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1. Introduction

Over the last two decades, modern data collection techniques have enabled scientists and engineers
to access and load vast numbers of variables as random data in their experiments. Probability theory
provides the mathematical foundations for statistics and data-driven problems have led to various new
advances in statistical research, which in turn contributes new and challenging problems in probability
for further study. For instance, the rapid development of high-dimensional statistics has spurred the
growth of the probability theory and even pure mathematics, including concentration inequalities,
random matrix theory, geometric functional analysis and more [2, 16].

The emergence of high-throughput data has led to a surge in statistical research on complex data,
particularly on high-dimensional data and statistical learning [14, 20]. This trend has gained traction
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in various scientific fields despite the high cost of measurements. Data sets are typically small, with
only tens or hundreds of observations, and limited computing power often restricts the size of suitable
finite samples. As a result, modern statisticians and data scientists have shifted their focus from
asymptotic to non-asymptotic analysis, as it can handle small sample sizes and large model dimensions.
Concentration inequalities play a crucial role in high-dimensional statistical inference, as they can
derive various explicit non-asymptotic error bounds as a function of the sample size, sparsity level
and dimension. When analyzing the various error bounds of the regularized estimator, concentration
inequalities are indispensable tools for analysis [3, 20].

When the random variables are unbound, the classcial Hoeffding’s inequality [8] falls to do a
non-asymptotic analysis. We need the concept of sub-Gaussian random variables [9] to obtain tight
Hoeffding-type concentration inequalities for the sum of independent random variables. A centered
random variable (r.v.) X is called sub-Gaussian (X ∼ subG(σ2)) if EesX ≤ es2σ2/2 for ∀ s ∈ R,
where σ > 0 is the sub-Gaussian parameter. From Chernoff’s inequality, the exponential decay of
the sub-Gaussian tail is obtained by P (X ≥ t) ≤ inf s>0 exp{−st}E exp{sX} ≤ inf s>0 exp(−st + σ2 s2

2 ) =
exp(− t2

2σ2 ), minimizing the upper bound by putting s = t/σ2. Moreover, for independent {Xi}
n
i=1 with

Xi ∼ subG(σi), we have sub-Gaussian concentration inequality

P
(
|
∑n

i=1
Xi| ≥ t

)
≤ 2 exp

{
−

t2

2
∑n

i=1 σ
2
i

}
, t ≥ 0, (1.1)

for any variance proxies {σ2
i }

n
i=1 of {Xi}

n
i=1 (see Theorem 1.5 in [1]). Define the Lp-norm of r.v. X as

∥X∥p := (E|X|p)1/p. An alternative form of the sub-Gaussian parameter is defined by the sub-Gaussian
norm ∥ · ∥θ2 for zero-mean r.v. X is defined as ∥X∥θ2 := supp≥1[ EX2p

(2p−1)!! ]
1/(2p) (see page 23 in [1]).

Corollary 1.7 in [15] extended the sub-Gaussian concentration inequality (1.1) to the weighted sum
of independent sub-Gaussian random variables with fixed weights.

Lemma 1. [Concentration for weighted sub-Gaussian sum] Let Y1, . . . ,Yn be n independent r.v.s with
Yi ∼ subG(σ2

i ). Define σ2 = max
1≤i≤n

σ2
i < ∞. For any w := (w1, · · · ,wn)⊤, we have

P
(
|
∑n

i=1
wiYi| > t

)
≤ 2 exp

(
−

t2

2σ2∥w∥22

)
.

However, if wi’s are random in Lemma 1, the story is totally different. The goal of this paper is
to obtain novel theoretical results on the concentration inequality for the sum of dependent variables
with random weights, under high-dimensional data background. Our theory is motivated from the
non-asymptotic oracle inequalities of the regularized estimator in high-dimensional negative binomial
regressions [21], and the concentration of random Lipschitz coefficients associated with empirical
loss functions [4]. Our setting is different from classical multiplier empirical processes serving the
multiplier Bootstrap inference, where the multipliers are random variables independent of {Yi}

n
i=1

(see Chapter 2.9 of [17] and [6, 7]). Mendelson [11] studied the concentration inequalities for the
centered multiplier process indexed by a functional class, where the i.i.d. multipliers need not be
independent of the original empirical processes. In the analyses of high-dimension continuous data
regressions by empirical processes, researches often resort to concentration inequalities of the Lipschitz
function of strongly log-concave distributions (see Theorems 2.26 and 3.16 in [18]). For high-
dimension count data regressions, our section 3.3 discusses the discrete distributions with strongly
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log-concave structures, which it is considered hard to check the definition of discrete strongly log-
concave distributions (see (3.12) below). However, this strong assumption is usually intractable and
unverifiable from the data. The sub-Gaussian assumption for the i.i.d. data is testable (see [23]).

In section two, we present the main results of the theory and demonstrate their applications in a
class of high-dimensional generalized linear models. Theoretical proofs of the main results and some
lemmas and additional results are given in section three. Finally, the conclusions are presented in
section four.

