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1. Introduction

Credibility theory is one of the most important and applicable methods of property and casualty
ratemaking, particularly in the context of automobile insurance. It is called a “cornerstone” in the field
of actuarial science, and has now been widely used in many insurance companies. Numerous authors
devote themselves to developing tools to evaluate the existing credibility models, and then designing
improved Bonus-Malus Systems (BMS) or No-Claim Discount (NCD). Contributions to the related
literature include, among others, references [1–4].

As we all know, an insurance company insures many kinds of risks, and it is one of the main tasks
of actuaries to analyze individual risks quantitatively, predict future claims and calculate equitable
premium for each policyholder. As a rule, ratemaking process in non-life actuarial science always
consists of two separate steps. In the first step, the policyholders are grouped into several classes

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231469


28711

on the basis of their observable characteristics, and those people in the same class are collected the
same premium because they are considered to have similar expected losses. Examples of such risk
characteristics are the age, gender and occupation of the policyholders, the type and use of their
vehicles, the place where they reside, etc.

However, many important factors, such as respectfulness towards the law, reaction speed,
aggressiveness behind the wheel and knowledge of the highway code, cannot be taken into account
at this stage because they are usually impossible to measure and incorporate in a price list. Therefore,
some heterogeneity still remains within the risk classes. Credibility models are used to distribute
premiums fairly among a heterogeneous group of policyholders during the second step. The
unobserved heterogeneity is taken into account by the introduction of a latent random variable Θ,
with Gamma, LogNormal or Inverse Gaussian distribution. Making use of Bayesian methodology, the
base premium determined in the first step will be adjusted by discounts or surcharges depending on
past claims of the policyholder. As result of this experience rating process, BMS or NCD is established
to motivate people to drive more safely by rewarding good drivers and penalizing bad drivers.

Traditionally, actuaries assume that the random effect Θ in the credibility model does not vary with
time. One of major problems in this so-called time-independent (or static) heterogeneous model is that
the age of claims has not been taken into account. In other words, the classical models conflict with
the intuition that the predictability based on a period of the policyholder’s history should decrease
with time. To overcome this defect, more and more actuaries have been paying attention to the
evolutionary (or dynamic) credibility models, in which the unknown characteristics are represented by
time-varying random effects {Θt, t ≥ 1}, see for instance [5–10] and the references therein. However,
one drawback of these models is that the closed-form expressions for the predictive distribution and
predictive premium are difficult to derive.

On the other hand, the dynamics on insurance data can also be obtained from endogenous
approaches. As a typical representation among these methods, Gourieroux and Jasiak [11] has applied
a heterogeneous integer-valued time series to describe the serial dependence in claim counts process
of the policyholders. The authors show that their model is more flexible in computing predictive
premiums by deriving the closed-form expressions of the Bayesian premium. They also find that the
premium depends on not only the number of claims but also the timing of claim arrivals.

In the model of Gourieroux and Jasiak [11], the famous integer-valued autoregressive (INAR)
process plays a central role. The classical INAR(1) process proposed by Al-Osh and Alzaid [12]
can be written as

Nt = φ ◦ Nt−1 + εt, t = 2, 3, . . . , (1.1)

where φ ∈ [0, 1), and the so-called thinning operator “◦” is defined by

φ ◦ Nt−1 =

Nt−1∑
k=1

Bt,k,

in which {Bt,k, t = 2, 3, . . . , k = 1, 2, . . .} is an array of independent and identically distributed (i.i.d.)
Bernoulli random variables with mean φ, and independent of the sequence {ε2, ε3, . . .}.

Model (1.1) implies that the number of claims in period t consists of two parts. The first part is a
sum of Bernoulli variables indexed by the claims occurred in the preceding period. This term captures
claim trends of the policyholders by providing a causality relationship and temporal dependence among
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the claim numbers of different periods. It can be seen that each of the claims occurred in the previous
period could contribute one claim to the claim count of the next period, with probability φ. This
could be explained by the incentives to careful driving in automobile insurance, i.e., car accidents may
modify a driver’s perception of danger behind the wheel, such that a policyholder who reports claims
in previous period would like to lower his risk level during next period, in consideration of safety and
BMS. Furthermore, the other part εt is a number of claims without relationship with those occurred in
the past, representing an innovation or fluctuations.

