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1. Introduction

In real-world applications, the image clustering problem has become an important research hotspot
in the areas of machine learning and pattern recognition due to it enabled knowledge discovery. With
the rapid development of modern information technology, we are usually faced with high-dimensional
data generated in the real world [1, 2]. In addition, this high-dimensional data not only increases the
calculation and storage but also often encounters some problems such as “curse of dimension” and
“small sample size”, which will bring great difficulties to the subsequent processing of data [3]. In
general, data representation plays a crucial role in the field of computer vision in order to discover the
important underlying structures and useful information in high-dimensional data. Matrix factorization
(MF) is one of these data representation techniques, and typical methods include principal component
analysis (PCA) [4], singular value decomposition (SVD) [5], nonnegative matrix factorization (NMF)
[6, 7] and low rank representation (LRR) [8, 9]. NMF is a popular one of the MF methods, which
obtains a parts-based representation of original data space. The great advantage of this parts-based
representation have been successfully applied in various areas, such as clustering and classification
[10–12], face and object recognition [13, 14], gene expression analysis [15] and others. However,
NMF still has some intrinsic drawbacks [16,17]. For example, it is only applicable to nonnegative data
matrix and cannot utilize the power of kernelization, and it fails to extract the geometric structure of
data space and cannot make use of the label information.

In order to overcome these above shortcomings, many improved NMF algorithms have been
successfully proposed in recent years. For example, Xu and Gong proposed a concept factorization
(CF) method [18]. In CF, each cluster is represented by a linear combination of the data points, and
each data point is linearly represented by the cluster centers. Although the CF method can be applied
in any transformed space, it is difficult to discover the local geometric structures of the data space.
Therefore, several graph regularized CF methods have been proposed to handle this issue, such as
locally consistent CF (LCCF) [19], local coordinate CF (LCF) [20], adaptive graph guided CF
(AGCF) [21], and so on. Specifically, LCCF extracts the intrinsic geometrical structures of data space
by using a k-nearest neighbor graph, while LCF preserves the sparsity and locality simultaneously by
introducing a local coordinate constraint and AGCF captures the local relationships of the data points
by using the adaptive graph regularization constraint. However, most algorithms construct graphs
directly on the original data, which can lead to sensitivity to noise [22]. Many studies have employed
adaptive graphs to solve these problems [23–25], but they mainly focus primarily on the problem of
data dimensionality reduction.

Undoubtedly, the improved CF models mentioned above are unsupervised learning methods, and
they fail to utilize the limited label information. Using a small amount of label information of the data
to improve the performance of the algorithms has become one of the hotspots of machine learning
in current studies. Many machine learning experts have shown that a significant improvement can be
achieved in learning accuracy when a small amount of the labeled data is used in conjunction with
the large amounts of the unlabeled data [26–32]. In order to make better use of the label information,
several works incorporated the limited label information into CF. For examples, Liu et al. incorporated
the label constraints into NMF and CF, respectively, and proposed both constrained nonnegative matrix
factorization (CNMF) [14] and constrained concept factorization (CCF) [33]. The purpose of these
constraints is that the samples from the same class should be merged together in the new representation
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space. Babaee et al proposed a discriminative NMF (DNMF) [27] by using the label information of a
small amount of data as a discriminative constraint, which enforces the samples with the same label
information to be aligned on the same axis in the new representation instead of a single point. Li et al.
proposed a class-driven CF by utilizing the class-driven constraint, which forces the representations of
samples to be more similar within the same class while different between other classes. In addition,
some further research of the CF has also been proposed [32, 34–36] based on different constraints in
the past few years.

In this work, we incorporate the class-driven constraint and the graph regularization into CF, and
propose a new semi-supervised graph regularized CF (SGCF) algorithm for the clustering application.
Specifically, the main contributions of this work can be outlined as follows:

• In our proposed SGCF, we incorporate the limited label information and the graph regularization
into CF as the additional constraints to enhance the performance of the clustering task.
• SGCF is a semi-supervised learning method, which associates the class labels of samples with

their representations by using a class-driven constraint, and also extracts the intrinsic geometrical
structure of the data space by introducing the graph regularization.
• The multiplicative update algorithm is used to optimize the objective function of SGCF.

Meanwhile, the multiplicative update rules and the computational complexity of SGCF are
derived, and its convergence is also proved.
• Extensive experiments on four real-word image data sets show that the effectiveness of the

proposed SGCF when compared with the state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 briefly reviews some methods that are
closely related with our research, including NMF, CF, GNMF and the class-driven constraint. We then
introduce our proposed SGCF model and its optimization method in Section 3, and its convergence
proof is provided in Section 4. Next, we conduct extensive experiments in Section 5. Finally, we
conclude the paper in Section 6.