2. Concentration for dependent summations

2.1. Main results

When controlling the summation of a function of the random sample indexed by a common
estimator θ̂, it is false to use any sort of classical law of large numbers and central limit theorems
(or concentration inequality for independent summation).

Formally, let X1, . . . , Xn be a random sample independently drawn from P on a measurable space
(X,A). Given an estimator θ̂, we want to study its asymptotic properties for summation of some
function fθ̂(Xi),

1
n

n∑
i=1

[ fθ̂ (Xi) − E fθ̂(Xi)].

A possible solution: Prove a uniform version (the suprema of empirical processes, see [17]) for all
possible θ̂ on a set K, which is usually stronger than what is needed.

1
n

n∑
i=1

[ fθ̂ (Xi) − E fθ̂(Xi)] ≤ sup
θ∈K

∣∣∣∣∣∣∣1n
n∑

i=1

[ fθ (Xi) − E fθ(Xi)]

∣∣∣∣∣∣∣ .
The summation in the sup enjoy independence.

In following theorem, we extend Lemma 1 with dependent and random weights.

Theorem 1. [Concentration for weighted dependent sum] Let Yi’s be independent centered sub-
Gaussian random variables with max1≤i≤n ∥Yk∥θ2 < ∞. Let wi(θ̂)’s be a series of bounded function
of a bounded random variable θ̂ as the weights (can be dependent on all Yi’s), where ∥θ̂∥1 ≤ r < ∞ and
max1≤i≤n wi(·) ≤ 1. Then, with probability of at least 1 − δ,

∣∣∣∣∣∣∣1n
n∑

i=1

wi(θ̂)Yi

∣∣∣∣∣∣∣ ≤ 4

√√
1
n

n∑
i=1

∥|Yi − Y ′i |∥
2
θ2

√
log δ−1

n
+ 2

√√
1
n

n∑
i=1

E(Y2
i )

√
2 log(2p)

n
, (2.1)

for all ∥θ̂∥1 < ∞, where Y ′i is an independent copy of Yi.
The first term in (2.1) is due to sub-Gaussian concentration, and the second term in (2.1)

is from the upper bound of the expected version of the superma of empirical process f (Y) :=
1
n sup∥θ∥1≤r |

∑n
i=1 wi(θ)Yi| (see the proof in section three).
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2.2. Applications: Local stochastic Lipschitz conditions in GLMs

The concentration of random Lipschitz coefficients associated with empirical loss functions is
crucial for deriving error bounds of Lasso or Elastic-net penalized high-dimensional generalized linear
models (GLMs) in high-dimensional regressions. For more information, please refer to [3, 4, 10].

Definition 1. [Elastic-net or Lasso penalized loss problems] Let {(Yi, Xi)}ni=1 be independent identically
random variables with values in R × Rp, where {Yi}

n
i=1 ∼ Y are response variables and {Xi}

n
i=1 ∼ X are

covariates. Let l(y, x,β) be a loss function of parameter β and data (y, x). The empirical loss function
is defined as

Pnl(Y,X,β) := 1
n

n∑
i=1

l(Yi, Xi,β).

Elastic-net (or Lasso) estimators are given by

β̂ =: β̂(λ1, λ2) = argmin
β∈Rp

{Pnl(Y,X,β) + λ1 ∥β∥1 + λ2∥β∥
2
2}, (2.2)

where λ1 > 0 and λ2 ≥ 0 are tuning parameters.
Define the minimizer

β∗= argmin
β∈Rp

E[l(Y, X,β)] (2.3)

as the vector of true coefficients, where l(Y, X,β) is the loss function. The ℓ1 ball is denoted as
SR(β∗) := {β ∈ Rp : ∥β − β∗∥1 ≤ R}. Theorem 1 can be used to establish exponential-type concentration
inequalities for the local stochastic Lipschitz (LSL) constant:

sup
β∈SR(β∗)

(Pn − P) [l(Y,X,β) − l(Y,X,β∗)]
∥β − β∗∥1

.

When study error bounds ∥β̂ − β∗∥1 of Lasso or Elastic-net penalized high-dimensional GLMs, one
must bound the dependent empirical processes (Pn−P)[l(Y,X,β̂)−l(Y,X,β∗)]

∥β̂−β∗∥1
with the LSL constant as the upper

bound.
Next, we provide an example of negative binomial loss in negative binomial regressions [21]. The

negative binomial loss function is l(y, x,β) = yx⊤β−(θ+y) log(θ+ex⊤β), where θ is called the dispersion
parameter. Denote the expected risk function as Pl(Y,X,β) := El(Y,X,β). Let l1(y, x,β) := −y[x⊤β −
log(θ + exp{x⊤β})], and l2(x,β) := θlog(θ+exp{x⊤β}), then

(Pn − P) [l(y, x,β) − l(y, x,β∗)] = (Pn − P) [l1(y, x,β) − l1(y, x,β∗)] + (Pn − P) [l2(x,β) − l2(x,β∗)].