To generalize the application of model (1.1), Bermúdez et al. [13] adopts the bivariate INAR(1)
process to price an automobile insurance contract with two types of coverage, in which the dependence
structures arising from different sources of the claim numbers are taken into account. Afterwards,
Bermúdez and Karlis [14] extends the results in the aforementioned paper to a multivariate setting
using the multivariate INAR(1) process, and Zhang et al. [15] provides a flexible framework to fit the
claim count data sets that contain a large number of zeros by modelling the innovations of multivariate
INAR(1) process with zero-inflated distributions. Recently, Hu and Yao [16] proposes a modification
of a combined INAR(p) process to address higher-order dependence among the number of claims in
an insurance portfolio.

In practice, the real-world data sets sometimes exhibit nonlinear structure, such as the so-called
piecewise phenomenon, which means that the autoregressive parameter φ in model (1.1) may be
affected by some factors, saying for example, the value of Nt−1. To capture this attribute, Monteiro
et al. [17] proposes the integer-valued self-exciting threshold autoregressive process of order one with
two regimes (referred to as SETINAR(2,1) for short). In this paper, it is our goal to extend the classical
SETINAR(2,1) process to accommodate the unobserved heterogeneity and then apply the modified
SETINAR(2,1) process to credibility model for ratemaking problem. We will show that our approach
provides a superior pattern to the predictive premiums calculation when compared to the outcomes of
several alternative models.

The layout of this paper is organized as follows. In Sections 2, we introduce the proposed model
and derive the Bayesian premium formula. In Section 3, some numerical examples are conducted to
illustrate our methods and results. In section 4, we present an empirical analysis of insurance claims
count data. Section 5 concludes this paper.

2. Modelling and results

For automobile insurance, retemaking should be calculated based on both claim frequency and
severity. However, it is believed that the number of claims can better reveal the inherent risk of a
driver. In this paper, we follow most of the actuarial literature and focus only on the frequency part.

Let us consider one policyholder from an insurance portfolio, suppose T to be the number of periods
elapsed since this policy has been issued, and Nt, t = 1, 2, . . . ,T , denotes the number of claims reported
by this policyholder during period t of insurance. Our task is to draw prediction on the premium for
the subsequent period T + 1 of this policyholder. To this end, we assume that:

A1. The count variables N1, . . . ,NT ,NT+1 follow the SETINAR(2,1) process:

Nt = I1,t · (φ1 ◦ Nt−1) + I2,t · (φ2 ◦ Nt−1) + εt, t = 2, 3, . . . , (2.1)

where
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• I1,t = I{Nt−1 ≤ r}, I2,t = 1 − I1,t = I{Nt−1 > r}, in which r is the so-called threshold variable;
• the thinning operator “◦” is defined as

φ j ◦ Nt−1 =

Nt−1∑
k=1

B( j)
t,k , j = 1, 2,

in which
{B( j)

t,k , t = 2, 3, . . . , k = 1, 2, . . .}, j = 1, 2,

are arrays of i.i.d. Bernoulli random variables with mean φ j ∈ (0, 1), respectively. Furthermore,
{B(1)

t,k , k = 1, 2, . . .} and {B(2)
t,k , k = 1, 2, . . .} are supposed to be independent of εt and {Nt−1, . . . ,N1}

for any fixed t.

A2. Given the unobservable heterogeneity Θ = θ, N1 follows the Poisson distribution with mean
λθ, i.e.,

P(N1 = n|Θ = θ) =
(λθ)n

n!
exp{−λθ}, n = 0, 1, . . . , (2.2)

where λ = eβx′1 , in which x1 = (1, x1,1, x1,2, . . . , x1,q) is the observable risk characteristics of the
policyholder in the first period, β = (β0, β1, . . . , βq) collects the regression coefficients and x′1 denotes
the transpose of x1.

A3. Given the unobservable heterogeneity Θ = θ, {εt, t = 2, 3, . . .} is a sequence of independent
non-negative integer-valued random variables confirming to the Poisson distribution with mean ηtθ,
where ηt = eωx′t with xt = (1, xt,1, xt,2, . . . , xt,q) representing the characteristics of the policyholder in the
period t andω = (ω0, ω1, . . . , ωq) denoting the regression coefficients. Furthermore, εt and N1, . . . ,Nt−1

are independent conditional on Θ and xt, . . . , x1 for any fixed t.

A4. The unobservable heterogeneity Θ follows Gamma distribution whose density function is

fΘ(θ) =


αα

Γ(α)
θα−1e−αθ, θ > 0,

0, θ ≤ 0,
(2.3)

in which the shape parameter and scale parameter are identical so that the premium for this policyholder
in the first period results from a priori rating system and equals to λ = eβx′1 .