2. Related work

In this section, we briefly introduce the basic concepts of NMF, CF, GNMF and the class-driven
constraint, which are closely related with our proposed SGCF method.

2.1. NMF and CF

Given a data matrix X = [x1, x2, · · · , xn] ∈ Rm×n
+ , where xi ∈ Rm

+(1 ≤ i ≤ n) represents a nonnegative
data point. NMF aims to decompose X into two matrix factors, i.e., the basis matrix U ∈ Rm×k

+ and the
coefficient matrix V ∈ Rn×k

+ , which minimize the following optimization problem [6, 7]:

min
U,V

O = ‖X − UVT ‖2F ,

s.t U ≥ 0,V ≥ 0,
(2.1)

where ‖ · ‖F denotes the Frobenius norm of the matrix. This formulation can be viewed column by
column as follows:
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x j =

k∑
i=1

v jiui, (2.2)

where x j can be approximated by a linear combination of U with the weight matrix V.
However, NMF cannot utilize the power of kernelization. Therefore, Xu and Gong proposed CF,

which can be used in any data representation space [18]. The CF is an extension of NMF in that each
basis vector u j is represented by a linear combination of the samples xi:

u j =

n∑
i=1

wi jxi,

where wi j ≥ 0. Therefore, let W = [wi j] ∈ Rn×k, and CF can be expressed as follows:

min
W,V

O = ‖X − XWVT‖2F

s.t W ≥ 0,V ≥ 0.
(2.3)

In this way, CF can easily be performed in any data representation space, such as Hilbert space.
Some detailed review can be found in [18–20, 35].

2.2. Graph-regularized nonnegative matrix factorization (GNMF)

NMF cannot detect the intrinsic structure of the original data space, which is essential to the image
representation. For example, Cai et al. proposed the graph-regularized NMF (GNMF) method, which
removes this restriction by adding a regularizer based on the manifold assumption that if two samples
xi, x j are similar, then their weighted coefficient vi, v j are similar [37]. The weight si j is used to measure
the similarity of two samples xi, x j. There are many choices to construct the weight matrix S on the
graph, such as dot-product weighting, heat kernel weighting , 0-1 weighting and so on [38]. Then,
Tr(VT LV) can be used to preserve the local manifold structure of the data space, so the objective
function of GNMF is given as follows:

min
U,V

OF = ‖X − UVT‖2F + αTr(VT LV),

s.t U ≥ 0,V ≥ 0,
(2.4)

where α > 0, Tr(·) denotes the trace of a matrix. L = H − S is the graph Laplacian matrix [39], S is
the weight matrix and H is diagonal matrix with the ith diagonal element Hii =

∑
j Si j. In general, the

matrix S is introduced as follows:

Si j =

 xT
i x j

‖xi‖‖x j‖
if xi ∈ Np(x j) or xi ∈ Np(x j),

0 otherwise,
(2.5)

where Np(xi) represents p-nearest neighbors set of xi.

AIMS Mathematics Volume 8, Issue 12, 28690–28709.



28694

2.3. Class-driven constraint

Consider a dataset consisting of n samples X = [x1, x2, · · · , xl, xl+1, · · · , xn], among which the first
l samples x1, x2, · · · , xl are labeled with one class form c categories and the rest of n − l samples
xl+1, · · · , xn are unlabeled samples. In order to learn a discriminative basis set U = [U1,U2, · · · ,Uk] ∈
Rm×k

+ , where Ui is able to sparsely represent the i−th class well but not others, r denotes the number of
basis vectors of each subset and k = r × c.

Suppose V = [v1, v2, · · · , vn]T ∈ Rn×k denotes the representation matrix in Eq (2.3) and
D = [db1 , db2 , · · · , dbn]

T ∈ Rn×k denotes the indicator matrix of the inhomogeneous representation. Our
target is to make use of class label information to learn discriminative basis vectors, which represent
better for their own classes while worse for the others. Therefore, we expect that approximated
part-based representation v j for sample x j with label b j will satisfy the following conditions [40]:

dT
b j

v j = 0, (2.6)

where db j chooses the inhomogeneous representation coefficients of v j, i.e., coefficients corresponding
to basis vectors other than Ub j . There are n samples, suppose the discriminative basis set
U = [U1,U2,U3], Ui ∈ Rm×2(i.e., k = 6), where x1 belongs to the first class, x2 belongs to the second
class, x3 belongs to the third class and the other n − 3 are unlabeled samples. Thus, the indicator
matrix DT = [db1 , db2 , db3 , · · · , dbn] can be defined as

0 1 1
0 1 1
1 0 1
1 0 1
1 1 0
1 1 0︸   ︷︷   ︸

l

0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0︸     ︷︷     ︸

n−l


,

where if x j (such as x4 ) is the unlabeled sample, we set all the elements in db j (such as db4) to zero.
We refer to Eq (2.6) as the class-driven constraint.