The upper bounds for the first and second parts of the empirical process: (Pn − P)(lm(β∗) − lm(β̂)) for
m = 1, 2 is paramount to study the error bound of ∥β̂ − β∗∥1.

Let λ be a positive constant that needs to be determined. We have

P
 sup
β∈SR(β∗)

| (Pn − P) [l(Y,X,β) − l(Y,X,β∗)]|
∥β − β∗∥1

≤ λ


≤ P

 sup
β∈SR(β∗)

| (Pn − P) [l1(Y,X,β) − l1(Y,X,β∗)]|
∥β − β∗∥1

≤
λ

2


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+ P
 sup
β∈SR(β∗)

| (Pn − P) [l2(X,β) − l2(X,β∗)]|
∥β − β∗∥1

≤
λ

2

 . (2.4)

Here, we assume that both x and β are bound, and θ is a known dispersion parameter. The high
probability for the second term in (2.4) is easy to deal with if we apply McDiarmid’s inequality (see
Lemma 4 of [21]). However, the high probability for the first term in (2.4) is hard to control since it
contains unbounded negative binomial variables {Yi}

n
i=1. Zhang and Jia [21] used the concentration

inequality for strongly log-concave discrete distributions to solve this problem, but the strongly log-
concave property is difficult to check for discrete distribution (see (H.4) in [21]). The sub-Gaussian
distribution assumption is easy to verify for negative binomial variables, and this is from the fact that
the negative binomial distribution belongs to the exponential family if the dispersion parameter is
given. When Θ is compact in (2.7) below, Proposition 3.2 in [20] shows that {Yi}

n
i=1 is sub-Gaussian.

From Taylor’s expansion of continuous functions, one has log (θ + ex) − log (θ + ea) = eã

θ+eã (x − a),
where ã is some real number between a and x. Let X⊤i β̃ be some point between X⊤i β̂ and X⊤i β

∗, i.e.,

β̃ =


t1β̂1
...

tpβ̂p

 +


(1 − t1)β∗1
...

(1 − tp)β∗p

 for {t j}
p
j=1 ⊂ [0, 1]. Observe that

(Pn − P)[l1(β∗) − l1(β̂)] =
−1
n

n∑
i=1

(Yi − EYi)X⊤i [(β∗ − β̂) − log(
θ+exp{X⊤i β

∗
}

θ+exp{X⊤i β̂}
)]

=
−1
n

n∑
i=1

(Yi − EYi)X⊤i [(β∗ − β̂) −
exp{X⊤i β̃}X

⊤
i (β∗ − β̂)

θ+exp{X⊤i β̃}
]

=
1
n

n∑
i=1

θX⊤i (β̂ − β∗)

θ+exp{X⊤i β̃}
· (Yi − EYi). (2.5)

For a finite M0, if we have β̂ ∈ SM0(β
∗), then β̃ ∈ SM0(β

∗). This is from the fact ∥β̃ − β∗∥ ≤∑p
j=1 t j|β̂ j − β

∗
1| ≤ ∥β̂ − β

∗∥ ≤ M0. Suppose |Xi|∞ is uniformly bounded by 1/M0. We have |(2.5)| :=
1
n

n∑
i=1

wi(β̂)(Yi − EYi) with dependent weights

wi(β̂) := θX⊤i (β̂−β∗)
θ+exp{X⊤i β̃}

and |wi(β̂)| ≤ 1.

Thus, the high probability upper bound in Theorem 2.1 is applicable to determine λ
2 , i.e.,

λ

2
= 4

√√
1
n

n∑
k=1

∥|Yk − Y ′k|∥
2
θ2

√
log δ−1

n
+ 2

√√
1
n

n∑
i=1

E(Yi − EYi)2

√
2 log 2p

n
. (2.6)

2.3. Berstein-type concentration inequalities

In this section, let {Yi}
n
i=1 be exponential family random variables with density

f (yi; θi) = c(yi) exp{yiηi − b(ηi)}, ηi ∈ Θ. (2.7)
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Here, E(Yi) = ḃ(ηi) and Var(Yi) = b̈(ηi). It should be noted that Proposition 3.2 in [20] shows that
{Yi}

n
i=1 is sub-Gaussian if Θ is compact.
Under distributional assumption (2.7), we will study the Berstein-type concentration inequalities for

the randomly weighted sum of centered exponential family random variables (with different parameters
θi’s):

n∑
i=1

{wi(θ̂)Yi − E[wi(θ̂)Yi]},

where the {wi(θ̂)}ni=1 are called the multipliers (or random weights), and θ̂ is independent of {Yi}
n
i=1.

Theorem 2. [Concentration inequalities for randomly weighted sum of exponential family r.v.s] If
{Yi}

n
i=1 has density (2.7) with moment conditions: E|Yi|

k ≤ k!Ck
Y , where CY > 0 is a constant. We

assume that

(i) Bounded weights: Wθ̂ := (w1(θ̂), · · · ,wn(θ̂))⊤ is a random vector s.t. max1≤i≤n |wi(θ̂)| ≤ w < ∞;

(ii) Let E[|Yi|
k|Wθ̂] = ρi,kE[|Yi|

k] with Eρi,k = 1;

(iii) There exists a non-decreasing sequence {un} and constant Cρ s.t. P( max
k≥1,1≤i≤n

ρi,k > un) ≤ Cρ/un.