Remark 2.1. The model defined by (2.1) implies that the autoregressive parameter is a function of
Nt−1, i.e., the effect of Nt−1 on Nt varies with different values of Nt−1. In the insurance practice, this
could be explained that policyholders may adjust their efforts to prevent losses according to their
experience with past claims. Taking the NCD system of automobile insurance in China for example,
if a policyholder has reported more than one claim, his premium will be raised up to 2 times of the
base premium. Therefore, this policyholder might become more risk-averse and may have a greater
of initiative to reduce the claim numbers in the future, so that it is reasonable for us to believe the
constraint condition of φ1 > φ2. By contrast, more claims mean higher risks, i.e., the claims of period
t − 1 could produce another claim in period t with a higher probability, making us could acknowledge
that φ1 < φ2. In brief, it is very necessary to consider the SETINAR(2,1) process with two different
autoregressive coefficients for actuarial applications from a practical view.
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Remark 2.2. The distributional assumptions A2–A4 on top of SETINAR(2,1) process are made
in accordance with the Poisson-Gamma model that have been widely applied for modeling claim
counts when the portfolio is heterogeneous to construct the optimal experience rating system. Under
these assumptions, we are able to derive the closed-form expression for Bayesian pricing formula
and illustrate more effectively our main results regarding the threshold structure of SETINAR(2,1)
process. However, the limitations of these assumptions and the potential impacts they may have on the
usefulness and applicability of our proposed model are also very obvious. For better and more flexible
application in practice, our proposed model can be generalized to some alternatives to the Poisson-
Gamma assumption, the computations become however more complicated, because numerical methods
to perform integration are usually required. Perhaps credibility premium, the linear estimator (based
on past claims data) that best approximates the Bayesian premium, can be considered to overcome
these difficulties in these cases.

From Denuit et al. [3], we know that given the observations of claim counts for T periods N1 =

n1, . . . ,NT = nT , the Bayesian premium of the policyholder for period T + 1 with the quadratic loss
function can be obtained as

PT+1 =E(NT+1|N1 = n1, . . . ,NT = nT )
=E[I1,T+1 · (φ1 ◦ NT ) + I2,T+1 · (φ2 ◦ NT ) + εT+1|N1 = n1, . . . ,NT = nT ]
=E[I1,T+1 · (φ1 ◦ NT )|N1 = n1, . . . ,NT = nT ]

+ E[I2,T+1 · (φ2 ◦ NT )|N1 = n1, . . . ,NT = nT ]
+ E[E(εT+1|Θ,N1 = n1, . . . ,NT = nT )|N1 = n1, . . . ,NT = nT ]

=φ1nT I{nT ≤ r} + φ2nT I{nT > r} + ηT+1E[Θ|N1 = n1, . . . ,NT = nT ]. (2.4)

As shown in (2.4), the pure premium depends on the conditional distribution of the heterogeneity
given the claim history. Therefore, we obtain the analytical expression of the conditional distribution
of the heterogeneity in the following theorem.

Theorem 2.1. Under the assumptions A1–A4, we have that:
(1) For T = 1, given N1 = n1, the heterogeneity Θ follows Gamma distribution with conditional

density function

fΘ(θ|N1 = n1) =


(α + λ)α+n1

Γ(α + n1)
θα+n1−1e−(α+λ)θ, θ > 0,

0, θ ≤ 0.
(2.5)

(2) For any T ≥ 2, given N1 = n1, . . . ,NT = nT , the conditional density function of Θ is given by

fΘ(θ|N1 = n1, . . . ,NT = nT ) (2.6)

=

min{nT−1,nT }∑
zT =0

· · ·

min{n1,n2}∑
z2=0

π(zT , . . . , z2, nT , . . . , n1)γ(θ; α̃1(zT , . . . , z2, nT , . . . , n1), α̃2)

min{nT−1,nT }∑
zT =0

· · ·

min{n1,n2}∑
z2=0

π(zT , . . . , z2, nT , . . . , n1)

, (2.7)
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in which
α̃1(zT , . . . , z2, nT , . . . , n1) = α + n1 + · · · + nT − z2 − · · · − zT , (2.8)

α̃2 = α + η2 + · · · + ηT + λ, (2.9)

π(zT , . . . , z2, nT , . . . , n1) =
1
ηz2

2

· · ·
1
ηzT

T

×

(
nT−1

zT

)
· · ·

(
n1

z2

)
×

1
(nT − zT )!

· · ·
1

(n2 − z2)!