Li et al. incorporated the class-driven constraint Eq (2.6) into CF and proposed a class-driven CF
(CDCF) as follows [41]:

min
W,V

O = ‖X − XWVT‖2F + βTr(DVT )

s.t W ≥ 0,V ≥ 0.
(2.7)

The objective function is solved by the iterative updating method, and the updating rules of W and
V are:

wik ← wik
(KV)ik

(KWVTV)ik
, (2.8)

v jk ← v jk
(KW) jk

(VWTKW + (βD)/2) jk
. (2.9)
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3. SGCF

3.1. The objective function

CDCF is a semi-supervised learning method, but it fails to extract the geometrical structure of data
space [41]. GNMF adds the manifold regularization to NMF [37]. LCF considers the locality
constraints in revealing the underlying concepts, but it ignores the manifold structure in the data
space [20]. Therefore, in order to reveal the latent concepts consistent with manifold geometrical
structure, we will incorporate this manifold regularization Tr(VT LV) to CDCF and obtain the
proposed SGCF approach formulated as follows:

min
W,V

O = ‖X − XWVT‖2F + αTr(VTLV) + βTr(DVT )

s.t W ≥ 0,V ≥ 0,
(3.1)

where α, β are nonnegative balance factors. The key novelty of SGCF is that SGCF not only captures
the intrinsic geometrical structure of data space by using graph regularization but also considers the
available label information by incorporating the class-driven constraint. Then, the discriminative
ability of SGCF is greatly enhanced in clustering tasks.

3.2. Optimization

Undoubtedly, the objective function of the proposed SGCF method in Eq (3.1) is nonconvex in all
matrix variables W and V together, while it is convex with respect to the single matrix variables W
or V. In this situation, it is very hard to find the global optimal solution in Eq (3.1). However, a
local minimum can be obtained for the objective function of SGCF by using the multiplicative update
rules [28, 37].

We need to minimize the objective function O defined in Eq (3.1) to get its local minima, and the
objective function of SGCF can be rewritten as:

O = Tr((X − XWVT)T(X − XWVT)) + αTr(VTLV) + βTr(DVT )
= Tr(K) − 2Tr(WTKV) + Tr(WTKWVTV) + αTr(VTLV) + βTr(DVT ),

(3.2)

where K = XTX. Specifically, assuming that Φ = [φik] and Ψ = [ψ jk] are two Lagrangian multipliers,
then the corresponding Lagrangian function L can be presented below:

L = Tr(K) − 2Tr(WTKV) + Tr(WTKWVTV)
+αTr(VTLV) + βTr(DVT ) + Tr(ΦWT ) + Tr(ΨVT ).

(3.3)

The partial derivatives of L with respect to W and V, respectively, are:

∂L
∂W

= −2KV + 2KWVTV +Φ,

∂L
∂V

= −2KW + 2VWTKW + 2αLV + βD +Ψ.

Letting the derivatives be zero and using the Karush-Kuhn-Tucker (KKT) condition φikwik = 0 and
ψ jkv jk = 0, we have:

− (KV)ikwik + (KWVTV)ikwik = 0,
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− (KW) jkv jk + (VWTKW) jkv jk + α((H − S)V) jkv jk +
1
2

(βD) jkv jk = 0.

Therefore, we have the following updating rules for W and V:

wik ← wik
(KV)ik

(KWVTV)ik
, (3.4)

v jk ← v jk
(KW + αSV) jk

(VWTKW + αHV + (βD)/2) jk
. (3.5)

From Eq (3.1), we can find that if the indicator matrix D is a n × k null matrix or β = 0, SGCF
reduces to LCCF [19], if α = 0, SGCF reduces to CDCF [41] and if α = β = 0, SGCF reduces to
CF [18]. The procedure of SGCF is summarized in Algorithm 1.

Algorithm 1. The description of the proposed SGCF algorithm.

Input: Data matrix X for c classes, graph Laplacian matrix L, the label indicator matrix D,
the parameters α and β.
Initialization: Randomly initialize nonnegative matrices W,V.
Repeat
1) Update W by rule (3.4);
2) Update V by rule (3.5);
Until the objective value of O does not change or obtain the maximum number of iterations.
Output: Basis matrices W,V.