Then,

P(|
n∑

i=1

[wi(θ̂)Yi − E[wi(θ̂)Yi)]| ≥ t) ≤ 2 exp
{
−

t2

16nun(wCT )2 + 4wCT t

}
+

Cρ

un
, (2.8)

where {wi(θ̂)Yi} is dependent since each wi(θ̂)Yi depends on a common estimator θ̂ from the data {Yi}
n
i=1.

It should be noted that our work here is related to Proposition 3.2 in [20] and it is about the
concentration inequalities for the non-random weighted sum of exponential family random variables.
For condition (ii), suppose that the estimator θ̂ converges to a true parameter θ∗ almost surely, and one
has E[|Yi|

k|Wθ∗] = E[|Yi|
k] since Wθ∗ is non-random. The difference between conditional expectation

and unconditional expectation is:

max
k≥1,1≤i≤n

∣∣∣ρi,k − 1
∣∣∣ = max

k≥1,1≤i≤n

|E[|Yi|
k|Wθ̂] − E[|Yi|

k|Wθ∗]|
E[|Yi|

k|Wθ∗]
≤ Op(∥θ̂ − θ∗∥1),

if |E[|Yi|
k|Wβ] is a ℓ1-Lipschitz function of β. We call P( max

k≥1,1≤i≤n
ρi,k ≥ un) ≤ Cρ/un in assumption (iii) a

high level condition. Intuitionally, due to the dependence summation, the random weighted summation
will lose the rate of convergence in the exponential inequalities (addition term 4wCT t is added),
compared to the case of non-random weighted summation. The assumption of compact parameter
space for the exponential family is key to obtaining the sub-Gaussian type concentration inequalities.

Our multiplier concentration inequality here is different from [11], which studies the concentration

upper bounds for centered multiplier empirical processes 1
√

n

n∑
i=1

[WiYi − E(WiYi)] (the random weights

{Wi} and random variables {Yi} need not be independent); however, they assume that {Wi} is i.i.d. To the
best of our knowledge, Theorem 2 is a new concentration inequality that is suitable for the weighted
sum of dependent random variables.
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3. Theoretical proofs

3.1. Proofs of main results

Proof of Theorem 1: Let Y = (Y1, · · · ,Yn)⊤ be a vector of independent r.v.s in a space Y, and define
(Y ′1, · · · ,Y

′
n)⊤ as an independent copy of (Y1, · · · ,Yn)⊤. For any function f : Yn → R, it is of interest

to study the concentration for f (Y) about its expectation. In case of Theorem 1,

f (Y) := 1
n sup
∥θ∥1≤r
|

n∑
i=1

wi(θ)Yi|.

For z ∈ Y and k ∈ {1, . . . , n}, define the substitution operator

S k
z : Yn → Yn by S k

zy := (y1, . . . , yk−1, z, yk+1, . . . , yn)

and the centered conditional version of f

D f ,Yk(y) := f (y1, . . . , yk−1,Yk, yk+1, . . . , yn) − E f
(
y1, . . . , yk−1,Y ′k, yk+1, . . . , yn

)
= f (S k

Yk
y) − E f (S k

Y′k
y) = E[ f (S k

Yk
y) − f (S k

Y′k
y) | Yk]. (3.1)

Next, we use a constant-sharper sub-Gaussian concentration for f (Z) in Corollary 4 in [22], which
requires the ∥ · ∥θ2-norm condition of r.v. {D f ,Zi(z)}ni=1.

Lemma 2. If {D f ,Zi(z)}ni=1 has finite ∥ · ∥θ2-norm for z ∈ Z, then f (Z) − E f (Z) ∼

subG(8 supz∈Z
∑n

i=1

∥∥∥D f ,Zi(z)
∥∥∥2

θ2
) and

P { f (Z) − E f (Z) > t} ≤ e−t2/(16 supz∈Z
∑n

i=1 ∥D f ,Zi (z)∥2θ2 ), t ≥ 0.

From the identity in (3.1), we have

∥D f ,Yk(y)∥θ2 = ∥ f (y1, . . . , yk−1,Yk, yk+1, . . . , yn) − E f
(
y1, . . . , yk−1,Y ′k, yk+1, . . . , yn

)
∥θ2

= ∥
1
n

sup
∥θ∥1≤r
|w1(θ)y1 + · · · + wk−1(θ)yk−1 + wk(θ)Yk + wk+1(θ)yk+1 + · · · + wn(θ)yn|

−
1
n

sup
∥θ∥1≤r
|w1(θ)y1 + · · · + wk−1(θ)yk−1 + wk(θ)Y ′k + wk+1(θ)yk+1 + · · · + wn(θ)yn| | Yk]∥θ2

≤
1
n
∥E[ sup

∥θ∥1≤r
wk(θ)|Yk − Y ′k||Yk]∥θ2 ≤

1
n
∥E[|Yk − Y ′k||Yk]∥θ2 . (3.2)