×
[
φzT

1 (1 − φ1)nT−1−zT I{nT−1 ≤ r} + φzT
2 (1 − φ2)nT−1−zT I{nT−1 > r}

]
× · · · ×

[
φz2

1 (1 − φ1)n1−z2 I{n1 ≤ r} + φz2
2 (1 − φ2)n1−z2 I{n1 > r}

]
×

Γ(α̃1(zT , . . . , z2, nT , . . . , n1))

α̃α̃1(zT ,...,z2,nT ,...,n1)
2

, (2.10)

and γ(θ; α̃1, α̃2) is the density function of Gamma distribution with shape parameter α̃1 and scale
parameter α̃2.

Proof. For T = 1, because N1|Θ = θ ∼ P (λθ), we know that the joint distribution of N1 and Θ is

f (n1, θ) = P(N1 = n1|Θ = θ) × fΘ(θ)

=
(λθ)n1

n1!
e−λθ ×

(
αα

Γ(α)
θα−1e−αθ

)
=

αα

Γ(α)
×

(λ)n1

n1!
× θα+n1−1e−(α+λ)θ, (2.11)

then, we have

fΘ(θ|N1 = n1) =
f (n1, θ)∫ ∞

0
f (n1, θ)dθ

=
θα+n1−1e−(α+λ)θ∫ ∞

0
θα+n1−1e−(α+λ)θdθ

=
(α + λ)α+n1

Γ(α + n1)
θα+n1−1e−(α+λ)θ,

which implies that (2.5) holds.
Similarly, for any T ≥ 2, we have

fΘ(θ|N1 = n1, . . . ,NT = nT ) =
f (n1, . . . , nT , θ)∫ ∞

0
f (n1, . . . , nT , θ)dθ

, (2.12)

in which

f (n1, . . . , nT , θ) =P(NT = nT |N1 = n1, . . . ,NT−1 = nT−1,Θ = θ)
× P(NT−1 = nT−1|N1 = n1, . . . ,NT−2 = nT−2,Θ = θ)
× · · · × P(N1 = n1|Θ = θ) × fΘ(θ). (2.13)

Noting that
P(N j = n j|N1 = n1, . . . ,N j−1 = n j−1,Θ = θ), j = 2, . . . ,T,
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is the probability mass function of the sum of two discrete random variables, we can rewrite it as the
following convolutions:

P(N j = n j|N1 = n1, . . . ,N j−1 = n j−1,Θ = θ) (2.14)

=

min{n j−1,n j}∑
z j=0

(
n j−1

z j

)[
φ

z j

1 (1 − φ1)n j−1−z j I{n j−1 ≤ r}

+ φ
z j

2 (1 − φ2)n j−1−z j I{n j−1 > r}
]
×

(η jθ)n j−z j

(n j − z j)!
e−η jθ. (2.15)

By applying (2.11), (2.13) and (2.14) into (2.12), we can obtain (2.6). �

One can see that the conditional distribution of the heterogeneity Θ is a mixture of Gamma
distributions with parameters that depend on the claim history. From (2.4) and the above theorem,
it is easy to derive the analytical formulas of the pure premium for period T + 1 as follows.

Theorem 2.2. If the assumptions A1–A4 hold, then we have:
(1) When T = 0, no claim history is available at the beginning of the contract, and the base premium

determined in the first step of ratemaking process is collected at the time of signing the insurance
contract, i.e.,

P1 = E(N1) = λ.

(2) When T = 1, the Bayesian premium of the policyholder for period T = 2 is

P2 = φ1n1I{n1 ≤ r} + φ2n1I{n1 > r} + η2Θ̂1,

where the predicted heterogeneity Θ̂1 is given by

Θ̂1 =
α + n1

α + λ
. (2.16)

(3) When T ≥ 2, the Bayesian premium of the policyholder for period T + 1 is

PT+1 = φ1nT I{nT ≤ r} + φ2nT I{nT > r} + ηT+1Θ̂T ,

where the predicted heterogeneity Θ̂T is given by

Θ̂T =

min{nT−1,nT }∑
zT =0

· · ·

min{n1,n2}∑
z2=0

π(zT , . . . , z2, nT , . . . , n1)
α̃1(zT , . . . , z2, nT , . . . , n1)

α̃2

min{nT−1,nT }∑
zT =0

· · ·

min{n1,n2}∑
z2=0

π(zT , . . . , z2, nT , . . . , n1)

, (2.17)

in which α̃1(zT , . . . , z2, nT , . . . , n1), α̃2 and π(zT , . . . , z2, nT , . . . , n1) are accordingly defined by the
Eqs (2.8)–(2.10).
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3. Numerical illustration

In this section, we present some simulation results to illustrate the premium updating for one given
policyholder. To this end, we fix all the values of the parameters, compute and compare the Bayesian
premiums for different models.