The solution of the optimization problem Eq (3.1) is not unique. It is easy to verify that if W and
V are a solution of the optimization problem Eq (3.1), then WS and VS−1 will also be a solution of
the optimization problem Eq (3.1) for any positive diagonal matrix S. Therefore, to make the solution
unique, we can further require that wT Kw = 1, where w is the column vector of W and WVT does not
change [19, 33, 41]. So, W and V should be updated as following:

V← V[diag(WT KW)]1/2,

W←W[diag(WT KW)]−1/2.

3.3. Computational complexity analysis

In this section, we discuss the computational cost of SGCF compared to standard CF and LCCF.
Without loss of generality, the big O notation is used to represent the complexity of algorithms. The
number of three arithmetic operations including addition, multiplication and division are counted for
each update step of NMF, CF, LCCF and proposed SGCF and the results are shown in Table 1 ( N: the
number of data points; M: the number of features; K: the number of factors; p: the number of nearest
neighbors, p � N).
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Table 1. Computational operation counts for each iteration in NMF, CF, LCCF and SGCF.

Methods Addition Multiplication Division Overall

NMF 2MNK + 2(M + N)K2 2MNK + 2(M + N)K2 + (M + N)K (M + N)K O(MNK)
CF 4N2K + 4NK2 4N2K + 4NK2 + 2NK 2NK O(N2K)
LCCF 4N2K + 4NK2 + N(p + 3)K 4N2K + 4NK2 + N(p + 3)K 2NK O(N2K)
S GCF 4N2K + 4NK2 + N(p + 4)K 4N2K + 4NK2 + N(p + 4)K 3NK O(N2K)

Due to the class-driven constraint, our SGCF method needs NK more operation for addition and
multiplication compared with LCCF in each iteration. For the graph Laplacian term, our SGCF and
LCCF methods need to compute the weight matrix S . Because of S is a sparse matrix, we only
need N(p + 3)K more addition and multiplication comparing to CF in each iteration. Suppose the
multiplicative updates stop after t iterations, the overall computational complexity for NMF, CF, LCCF
and SGCF will be O(tMNK), O(tN2K+N2M), O(tN2K+N2M)+N2 p and O(tN2K+N2M)+N2 p+NK.
Since p is usually very small (around five) [19] and K � min{M,N}, SGCF, LCCF and CF will have the
same computational complexity by using the big O notation when dealing with the high-dimensional
data.

4. Convergence proof

We have the following theorem regarding the above updated rules, which guarantees the SGCF
method converges to a local minimum.
Theorem 4.1. The objective function O in Eq (3.1) is non-increasing under the updating rules in Eqs
(3.4) and (3.5). The objective function is invariant under these updating rules if and only if W and V
are at a stationary point.

In order to prove Theorem 4.1, we require to prove that the objective function O of SGCF is non-
increasing under the updated rules in Eqs (3.4) and (3.5). Due to the fact that the graph regularization
and the class-driven constraint in the objective function O of SGCF are only related to the coefficient
matrix V, and the iterative updated rule for Eq (3.4) is exactly the same as the updated rule for W in the
CDCF [41] and CF [18], we omit the convergence proof of SGCF to show that the objective function
O of the optimization problem Eq (3.1) is non-increasing under the updated rule in Eq (3.4) [18, 41].
Therefore, we only have to prove that the objective function O in Eq (3.1) is non-increasing under the
updated rule in Eq (3.5). Similar to the literature [28, 37], we utilize a similar auxiliary function that
has been used in the expectation maximization algorithm [42]. We begin by introducing a definition
and some lemmas.
Definition 4.1. G(x, x

′

) is the auxiliary function of F(x) if the following conditions:

G(x, x
′

) ≥ F(x), G(x, x) = F(x) (4.1)

are satisfied.
Lemma 4.1. If G(x, x

′

) is the auxiliary function of F(x), then F(x) is non-increasing under the update

x(t+1) = arg min
x

G(x, x(t)). (4.2)

Proof. F(x(t+1)) ≤ G(x(t+1), x(t)) ≤ G(x(t), x(t)) = F(x(t)).
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Now, we prove the convergence of the iterative updating rules for V in Eq (3.5). First, we suppose
that vab is any entry in the matrices V, and Fvab denotes the part of O only relevant to vab. Therefore,
we have the derivative of Fab with respect to vab as follows:

F′vab
= (−2KW + 2VWTKW + 2αLV + βD)ab, (4.3)

F′′vab
= 2(WTKW)bb + 2αLaa. (4.4)

From Eq (3.5), we can observe that the updated rule is element-wise. That means we only need to
prove Fzab is non-increasing under the updated rule for Eq (3.5).
Lemma 4.2. Let F′ denotes the first order derivative with respect to V. The function