The conditional Jensen’s inequality gives

E
[∣∣∣E [
|Yk − Y ′k| | Xk

]∣∣∣p] ≤ E
[
E{|Yk − Y ′k| | Xk}

p] = E
[
E{

(
|Yk − Y ′k|

p)1/p
| Xk}

p
]

≤ E
{
E

[
|Yk − Y ′k|

p | Xk
]}
= E|Yk − Y ′k|

p, p ≥ 1. (3.3)

The definition ∥X∥θ2 = supk≥1 [ 2kk!
(2k)!EX2k]1/(2k) shows ∥D f ,Yk(y)∥θ2 ≤

1
n∥|Yk − Y ′k|∥θ2 by (3.2) and (3.3).

Hence, we have supz∈Z
∑n

i=1 ∥D f ,Zi(z)∥2θ2
= 1

n2

∑n
k=1 ∥|Yk − Y ′k|∥

2
θ2

in Lemma 2, which leads to

P { f (Y) − E f (Y) > t} ≤ e−(nt)2/16
∑n

k=1 ∥|Yk−Y′k |∥
2
θ2 , t ≥ 0.
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Let δ = e−(nt)2/16
∑n

k=1 ∥|Yk−Y′k |∥
2
θ2 , and t = 4

√
1
n

∑n
k=1 ∥|Yk − Y ′k|∥

2
θ2

√
log δ−1

n . We have

f (Y) ≤ t + E f (Y) = 4

√√
1
n

n∑
i=1

∥|Yi − Y ′i |∥
2
θ2

√
log δ−1

n
+ E f (Y), (3.4)

with probability at least 1 − δ.
It remains to obtain a bounds on E f (Y), which is upper bounded by the symmetrization theorem

from Lemma 3 with different functions. To see this, let Xi = Yi in Lemma 3 and gi(Yi) = wi(θ)Yi for
i = 1, · · · , n.

Since wi(θ)’s are series of bounded functions of a common bounded variable θ where ∥θ∥1 ≤ r and
max1≤i≤n wi(·) ≤ 1, for any vector θ with ∥θ∥1 ≤ r, there exists a sequence of vectors {awi}

n
i=1 ∈ R

p with∥∥∥awi

∥∥∥
∞
≤ 1/r such that

wi(θ) = a⊤wi
θ ≤

∥∥∥awi

∥∥∥
∞
∥θ∥1 ≤ 1. (3.5)

Equation (3.5) and Lemma 3 imply

E f (Y) ≤
2
n

E

 sup
∥θ∥1≤r
|

n∑
i=1

wi(θ)ϵiYi|

 = 2
n

E

 sup
∥θ∥1≤r
|

n∑
i=1

p∑
j=1

ϵiYiawi jθ j|


=

2
n

E

 sup
∥θ∥1≤r
|

p∑
j=1

(
n∑

i=1

ϵiYiawi j)θ j|


[by Hölder’s inequality] ≤

2
n

E

 sup
∥θ∥1≤r

max
1≤ j≤p

∣∣∣∣∣∣∣
n∑

i=1

ϵiYiawi j

∣∣∣∣∣∣∣ · ∥θ∥1


≤
2r
n

E

max
1≤ j≤p

∣∣∣∣∣∣∣
n∑

i=1

ϵiYiawi j

∣∣∣∣∣∣∣
 = 2r

n
E

Eϵ max
1≤ j≤p

∣∣∣∣∣∣∣
n∑

i=1

ϵiYiawi j

∣∣∣∣∣∣∣
 .

Next, we apply the maximal inequality. By Corollary 7.5 in [20], with E[ϵiYiawi j|Y] = 0 and
ϵiYiawi j ≤ max1≤i≤n

∥∥∥awi

∥∥∥
∞

Yi = r−1Yi, one has

2r
n

E

Eϵ max
1≤ j≤p

∣∣∣∣∣∣∣
n∑

i=1

ϵiYiawi j

∣∣∣∣∣∣∣
 ≤ 2

n

√
2 log(2p)E


√√

n∑
i=1

Y2
i |Y


[By Jensen’s inequality] ≤

2
n

√
2 log(2p)

√√
E

n∑
i=1

Y2
i = 2

√√
1
n

n∑
i=1

EY2
i

√
2 log(2p)

n
.