We mainly focus on the following three different models for the number of claims.

Model 1: Credibility model based on SETINAR(2,1) process with Gamma heterogeneity, abbreviated
as CM-SETINAR(2,1). In this model. we assume that λ = 0.4286, α = 9 and ηt = η = 0.3 for
t = 2, 3, . . . . From Remark 2.1, we know that the policyholders who report more than one claim
would be penalized by some premium surcharges. Therefore, we take r = 1 to illustrate the results.
Furthermore, in order to compare different situations, we consider the following two scenarios for φ1

and φ2:
(a) φ1 = 0.3, φ2 = 0.2;
(b) φ1 = 0.3, φ2 = 0.4.

Model 2: Credibility model based on INAR(1) process with Gamma heterogeneity, abbreviated as
CM-INAR(1). When φ1 = φ2 = φ, CM-SETINAR(2,1) reduces to the case studied in Gourieroux and
Jasiak [11]. For the other parameters, we assume that λ = 0.4286, φ = 0.3, α = 9 and ηt = η = 0.3 for
t = 2, 3, . . . .

Model 3: Credibility model based on mixed Poisson distribution with Gamma heterogeneity,
abbreviated as CM-MP. When φ1 = φ2 = 0, Model 1 becomes the standard case, i.e., negative binomial
distribution. Furthermore, let λ = 0.4286 and α = 9.

Remark 3.1. In Gourieroux and Jasiak [11], the number of claims is fitted by the following model:

Nt = φ ◦ Nt−1 + εt, t = 2, 3, . . . ,

where conditional on the unobserved heterogeneity Θ = θ, the variables {εt, t = 2, 3, . . .} are
independent with distribution P(ηθ), so that {Nt, t = 1, 2, . . .} has Poisson marginal that is distributed
by P( η

1−φθ), to make the process itself satisfy the stationarity. Therefore, we also set λ =
η

1−φ in our
model for the convenience of comparison. Additionally, the mixed Poisson distribution with Gamma
heterogeneity implies Nt|Θ = θ ∼ P(λθ), t = 1, 2, . . . ,

Θ ∼ Ga(α, α),

which results in the standard negative binomial model.

Remark 3.2. Note that we fix ηt = η for t = 2, 3, . . . in CM-SETINAR(2,1) and CM-INAR(1), so
that we can use the same setting of the parameters with Gourieroux and Jasiak [11] to calculate the
premiums, and show the effect of the threshold on the results. In practice, ηt could vary because the risk
characteristics (e.g., age, coverage, etc.) of the policyholder may be different for every period. In this
case, the claims history {Nt, t = 1, 2, . . .} may be not stationary any more. As stated in Asmussen [18],
the transient distributions in a Bonus-Malus system are quite far from the stationary ones usually, i.e.,
the rate of convergence to stationarity may be slow in comparison to the typical sojourn time of a
customer in the portfolio. We accept this view in this paper and relax the condition of stationarity. In
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the next section (Empirical Study), we will illustrate that our proposed model is able to fit the real data
better than some existing models.

As an illustration, we consider several different claim histories, and provide a summary of the
evolution of the corresponding premiums over the first 4 periods in Table 1.

From Table 1, it is easy to see that the predicted premiums of CM-SETINAR(2,1) and CM-INAR(1)
are determined by the explicit claim frequency history, and not just by the total number of claims as that
in the case of CM-MP. For example, we compare the predicted premiums based on claim histories (0, 2)
and (2, 0), respectively. For CM-MP, P3 has the same value 0.4783 because the total numbers of
claims in the first 2 periods are both 2. However, for CM-SETINAR(2,1) and CM-INAR(1), the two
claim histories are distinguishable and the claim arrival (i.e., in the first or in the second year) matters.
Therefore, the predicted premiums are different. Furthermore, P3 for claim history (0, 2) is higher than
P3 for claim history (2, 0) because the former is the premium after a claim-free period and a second
period with 2 claims, while the later is the premium after a first period with 2 claims and a free-claim
period. This result shows that the most recent claims are more predictive than older ones.

Let us now consider the claim history (1, 2, 0) to present the difference of predicted premiums
between CM-SETINAR(2,1) (including Scenario (a) and (b)) and CM-INAR(1).

I. Initially, all the models have the same premium 0.4286, because all of them calculate P1 according
to λ.

II. If there is I claim filed during the first period, P2 for CM-SETINAR(2,1) (a), CM-SETINAR(2,1)
(b) and CM-INAR(1) also have the same value 0.6182, because N1 does not exceed the threshold value
r = 1 at this moment, implying that both CM-SETINAR(2,1) (a) and CM-SETINAR(2,1) (b) predict
N2 according to N2 = φ1 ◦ N1 + ε2, which is identical to that of CM-INAR(1).