G(v, v(t)
ab) = Fvab(v

(t)
ab) + F′vab

(v(t)
ab)(v − v(t)

ab)

+
(VWTKW + αHV + βD/2)ab

v(t)
ab

(v − v(t)
ab)2 (4.5)

is an auxiliary function of Fzab .
Proof. Evidently, G(v, v) = Fvab(v) , we only have to show that G(v, v(t)

ab) ≥ Fvab(v). To achieve this goal,
we can compare the Taylor series expansion of Fvab(v) at vt

ab with the auxiliary function G(v, vt
ab):

Fvab(v) = Fvab(v
(t)
ab) + F′vab

(v − v(t)
ab) +

1
2

F′′vab
(v − v(t)

ab)2. (4.6)

Putting (4.4) to (4.6) and comparing with (4.5) to find that G(v, v(t)
ab) ≥ Fvab(v) is equivalent to

(VWTKW + αHV + βD/2)ab ≥
1
2

v(t)
abF′′vab

= v(t)
ab[(WTKW)bb + αLaa]. (4.7)

In order to prove the above inequality, we have:

(VWTKW)ab =

k∑
l=1

vt
al(W

TKW)lb ≥ v(t)
ab(WTKW)bb, (4.8)

α(HV)ab = α

m∑
l=1

Halvt
lb ≥ αHaavt

ab ≥ α(H − S)aavt
ab = αLaavt

ab, (4.9)

and (βD/2)ab ≥ 0. Therefore, Eq (4.7) holds and we have G(v, v(t)
ab) ≥ Fvab(v).

Now, we can show the convergence of Theorem 4.1 for V:
Proof of Theorem 4.1. For the updated rule for Eq (3.5) of V, we can replace G(v, v(t)

ab) in Eq (4.2) by
Eq (4.5) to obtain the updated rule, which is exactly the same with the iterative updated rule for V.

v(t+1)
ab =arg min

v
G(v, v(t)

ab)

=v(t)
ab −

v(t)
ab

2(VWTKW + αHV + βD/2)ab
· F′zab

=v(t)
ab

(KW + αSV)ab

(VWTKW + αHV + (βD)/2)ab
.

(4.10)

Since Eq (4.5) is an auxiliary function, Fvab is non-increasing under the updated rule for Eq (3.5) with
Lemma 4.2.
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5. Experimental results

In this section, we report several experiments from the performance of the proposed SGCF and
compare them with the existing methods on the COIL20, PIE, Yale B and MNIST datasets. The
important statistic properties of these datasets are enumerated in Table 2. We will describe the details
of these datasets individually later on. The compared methods as follows:

• Traditional K-means clustering algorithm (K-means);
• Nonnegative matrix factorization (NMF) [6, 7];
• Concept factorization (CF) [18];
• Locally consistent concept factorization (LCCF) [19];
• Constrained concept factorization (CCF) [33];
• Constrained nonnegative matrix factorization (CNMF) [14];
• Discriminative nonnegative matrix factorization (DNMF) [27];
• Class-driven concept factorization (CDCF) [41];

Table 2. Properties of the datasets.

Dataset size (N) dimensionality (M) of classes
COIL20 1440 1024 20
PIE 11554 1024 68
YaleB 2414 1024 38
MNIS T 70000 784 10

Among them, K-means, NMF, CF and LCCF are unsupervised learning algorithms, while CCF,
CDCF, CNMF, DNMF and our proposed SGCF are semi-supervised learning algorithms, and
K-means is conduct on original datasets. For the semi-supervised learning algorithms, we randomly
picked 20% samples from each class as the available label information in each trial, and used them to
construct the label indicator matrix D. In order to achieve better representative results, we always set
the new dimension k of the data space equal to the cluster number P by selecting a random subset of
all classes. Then K-means was repeated 20 times in the new representation V and the best result was
recorded. The number of nearest neighbors p was set to be five in the graph regularization methods as
suggest in [34, 37], such as LCCF, CNMF, DNMF and SGCF. Two widely-used evaluation metrics,
clustering accuracy (AC) and normalized mutual information (NMI), were used to evaluate the
clustering performance, and detailed definitions of these evaluation metrics can be found
in [14, 28, 37]. For each dateset, we made twenty independent trials and recorded the average
clustering result.

5.1. Experiments on COIL20 dataset

The COIL20 dataset consists of the gray-scale images of 20 objects, and each image is manually
cropped to 32×32. These objects were placed on a motorized turntable, which was rotated 360 degrees
to various object poses with respect to a fixed camera. Figure 1 shows some images from the COIL20
dataset.
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Figure 1. Sample images from the COIL20 image datasets.