Thus, E f (Y) ≤ 2
√

1
n

∑n
i=1 EY2

i

√
2 log(2p)

n . Using (3.4),

f (Y) ≤ t + E f (Y) = 4

√√
1
n

n∑
i=1

∥|Yi − Y ′i |∥
2
θ2

√
log δ−1

n
+ 2

√√
1
n

n∑
i=1

EY2
i

√
2 log(2p)

n
, (3.6)

with the probability of at least 1 − δ.
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Proof of Theorem 2: We will adopt the following result, which gives the moments inequality for the
exponential family. It is deduced by the analytic properties of the absolute moments of exponential
family random variables:

E|Y |k ≤ k!Ck
Y ,

see Proposition 5.2 in [20]. For notation simplicity, let W := Wθ̂ and Wi = wi(θ̂). By using Taylor’s
expansion and the binomial coefficient formula, we have the following upper bound for the conditional
moment generating function of WiYi − E(WiYi), conditioning on the event {maxk≥1,1≤i≤n ρi,k ≤ un}:

E[es(WiYi−E(WiYi))|W] = 1 +
∞∑

m=2

sm

m!
E[(WiYi − E(WiYi))m|W]

= 1 +
∞∑

m=2

sm

m!
E[

m∑
k=0

(
k
m

)
(WiYi)k(−E(WiYi))m−k|W]

≤ 1 +
∞∑

m=2

sm

m!
[

m∑
k=0

(
k
m

)
E|WiYi|

k(E|WiYi|)m−k|W]

(Due to max
1≤i≤n
|Wi| ≤ w) ≤ 1 +

∞∑
m=2

sm

m!
[wm

m∑
k=0

(
k
m

)
E(|Yi|

k|W)(E|Yi|)m−k]

≤ 1 +
∞∑

m=2

sm

m!
[(2w)m max

1≤k≤m
{E(|Yi|

k|W)(E|Yi|)m−k}

(By assumption (iii)) ≤ 1 + un

∞∑
m=2

(2ws)m

m!
[max
1≤k≤m
{E(|Yi|

k)(E|Yi|)m−k}, (3.7)

for s ∈ (0, δ) with some δ > 0.
Therefore, we can assume that |2swCT | < 1, so

E[es(WiYi−E(WiYi))|W] ≤ 1 + un

∞∑
m=2

(2ws)m

m!
[m!Cm

T ] = 1 + un(2swCT )2
∞∑

m=2

(2swCT )m−2

= 1+
un(2swCT )2

1 − 2swCT
≤ e

un(2swCT )2

1−2swCT . (3.8)

Define the randomly weighted sum S W
n =:

∑n
i=1 WiYi. By the conditional independence of

{WiYi|W}ni=1, it follows that by (3.8),

E[es(S W
n −ES W

n )|W] =
n∏

i=1

E[exp{s[WiYi − E(WiYi)]}|W] ≤ e
nun(2swCT )2

1−2swCT . (3.9)

By conditional Markov’s inequality and on {maxk≥1,1≤i≤n ρi,k < un}, we have for a > 0

P(|S W
n − ES W

n | ≥ t|W) ≤ P(a(S W
n − ES W

n ) ≥ at|W) + P(a(−S W
n + ES W

n ) ≥ at|W)

≤
E[ea(S W

n −ES W
n )|W]

exp(at)
+

E[ea(−S W
n +ES W

n )|W]
exp(at)

[Using (3.9) as a ∈ (−δ, δ)] ≤ 2 exp{
nun(2awCT )2

1 − 2awCT
− at} = 2 exp

{
−

t2

16nun(wCT )2 + 4wCT t

}
(3.10)
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where the last equality is obtained by setting a = t
8nun(wCT )2+2wCT t

.
Taking expectation w.r.t. W on (3.10), it implies

P(|S W
n − ES W

n | ≥ t) = P
(
|S W

n − ES W
n | ≥ t, max

k≥1,1≤i≤n
ρi,k > un

)
+ P

(
|S W

n − ES W
n | ≥ t, max

k≥1,1≤i≤n
ρi,k ≤ un

)
≤ P

(
max

k≥1,1≤i≤n
ρi,k > un) + P(|S W

n − ES W
n | ≥ t, max

k≥1,1≤i≤n
ρi,k ≤ un}

)
≤ Cρ/un + E[P(|S W

n − ES W
n | ≥ t,maxk≥1,1≤i≤n ρi,k ≤ un|W)]

≤ Cρ/un + 2 exp
{
−

t2

16nun(wCT )2 + 4wCT t

}
.

3.2. Some lemmas

Lemma 3. [Symmetrization theorem with different functions] Let ε1, ..., εn be a Rademacher sequence
with uniform distribution on {−1, 1}, independent of X1, ...,Xn and gi ∈ Gi. Then,

E

 sup
g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣∣∣
n∑

i=1

[
gi(Xi) − E {gi(Xi)}

]∣∣∣∣∣∣∣
 ≤ 2E

Eϵ

 sup
g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣∣∣
n∑

i=1

ϵigi(Xi)

∣∣∣∣∣∣∣

 ,

where Eϵ {·} refers to the expectation w.r.t. ϵ1, ..., ϵn.
Proof: Let {X′i }

n
i=1 be an independent copy of {Xi}

n
i=1. The E′ denotes the expectation w.r.t. {X′i }

n
i=1, and

let F ′n = σ
(
X′1, · · · , X

′
n

)
. So,

E

 sup
g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣∣∣
n∑

i=1

[
gi(Xi) − E {gi(Xi)}

]∣∣∣∣∣∣∣
 = E

 sup
g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣∣∣E′
n∑

i=1

[gi (Xt) − gi
(
X′i

)
]|F ′n

∣∣∣∣∣∣∣


(Jensen’s inequality of the absolute function) ≤ E

 sup
g1,··· ,gn∈G1,··· ,Gn

E′
∣∣∣∣∣∣∣

n∑
i=1

[gi (Xt) − gi
(
X′i

)
]