III. As time passes by, when II claims are reported in the next period, and then a claim-free period
comes, the predicted premiums for CM-SETINAR(2,1) (a), CM-SETINAR(2,1) (b) and CM-INAR(1)
become quite different.

(1) The values of P3 for CM-SETINAR(2,1) (a) and CM-INAR(1) are 0.7479 and 0.9479,
respectively. Moreover, it can be calculated that the surcharges for these two models accordingly
are (0.7479 − 0.6182)/0.6182 = 20.98% and (0.9479 − 0.6182)/0.6182 = 53.33%, implying that the
policyholder for CM-SETINAR(2,1) (a) will get milder penalty than the individual for CM-INAR(1),
which is in line with the situation φ1 > φ2 (see Remark 2.1). Correspondingly, after a claim-free
period, the policyholder for CM-SETINAR(2,1) (a) will receive lower reward than the driver for CM-
INAR(1), since the discounts for these two models are (0.7479 − 0.3374)/0.7479 = 54.89% and
(0.9479 − 0.3374)/0.9479 = 64.41%, respectively.

(2) By contrast, for CM-SETINAR(2,1) (b) with φ1 < φ2, the policyholder will get more severe
penalty or receives higher reward than driver that is described in CM-INAR(1).

To sum up, compared to CM-INAR(1), CM-SETINAR(2,1) (a) brings less variation to the
premiums, while CM-SETINAR(2,1) (b) causes more variation to the premiums. We can also get
these trends visually from Figure 1. The same conclusion can also be made from the results of
the other claim histories, revealing that the threshold structure has significant implications on the
dynamics of the predictive premiums.
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Figure 1. Predicted premiums for (1,2,0).

4. Empirical study

In Section 3, we fix the values of the parameters for different models in a special way to numerically
illustrate the calculation of the Bayesian premiums for one policyholder. In this section, we implement
all the models presented in this paper with a sample of insurance data, obtain the statistical estimates
of the parameters and compare the three models in a more scientific way.

Suppose that the insurance portfolio consists of I policies, denote the unobservable heterogeneity
of the ith policyholder by Θi, i = 1, . . . , I and define Ni,t to be the claim count of the ith policyholder
in period t, t = 1, . . . ,Ti. Then, for each policyholder in the portfolio, the related variables can be
expressed as (Θi,Ni,1, . . . ,Ni,Ti), in which the time length Ti may differ among the policyholders in the
case when the data are unbalanced. Moreover, the sequences {(Θi,Ni,1, . . . ,Ni,Ti), i = 1, 2, . . . , I} are
supposed to be independent at the portfolio level.

Rewrite the parameters to be estimated as Φ = (β,ω, α, φ1, φ2) in our proposed model, and let
ni = (ni,1, . . . , ni,Ti) denote the observations of Ni = (Ni,1, . . . ,Ni,Ti), then the likelihood for the ith
policyholder could be shown as

Li(Φ; ni) =
λ

ni,1
i

ni,1!
×

α

Γ(α)
× η

ni,2
2 · · · η

ni,Ti
Ti
×


min{ni,Ti−1,ni,Ti }∑

zi,Ti =0

· · ·

min{ni,1,ni,2}∑
zi,2=0

π(zi,Ti , . . . , zi,2, ni,Ti , . . . , ni,1)

 , (4.1)

in which π(zi,Ti
, . . . , zi,2, ni,Ti

, . . . , ni,1) is defined by (2.10). Then, we can obtain the estimators Φ̂ =

(β̂, ω̂, α̂, φ̂1, φ̂2) by maximizing the following total log-likelihood function of the observed data derived
by summing up the logarithm of (4.1) over all policyholders:

l(Φ) =

I∑
i=1

log Li(Φ; ni). (4.2)
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In the following part, we apply our proposed model to a panel data set for demonstrating our
methods and results. The data are drawn from Wisconsin Local Government Property Insurance Fund
(LGPIF), and have been used previously in Frees et al. [19], Quan and Valdez [20], Oh et al. [21, 22]
and Chen et al. [23]. The LGPIF provides property insurance such as buildings insurance, vehicles
insurance and equipment insurance, for various governmental entities, mostly including counties,
cities, towns, villages, school districts, fire departments and other miscellaneous entities. Detailed
information on the LGPIF data can be found in Frees et al. [19]. There are six types of insurance
coverage in the data, and here we will consider only the collision coverage for new vehicles (i.e.,
vehicles of current model year, or 1∼2 years prior to the current model year), which provides coverage
for the impact of a vehicle with an object, impact of vehicle with an attached vehicle, or the overturn of
a vehicle. We first remove the policyholders who have zero coverage and then take the policyholders
that have complete claim histories over the policy years from 2006 to 2010 as the training dataset for
simplicity. Therefore, a longitudinal data with 199 governmental entities is used for our analysis to
calibrate the model. We describe some summary statistics for the numbers of claims and the risk
characteristics in Tables 2 and 3, respectively. As can be seen from the results, there is a clear
increasing trend in the frequency, implying that the sequence of claim numbers for a policyholder
could be nonstationary during these years.