Form Table 3, we can find that proposed SGCF achieves the best average clustering performance.
Compared with NMF, CF and LCCF, the SGCF can achieve 15.35%, 17.41% and 3.53% improvement
in AC on average, respectively. The corresponding NMI on average increases are 22.22%, 22.87%
and 4.81% improvement, respectively. Therefore, the performances of SGCF surpasses those of NMF,
CF and LCCF. This is mainly due to the fact that NMF, CF and LCCF are unsupervised learning
algorithms, while SGCF is a semi-supervised learning algorithm, which considers the label information
by introducing the class-driven constraint.

Table 3. Clustering performance on the COIL20 dataset.

P Accuracy (%) NMI (%)
kmeans NMF CF LCCF CCF CDCF CNMF DNMF SGCF kmeans NMF CF LCCF CCF CDCF CNMF DNMF SGCF

2 91.18 88.65 91.39 100.00 91.77 93.09 90.10 91.18 100.00 75.33 64.34 73.20 100.00 73.23 74.81 70.39 70.47 100.00
3 87.15 84.44 83.54 96.06 89.54 91.87 88.56 89.40 99.33 75.68 70.24 71.53 92.87 78.87 80.89 76.61 76.62 98.29
4 80.02 75.73 76.32 89.67 80.38 85.73 78.16 84.27 94.06 72.48 67.79 68.31 87.43 71.45 75.82 71.53 74.91 91.23
5 75.82 71.58 71.51 85.22 76.21 83.24 76.50 79.51 92.01 70.28 65.39 66.29 83.27 68.20 74.02 69.94 71.30 89.83
6 77.19 72.30 69.97 87.75 70.32 84.84 79.64 81.54 92.16 73.30 70.08 67.99 86.20 68.42 78.66 76.36 76.31 91.34
7 76.15 74.88 71.26 86.99 73.58 85.32 82.30 82.64 89.02 75.53 74.89 70.59 87.64 72.34 80.73 79.65 78.95 90.82
8 72.52 72.11 68.61 82.30 71.02 82.59 77.21 79.22 88.39 73.31 71.57 70.13 84.08 71.26 78.36 75.19 76.31 90.20
9 75.19 72.45 66.33 81.02 69.68 82.45 79.19 78.98 88.47 76.13 73.40 68.66 83.68 72.03 79.88 78.46 78.36 90.75
10 70.82 69.94 64.24 79.08 67.52 81.06 76.24 77.83 83.68 74.03 72.62 67.83 81.84 70.10 79.27 76.98 77.63 87.89
Avg. 78.54 75.75 73.69 87.57 76.67 85.58 80.88 82.73 91.10 74.01 70.04 69.39 87.45 71.76 78.05 75.01 75.65 92.26

5.2. Experiments on PIE face dataset

The PIE dataset contains 11,554 face images of 68 different people, each of which has 42 facial
images under different light and illumination conditions. Each image is manually cropped to 32 × 32.
For the fixed cluster number P, we randomly selected 100 images of each class in this experiment.
Figure 2 shows some images from the PIE face dataset.

Table 4 shows that our proposed SGCF achieves the best performance for all different cluster
number P. Specifically, the AC and NMI of LCCF are 32.57% and 12.35% with 5.00% and 8.88%
gains over CF, respectively. The AC and NMI of SGCF are 62.08% and 44.74% with gains of 29.51%
and 32.39% over LCCF, respectively. Therefore, the performance of SGCF is superior to those of
LCCF and CF. The main reason is that CF and LCCF are unsupervised learning methods, while
SGCF integrates the label information into CF by utilizing the class-driven constraint. Meanwhile, it
is noteworthy to point out that SGCF obtains the best performance due to the fact that SGCF
effectively takes both the class-driven constraint and graph regularization into account.
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Figure 2. Sample face images from the PIE face dataset.

Table 4. Clustering results comparison on the PIE face dataset.

P Accuracy (%) NMI (%)
kmeans NMF CF LCCF CCF CDCF CNMF DNMF SGCF kmeans NMF CF LCCF CCF CDCF CNMF DNMF SGCF