∣∣∣∣∣∣∣ |F ′n


(Jensen’s inequality of the max function) ≤ E

E′ sup
g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣∣∣
n∑

i=1

[gi (Xt) − gi
(
X′i

)
]

∣∣∣∣∣∣∣ |F ′n


= E

 sup
f1,··· , fn∈G1,··· ,Gn

∣∣∣∣∣∣∣
n∑

i=1

[gi (Xt) − gi
(
X′i

)
]

∣∣∣∣∣∣∣
 ,

where we use the conditional expectation version of Jensen’s inequalities.
Since εi[gi (Xi) − gi(X′i )] and gi (Xi) − gi(X′i ) have the same distribution, then,

= E

 sup
g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣∣∣
n∑

i=1

εi[gi (Xi) − gi
(
X′i ]

)∣∣∣∣∣∣∣
 ≤ 2E

Eϵ

 sup
g1,··· ,gn∈G1,··· ,Gn

∣∣∣∣∣∣∣
n∑

i=1

ϵigi(Xi)

∣∣∣∣∣∣∣

 .

If gi = f , Gi = F for i = 1, 2, · · · , n, then we have the classical symmetrization theorem.

Lemma 4. [Symmetrization Theorem, Lemma 2.3.1 in [17]] Let ε1, ..., εn be a Rademacher sequence
with uniform distribution on {−1, 1}, independent of X1, ...,Xn and f ∈ F . Then, we have
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E

sup
f∈F

∣∣∣∣∣∣∣
n∑

i=1

[
f (Xi) − E { f (Xi)}

]∣∣∣∣∣∣∣
 ≤ 2E

Eϵ

sup
f∈F

∣∣∣∣∣∣∣
n∑

i=1

ϵi f (Xi)

∣∣∣∣∣∣∣

 ,

where E[·] refers to the expectation w.r.t. X1, ...,Xn and Eϵ {·} w.r.t. ϵ1, ..., ϵn.

3.3. Concentration for strongly log-concave discrete distributions

In this section, we restate the applications of the concentration inequality for a function of the
data under the so-called strongly log-concave discrete distribution assumption, which was used in the
Supplementary Material of [21]. We utilized the convex geometry approach to establish the tail bounds.
In convex geometry, the following discrete version of the Prékopa-Leindler inequality can be found in
Theorem 1.2 of [5]. The discrete version of the Prékopa-Leindler inequality is an essential inequality
when deriving concentration inequalities of strongly log-concave counting measures. This shares the
same idea when we consider the continuous version of Prékopa-Leindler inequality (see Theorem 3.15
of [18]).

Let ⌊r⌋ = max{m ∈ Z; m ≤ r} be the lower integer part of r ∈ R, and ⌈r⌉ = −⌊−r⌋ be the upper
integer part. Denote ⌊x⌋ = (⌊x1⌋ , . . . ⌊xn⌋) and ⌈x⌉ = (⌈x1⌉ , . . . , ⌈xn⌉).

Lemma 5. [Discrete Prékopa-Leindler inequality] Let f , g, h, k : Zn → [0,∞) be functions that satisfy
the following inequality:

f (x)g(y) ≤ h(⌊λx + (1 − λ)y⌋)k(⌈(1 − λ)x + λy⌉), ∀x, y ∈ Zn, ∀λ ∈ [0, 1]. (3.11)

Then, we have ∑
x∈Zn

f (x)

 ∑
x∈Zn

g(x)

 ≤ ∑
x∈Zn

h(x)

 ∑
x∈Zn

k(x)

 .
From a geometric perspective, the Prékopa-Leindler inequality is a valuable method to prove

concentration inequalities under Lipschitz functions of strongly log-concave distributions. From the
idea in [12], a distribution P with a density p(x) (w.r.t. the counting measure) is said to be strongly
discrete log-concave, if ψ(x) =: − log p(x) : Zn → R is strongly midpoint log-convex for some γ > 0:

ψ(x) + ψ(y) − ψ(⌈
1
2

x +
1
2

y⌉) − ψ(⌊
1
2

x +
1
2

y⌋) ≥
γ

4
∥x − y∥22, ∀x, y ∈ Zn. (3.12)

The inequality (3.12) is an extension of strongly convexity for continuous functions on Rn:

λψ(x) + (1 − λ)ψ(y) − ψ(λx + (1 − λ)y) ≥
γ

2
λ(1 − λ)∥x − y∥22, ∀x, y ∈ Rn, ∀λ ∈ [0, 1],

with modulus of convexity γ [13].
Strongly log-convex property for a discrete density function requires that continuous functions are

restricted on a lattice space. If γ = 0, (3.12) turns to the discrete midpoint convexity property for ψ(x)

ψ(x) + ψ(y) ≥ ψ(⌈
1
2

x +
1
2

y⌉) + ψ(⌊
1
2

x +
1
2

y⌋), ∀x, y ∈ Zn,
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see [12]. However, directly restricting a continuous function to some lattice space may not necessarily
obtain discrete convex functions. For the corresponding counterexample, see [19].