Table 4 displays the effects of risk characteristics on the numbers of the claims, showing that theses
variables are significant. For one thing, it seems that the county entities have the highest accident rate,
while the town entities have the lowest risk. For another, we separate all the policyholders into two
classes according to the median of the coverage, so that CoverageCN1 means the level with coverage
∈ (0, 0.2051], and CoverageCN2 indicates the level with coverage ∈ (0.2051,+∞). As we can see,
the drivers with higher coverage have more accidents, probably because of the moral hazard, i.e., the
coverage of insurance provides incentives for reckless driving behavior, and make the policyholders
have less risk aversion towards the loss.

In Frees et al. [19], the authors fit several commonly employed count models which include Poisson,
zero-inflated Poisson, zero-one-inflated Poisson, negative binomial, zero-inflated negative binomial
and zero-one-inflated negative binomial to the LGPIF dataset, and use Chi-square goodness-of-fit
statistics to compare these different models. Their results show that negative binomial is significantly
better than other models apart from zero-one-inflated negative binomial. The authors prefer and
recommend the simpler model, so negative binomial is selected for further investigation. Follow this
related study, it is reasonable for us to take CM-MP as the benchmark, then compare the fitting effect
and predictive performance of CM-SETINAR(2,1) and CM-INAR(1) with CM-MP, to illustrate our
main discoveries.

We now apply the three models aforementioned, i.e., CM-SETINAR(2,1), CM-INAR(1) and CM-
MP, to the LGPIF data. The parameters are estimated via the MLE (maximum likelihood estimation)
method based on the log-likelihood function defined by (4.2), and the estimates obtained using optim
function in R are presented in Table 5. In the meantime, we also exhibit two goodness-of-fit measures,
including the log-likelihood function calculated at the estimated parameters (LogLik) and the Akaike
information criterion (AIC), to evaluate different models which we focus on. It can be seen that both
of the criteria support our proposed model, because it has the largest value of LogLik and the smallest
value of AIC.
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Table 2. Numbers of claims over policy years.

Count
Year Frequency 0 1 2 3 4 5 6 7 8 9 11 13 14 15
2006 0.4874 141 35 14 5 2 1 1 0 0 0 0 0 0 0
2007 0.5980 137 33 19 2 2 4 0 2 0 0 0 0 0 0
2008 0.6532 142 34 8 4 6 0 1 0 2 0 2 0 0 0
2009 0.6783 138 39 9 5 2 2 0 0 2 0 0 0 1 1
2010 0.6934 137 34 14 5 3 2 1 0 0 1 1 1 0 0

Table 3. Summary statistics for the risk characteristics.

No. Variable name Type Description Proportion/Mean
1 TypeCity Categorical Indicator for city entity 0.1457
2 TypeCounty Categorical Indicator for county entity 0.2261
3 TypeSchool Categorical Indicator for school entity 0.3316
4 TypeTown Categorical Indicator for town entity 0.1005
5 TypeVillage Categorical Indicator for village entity 0.1658

6 CoverageCN Continuous
Log coverage amount of CN

(in millions of dollars)
0.4624

Table 4. Percentages of claims by risk characteristics.

Percentage by count
Variables 0 1 2 3 4 5 6 7 8+

TypeCity 0.6414 0.2207 0.0966 0.0138 0.0069 0.0138 0.0000 0.0000 0.0069
TypeCounty 0.3244 0.2667 0.1733 0.0800 0.0578 0.0311 0.0133 0.0089 0.0442
TypeSchool 0.8697 0.1182 0.0091 0.0030 0.0000 0.0000 0.0000 0.0000 0.0069
TypeTown 0.9300 0.0700 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TypeVillage 0.7394 0.2061 0.0485 0.0000 0.0060 0.0000 0.0000 0.0000 0.0000
CoverageCN1 0.8554 0.1406 0.0020 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
CoverageCN2 0.5412 0.2112 0.1268 0.0402 0.0302 0.0181 0.0060 0.0040 0.0220