2 51.73 51.78 52.32 54.73 52.07 59.33 52.57 62.09 76.78 0.16 0.15 0.20 4.02 0.27 2.79 0.61 4.65 40.20
3 38.80 42.07 40.78 44.53 46.37 51.20 45.81 54.45 74.17 3.77 5.63 4.00 8.88 9.18 11.27 11.97 14.55 51.11
4 29.81 32.59 31.11 34.81 36.50 45.24 40.73 48.83 64.72 2.29 5.59 2.87 8.36 8.14 12.00 15.23 16.66 43.58
5 26.29 31.89 27.57 32.92 33.02 40.69 34.75 42.92 64.41 3.91 10.87 4.39 13.99 10.50 15.42 15.33 17.54 47.32
6 22.59 27.89 23.91 28.43 28.79 36.33 34.49 41.83 60.68 3.64 11.75 4.70 13.81 9.09 14.45 20.08 20.44 45.59
7 20.18 27.12 20.51 27.00 25.54 32.63 34.30 39.89 59.16 3.35 14.82 3.54 14.63 8.50 13.31 24.25 24.29 45.23
8 19.67 26.81 19.15 25.53 25.08 31.92 33.90 37.72 55.05 6.81 18.05 4.49 16.13 10.82 16.04 25.61 26.41 43.61
9 18.35 25.65 16.88 23.16 21.58 28.44 30.88 34.95 53.72 7.21 19.37 3.35 15.50 8.31 14.60 26.02 26.81 44.06
10 17.74 24.58 15.94 22.03 20.18 26.55 30.04 32.93 50.04 8.59 20.92 3.65 15.86 8.53 14.51 26.78 26.68 41.96
Avg. 27.24 32.26 27.57 32.57 32.13 39.15 37.49 43.96 62.08 4.41 11.91 3.47 12.35 8.15 12.71 18.43 19.77 44.74

5.3. Experiments on Yale B dataset

The Extended Yale B dataset contains 2,414 frontal face images from 38 objects, each of which
contains 64 face images captured under controlled lighting in the laboratory. Each image is manually
cropped to 32 × 32. In this experiment, we randomly selected 50 images of each class for the fixed
cluster number P. Figure 3 shows some images from the Yale B dataset.

Figure 3. Sample face images from the Yale B face dataset.

From Table 5, it can be observed that SGCF achieves the best performance in clustering. The
average clustering accuracies obtained by k-means, NMF, CF, LCCF, CCF, CDCF, CNMF, DNMF
and SGCF are 25.67%, 28.14%, 26.67%, 49.10%, 30.35%, 39.82%, 32.59%, 35.21% and 65.42%,
respectively. Compared with DNMF, SGCF can achieve 30.21% improvement in AC and 39.70%
improvement in NMI. The important reason is that DNMF cannot capture the intrinsic geometrical
structure of data space, while SGCF can efficiently detect the intrinsic structure of data space by using
the graph regularization. Thus, the clustering performance can be greatly improved.
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Table 5. Clustering results comparison on the Yale B face dataset.

P Accuracy (%) NMI (%)
kmeans NMF CF LCCF CCF CDCF CNMF DNMF SGCF kmeans NMF CF LCCF CCF CDCF CNMF DNMF SGCF

2 51.95 52.35 52.25 69.25 53.15 60.15 53.85 59.45 89.60 0.20 0.22 0.23 32.35 0.57 3.29 0.73 8.05 65.36
3 35.97 36.30 36.77 54.40 40.33 48.27 39.53 45.03 75.07 0.42 0.53 0.66 27.42 2.39 5.99 1.94 11.98 50.50
4 28.35 28.88 29.87 50.62 34.40 42.90 30.43 37.88 70.02 0.74 0.97 1.70 34.62 4.10 9.57 2.00 13.63 53.31
5 24.08 24.34 26.46 48.40 29.34 40.46 29.44 33.36 66.16 1.63 1.66 3.40 39.15 4.99 13.03 7.18 13.87 54.50
6 19.87 22.93 22.40 45.12 26.78 37.70 28.00 31.93 61.85 0.81 4.40 2.65 37.71 6.24 13.30 10.56 16.81 52.22
7 18.24 22.44 20.16 45.51 24.93 35.37 28.59 29.01 60.89 2.49 7.97 2.87 41.21 7.42 15.10 14.95 16.15 53.30
8 18.28 23.06 19.12 45.65 23.31 33.66 28.61 27.80 56.89 4.08 11.37 3.83 42.35 7.96 16.34 18.44 16.69 53.29
9 17.73 21.37 16.96 42.12 20.82 30.30 27.00 27.11 54.97 5.23 11.45 3.47 42.89 7.35 14.21 19.71 17.14 52.84
10 16.59 21.59 16.03 40.87 20.13 29.54 27.84 25.31 53.32 5.60 13.07 3.89 41.28 8.10 15.66 22.03 16.86 50.18
Avg. 25.67 28.14 26.67 49.10 30.35 39.82 32.59 35.21 65.42 2.36 5.74 2.52 37.66 5.46 11.83 10.84 14.24 53.94

5.4. Experiments on MNIST database

The MNIST dataset classifies 10 classes from zero to nine, which provides a total of 70,000
handwritten samples. Each image is resized to 28 × 28 gray-scale images. Similar to experiments
in [17], we randomly choose 100 images of each class in this experiment. Figure 4 shows some
handwritten samples from the MNIST dataset.

