polynomial P̃ f .
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4. Explicit computations

For k = 16, 18, 20, 22 and 26, let ∆k =
∑∞

n>0 anqn denote the unique cusp form of level 1 and weight
k. A prime ℓ is said to be exceptional if the image of ρ∆k ,ℓ does not contain S L2(Fℓ). Otherwise, a prime
ℓ is called unexceptional.

Bosman [1] first does practical computations and obtains P̃∆k for modular forms ∆k of level 1 and
of weight k ≤ 22, with ℓ ≤ 23. Others improve the algorithm and computed the polynomials for more
cases. See [4] and [5] for instance. As far as we know, all the polynomials P̃∆k that have been computed
in this method are shown in [1, Section 7.5] and [5, Table 4].

Note that all the computed polynomials are of the cases with k ≤ ℓ+1. In this section, we shall apply
the algorithm described in Subsection 3.3 to explicitly compute the polynomials P̃∆k associated to the
mod ℓ projective Galois representations ρ̃∆k for k = 16, 20, 22, 26 and all the unexceptional primes ℓ,
with ℓ < k − 1.

As an application, we shall discuss the non-vanishing Fourier coefficients of ∆k using our results.

4.1. Reducing to the cases with k ≤ ℓ + 1.

For a prime ℓ, we let ∆̃k =
∑∞

n>0 ãnqn, where ãn means the reduction of an mod ℓ. Then ∆̃k is a
normalized cuspidal eigenform of type (1, k, 1). We denote by P̃∆k ,ℓ the polynomial P̃∆k(x) defined in
(3.5) which describes the mod ℓ projective Galois representation ρ̃∆k associated to ∆̃k.

A prime ℓ is said to be exceptional if the image of ρ f does not contain S L2(Fℓ). In Table 2 we list
the all unexceptional primes for ∆k with ℓ < k − 1. Then for the (k, ℓ) in Table 2, we shall compute the
polynomials P̃∆k ,ℓ.

Table 2. Small unexceptional primes for ∆k.

k ℓ

16 13

20 17

22
11
19

26
13
23

For ∆k and unexceptional prime ℓ, with (k, ℓ) in Table 2, we apply Theorem 3.4 to find normalized
eigenforms f of type (1, k′, 1) with k′ < ℓ − 1 such that ρ̃∆k and ρ̃ f are isomorphic. More precisely, we
first obtain all pairs (i, k′) such that

k ≡ k′ + 2i mod ℓ − 1.

Then we take a pair (i, k′) such that ap( f1) ≡ piap( f2) mod ℓ for all primes p with p ≤ ℓ(ℓ+1)
12 . This

condition can be verified quickly in SAGE. In fact, by Theorem 2.3, such k′ and i do exist and after
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doing some simple calculations we explicitly obtain the forms that satisfy the conditions in Theorem
3.2. Then by Theorem 3.4, we finally reduce the computations to the cases with k ≤ ℓ + 1. Thus it
gives:

Proposition 4.1. We take values of k, ℓ, i, k′ in each row of Table 3. Then we have the congruences

∆k ≡ θ
i∆k′ mod ℓ,

and moreover, we have ρ̃∆k � ρ̃∆k′ .

Table 3. The values of k, ℓ, i, k′.

k ℓ i k′

16 13 2 12

20 17 2 16

22
11 1 12
19 2 18

26
13 1 12
23 2 22

4.2. The polynomials P̃∆k ,ℓ

We take values of k, ℓ, i, k′ in each row of Table 3. Since ρ̃∆k and ρ̃∆k′ are isomorphic, we have

P̃∆k ,ℓ(x) = P̃∆k′ ,ℓ(x).

Fortunately, all the corresponding polynomials P̃∆k′ ,ℓ(x) have been computed and shown in [1, Section
7.5]. As a result, the polynomials P̃∆k ,ℓ(x) associated to the mod ℓ projective Galois representation ρ̃∆k

are shown in Table 4.
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Table 4. The polynomials P̃∆k ,ℓ associated to ρ̃∆k .