For one-dimensional P, the probability mass function p(x) is said to be log-concave if the sequence
{p(x)}x∈Z is log-concave; that is, for any λn + (1 − λ)m ∈ Z with m, n ∈ Z and λ ∈ (0, 1), one has

p(λn + (1 − λ)m) ≥ p(n)λp(m)1−λ.

Proposition 1. [The concentration inequality of strongly log-concave discrete distributions] Consider
a strongly log-concave discrete distribution Pγ with index γ > 0 on Zn. For f : Rn → R that is
L-Lipschitz w.r.t. Euclidean norm, then,

Pr {| f (X) − E f (X)| ≥ t} ≤ 2e−
γt2

4L2 . (3.13)

Proof: Let h be a zero-mean function with Lipschitz constant L (w.r.t. the Euclidean norm). It remains
to prove the upper bound of a moment generating function Eeh(X) ≤ e

L2
τ . Then, for f with Lipschitz

constant K and λ ∈ R, we apply the upper bound to the zero-mean function h(X) := λ( f (X) − E f (X)),
which has Lipschitz constant L = λK. Given λ ∈ (0, 1) and x, y ∈ Zn, define the proximity operator of
h as

l(y) := inf
x∈Zn

{
h(x) +

γ

4
∥x − y∥22

}
.

With this proximity operator, the proof is proceeding by using the discrete Prekopa-Leindler inequality
(Lemma 5) with λ = 1/2, h(t) = k(t) =: p(t) = e−ψ(t), f (x) := e−h(x)−ψ(x) and g(y) := el(y)−ψ(y).

We check that

e
1
2 [l(y)−h(x)−ψ(y)−ψ(x)] ≤ e−

1
2ψ(⌈ 1

2 x+ 1
2 y⌉) · e−

1
2ψ(⌊ 1

2 x+ 1
2 y⌋) ∀x, y ∈ Zn. (3.14)

Then, (3.14) satisfies Lemma 5 with λ = 1/2.
By discrete strong convexity of the function ψ

1
2

[ψ(x) + ψ(y)−ψ(⌈
1
2

x +
1
2

y⌉) − ψ(⌊
1
2

x +
1
2

y⌋) ≥
γ

8
∥x − y∥22,

and the proximity operator of h, we have

−
1
2
ψ(⌈

1
2

x +
1
2

y⌉) −
1
2
ψ(⌊

1
2

x +
1
2

y⌋)

≥
1
2

{
l(y) − h(x) −

γ

4
∥x − y∥22

}
−

1
2
ψ(⌈

1
2

x +
1
2

y⌉) −
1
2
ψ(⌊

1
2

x +
1
2

y⌋)

≥
1
2
{l(y) − h(x)} −

1
2
ψ(y) −

1
2
ψ(x),

which verifies (3.14).
By

∑
x∈Zn h(x) =

∑
x∈Zn k(x) = 1, we know that Lemma 5 gives

Eel(Y)Ee−h(X) =
∑
x∈Zn

e−h(x)−ψ(x)
∑
y∈Zn

el(y)−ψ(y) ≤ 1.
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Then, Jensen’s inequality implies

Eel(Y) ≤ (Ee−h(X))−1 ≤ (eE[−h(X)])−1 = 1,

where in the last equality we use E[−h(X)] = E[λ( f (X)−E f (X))] = 0. The definition of the proximity
operator shows

1 ≥ Eel(y) = Eeinfx∈Zn{h(x)+ γ4 ∥x−Y∥22} = Eeinfx∈Zn{h(Y)+[h(x)−h(Y)]+ γ4 ∥x−Y∥22}

≥ Eeh(Y)+infx∈Rn{−L∥x−Y∥2+
γ
4 ∥x−Y∥22} = Eeh(Y)−L2/γ,

where the second last inequality due to L-Lipschitz of h, i.e., |h(x) − h(Y)| ≤ L∥x − Y∥2.
Then, we have Eeλ( f (X)−E f (X)] ≤ e

1
2 ·λ

2· 2L2
γ for all λ ∈ R. This means that f (X) − E f (X) ∼ subG(2L2

γ
),

hence the tail bound is (3.13).

4. Conclusions

Non-asymptotic statistical inference on high-dimensional data is important for many fields, such
as data mining and machine learning. In this paper, we derived a novel concentration inequality for
the sum of independent sub-Gaussian variables with random dependent weights in high-dimensional
regression settings. We applied the proposed concentration inequality to obtain a high probability
bound for the stochastic Lipschitz constant for negative binomial loss functions involved in Lasso-
penalized negative binomial regressions, and used this bound to study oracle inequalities for the Lasso
estimators. The usefulness of the proposed concentration inequality in applications was justified by
solid theoretical proofs.
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