It should be noted that we have to determine the value of the threshold parameter r in our proposed
CM-SETINAR(2,1) before estimating the other parameters. To this end, we can search the integer
that maximizes the LogLik criterion function, in an appropriate subset of positive integers [1, 2 . . . ,R].
For the LGPIF data, we may set R = 14 because a maximum of 15 claims has been filed by the
policyholders. Therefore, the algorithm to get the unknown threshold r can be summarized in the
following two steps:

Step 1. For each fixed r ∈ [1, 2, . . . , 14], find Φ̂(r) such that

Φ̂(r) = arg max
Φ

l(Φ),
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in which l(Φ) is defined by (4.2).
Step 2. The threshold parameter is estimated by searching over all candidates, i.e.,

r̂ = arg max
r∈[1,2,...,14]

l(Φ̂(r)).

In practice, we also can search the threshold parameter by minimizing the values of AIC or optimize
other criterion functions. Figures 2 and 3 show different r and the corresponding values of LogLik and
AIC, respectively. It is found that r = 6 is the best choice. Accordingly, we can then obtain the
estimates of the other parameters, as shown in Table 5.
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Figure 2. Different r and LogLik.
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Figure 3. Different r and AIC.

AIMS Mathematics Volume 8, Issue 12, 28710–28727.



28725

At last, we compare the predictive performance of CM-SETINAR(2,1), CM-INAR(1) and CM-
MP by performing an out-of-sample experiment. To this end, the observations in year 2011 with
1098 policyholders are considered. Of these samples, only 174 policyholders are identical to the
governmental entities in the training dataset. Therefore, a longitudinal data with the 174 samples is
reserved as the testing dataset for model validation. Since the dataset used is balanced now, we denote
N j,T+1 to be the claim number in the testing period of the jth policyholder, j = 1, . . . , J, where J is the
size of the testing dataset and equals to 174 in our analysis. Correspondingly, the observation of N j,T+1

is denoted by n j,T+1

In insurance claims modeling, it is more important to check the overall distribution for all
policyholders rather than prediction of the claim frequency for each policyholder, which could be more
useful for premium calculation, risk management and so forth. As a result, we adopt three measures
to assess the predictive performance for each model, i.e., the log-likelihood function (LogLik), the
mean squared error of prediction (MSPE) and the mean absolute error of prediction (MAPE), which
are accordingly defined by

LogLik =

J∑
j=1

log
(
P(N j,T+1 = n j,T+1|N j,1 = n j,1, . . . ,N j,T = n j,T )

)
,

MSPE =

J∑
j=1

log
[
n j,T+1 − E(N j,T+1|N j,1 = n j,1, . . . ,N j,T = n j,T )

]2
,

MAPE =

J∑
j=1

log
∣∣∣n j,T+1 − E(N j,T+1|N j,1 = n j,1, . . . ,N j,T = n j,T )

∣∣∣ .
From the results displayed in Table 6, it is clear that our proposed model, CM-SETINAR(2,1), has

the best predictive performance with the largest LogLik among other two models. Furthermore, the
smallest MSPE and MAPE also show that CM-SETINAR(2,1) outperforms other two models, which
is consistent with the fitting result in Table 5.

Table 6. Predictive performance of different models.

CM-SETINAR(2,1) CM-INAR(1) CM-MP
LogLik -121.65672 -125.4629 -128.2358
MSPE 0.5903074 0.6320958 0.9499252
MAPE 0.4722917 0.4904699 0.5391067

5. Conclusions

In this paper, we apply the integer-valued self-exciting threshold autoregressive time series with
Gamma distribution for the heterogeneity to the credibility theory and propose a credibility model
based on heterogeneous SETINAR(2,1) process. We derive the explicit Bayesian premium formula,
and consider the ratemaking problem of pricing the automobile insurance contract. Numerical
examples show that our proposed model can account for the claim history and the behavior of the
policyholders more flexibly. A real data analysis demonstrates that our approach provides a superior
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pattern to the Bayesian premium calculation when compared to the outcomes of two existing models,
in view of goodness of fit and predictive ability.

Finally, the study of this paper might be extended in several directions. First, some other
distributions, such as inverse Gaussian, LogNormal, mixed Gamma, etc., could be taken into account
for the unobserved heterogeneity. Besides, the dynamic heterogeneity is also a very interesting topic
for further research. Second, higher-order processes could be adopted to make the credibility models
more practical. Third, multivariate integer-valued time series models could be considered to deal with
the contracts with different types of coverage.
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