(k, ℓ) P̃∆k ,ℓ

(16, 13) x14+7x13+26x12+78x11+169x10+52x9−702x8−1248x7+494x6+2561x5+312x4−

2223x3 + 169x2 + 506x − 215
(20, 17) x18−2x17−17x15+204x14−1904x13+3655x12+5950x11−3672x10−38794x9+19465x8+

95982x7−280041x6−206074x5+455804x4+946288x3−1315239x2+606768x−378241
(22, 11) x12 − 4x11 + 55x9 − 165x8 + 264x7 − 341x6 + 330x5 − 165x4 − 55x3 + 99x2 − 41x − 111

(22, 19) x20 + 10x19 + 57x18 + 228x17 − 361x16 − 3420x15 + 23446x14 + 88749x13 − 333526x12 −

1138233x11 + 1629212x10 + 13416014x9 + 7667184x8 − 208954438x7 + 95548948x6 +

593881632x5 − 1508120801x4 − 1823516526x3 + 2205335301x2 + 1251488657x −
8632629109

(26, 13) x14+7x13+26x12+78x11+169x10+52x9−702x8−1248x7+494x6+2561x5+312x4−

2223x3 + 169x2 + 506x − 215
(26, 23) x24 − 11x23 + 46x22 − 1127x20 + 6555x19 − 7222x18 − 140737x17 + 1170700x16 −

2490371x15 − 16380692x14 + 99341324x13 + 109304533x12 − 2612466661x11 +

4265317961x10 + 48774919226x9 − 244688866763x8 − 88695572727x7 +

4199550444457x6−10606348053144x5−25203414653024x4+185843346182048x3−

228822955123883x2 − 1021047515459130x + 2786655204876088

4.3. An application for the non-vanishing Fourier coefficients of ∆k

In [9], the authors discuss the non-vanishing Fourier coefficients of ∆k with k = 16, 18, 20, 22, 26
and achieve the explicit bounds Bk of n such that the Fourier coefficients an(∆k) , 0 for all n < Bk.
They first prove that the smallest n for which an(∆k) = 0 must be a prime. Then, for each prime p with
ap(∆k) = 0, they obtain the formulations that such p must satisfy. In addition, the congruence

ap(∆k) ≡ 0 mod ℓ

can be verified by the polynomials P̃∆k ,ℓ associated to the projective Galois representations. Precisely,
when the polynomial P̃∆k ,ℓ ∈ Z[x], it can be shown that ap(∆k) ≡ 0 mod ℓ is equivalent to P̃∆k ,ℓ mod p
having an irreducible factor of degree 2 in Fp[x]. Consequently, one can systematically search for the
smallest prime p satisfying the formulations, as well as ap(∆k) ≡ 0 mod ℓ.

Now we can add the polynomials P̃∆k ,ℓ in Table 4 to the searching computations. That is, for
k = 16, 20, 22, 26 and all the small unexceptional primes ℓ in Table 2, we can efficiently verify the
additional searching conditions

ap(∆k) ≡ 0 mod ℓ.

As a result, for k = 16, 20, 22, 26, we are able to obtain the new bounds Bk of n such that an(∆k) , 0
for all n < Bk.

Proposition 4.2. Let the pair (k, Bk) take the values as in Table 5. Then the coefficients an(∆k) are
non-vanishing for all n with n < Bk in Table 5.
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Table 5. The bounds Bk.

k Bk

16 169424346446440054199

20 1222095705994609939349

22 567829713758553825538049

26 3442219356673306598399

5. Further work and applications

The computational results of modular Galois representations can be applied to compute the Fourier
coefficients of modular forms f according to (3.2). More precisely, if we can calculate mod ℓ Galois
representations for enough primes ℓ whose product exceeds 4p(k−1)/2, the coefficient ap( f ) can be easily
computed by Chinese Remainder Theorem. Our results in this paper add the small primes to the list
and can be applied to the computations of the Fourier coefficients of modular forms. Besides, for many
groups SL2(Fℓk) and GL2(Fℓk), it is still unknown whether they are Galois groups of number fields over
rational field Q. Our results are expected to answer some of these questions, since our computations
also provide number fields and their Galois groups, namely SL2(Fℓk) and GL2(Fℓk).

6. Conclusions

In this paper, we give an explicit method, for a given modular form of type (N, k, ε), to obtain a
twist form of type (N, k′, ε) with k′ ≤ ℓ + 1, such that the two Galois representations associated to
the two forms are isomorphic up to twist. Then we prove the corresponding results for the projective
representations and present the algorithm for the projective case. Moreover, we apply the algorithm
in Subsection 3.3 to do explicit computations of the mod ℓ projective Galois representations ρ̃∆k for
k = 16, 20, 22, 26 and all the unexceptional primes ℓ for which ℓ < k − 1. The computed projective
polynomials P̃∆k(x) associated to the representations ρ̃∆k are shown in Table 4.

In the end, as an application, we discuss the non-vanishing Fourier coefficients of ∆k using our
results. In fact, for k = 16, 20, 22, 26, we obtain new higher bounds Bk of n such that an(∆k) , 0 for all
n < Bk, which are shown in Table 5.
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