Figure 4. Sample face images from the MNIST databases.

Table 6. Clustering performance on the MNIST dataset.

P Accuracy (%) NMI (%)
kmeans NMF CF LCCF CCF CDCF CNMF DNMF SGCF kmeans NMF CF LCCF CCF CDCF CNMF DNMF SGCF

2 92.03 89.35 92.23 93.78 94.00 93.65 89.38 89.38 96.80 67.81 59.87 67.74 74.24 72.29 71.27 57.97 57.94 83.42
3 72.75 70.67 73.55 73.83 80.47 86.87 79.82 83.58 92.37 52.63 48.37 49.64 53.91 59.94 64.07 59.07 60.81 75.89
4 65.88 61.72 64.89 68.24 69.79 82.03 68.01 69.96 87.84 53.10 45.15 47.60 53.57 56.24 61.47 53.41 54.21 70.19
5 63.36 58.65 59.41 62.40 66.28 78.07 69.04 71.88 84.42 49.60 43.84 44.58 49.73 53.38 58.62 53.85 53.75 67.01
6 59.23 52.56 54.00 54.93 63.12 78.17 61.91 66.89 83.47 51.40 45.10 45.49 49.23 54.03 61.35 54.45 53.59 68.07
7 58.86 53.13 53.16 54.11 60.72 75.69 63.28 67.81 80.23 50.57 44.61 43.74 48.25 53.18 59.61 54.19 53.86 65.60
8 54.50 49.01 49.16 51.57 57.26 72.47 59.63 64.43 76.71 49.26 43.09 42.87 48.07 50.03 57.94 52.14 52.35 62.65
9 52.94 47.64 49.01 51.53 57.72 71.09 59.54 63.13 76.46 48.69 42.97 44.03 48.28 51.29 57.43 52.52 52.95 63.16
10 51.32 46.84 48.37 48.89 55.50 69.25 56.62 62.81 74.78 48.83 44.04 44.43 47.60 50.34 56.87 52.34 52.88 62.24
Avg. 63.43 58.84 60.42 62.14 67.21 78.59 67.47 71.09 83.68 52.43 46.34 47.79 52.54 55.64 60.96 54.44 54.70 68.69

We can see from Table 6 that the proposed SGCF obtains the best performance compared with the
others methods. Specifically, compared with CCF and CDCF, SGCF can achieve 16.47% and 5.09%
improvement in AC, respectively. For NMI, SGCF can achieve 13.05% and 7.73% improvement,
respectively. Therefore, the performance of SGCF is significantly superior to the CCF and CDCF. The
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major reason is that CCF and CDCF do not consider the graph regularization, while SGCF not only
preserves the intrinsic structure of data space by using the graph regularization, but also considers the
available label information by utilizing the class-driven constraints. Besides, we can see that the
semi-supervised learning methods (i.e., CCF, CDCF, CNMF, DNMF and SGCF) consistently
outperform other unsupervised learning methods, such as K-means, NMF, CF and LCCF. This
indicates that the limited label information can improve the clustering performance for
semi-supervised learning methods, which proves the effectiveness of SGCF yet again.
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Figure 5. The performance with the varied parameter α. a: COIL20, b: PIE, c: YaleB and d:
MNIST.
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5.5. Parameters analysis

In this subsection, we show how the tradeoff parameters α, β can influence the performance of
clustering. Here, we randomly choose 50 images of each class and randomly select five classes from
each dataset as a subset of dataset in these experiments. Following several existing works [23, 27, 32,
37], we separately analyze α and β in SGCF. First, we empirically fix the parameters β, and then search
the optimal parameters α from [0.01,0.1,1,10,100,1000]. Second, we fix the optimal parameters α,
and search the optimal parameters β from a range of [0.01,0.1,1, 10, 100, 1000, 10000] in SGCF. We
independently run on 20 times for each experiment, and the results are shown in Figures 5 and 6. The
parameter setting of LCCF, CDCF, DNMF and SGCF are shown in Table 7.
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Figure 6. The performance of SGCF with the varied parameter β.

Table 7. Parameter setting of LCCF, CDCF and SGCF.

Dataset LCCF CDCF DNMF SGCF
COIL20 α = 1000 α = 1000 α = 1 α = 10, β = 1000
PIE α = 1000 α = 100 α = 1 α = 10, β = 1000
YaleB α = 10000 α = 10000 α = 1000 α = 100, β = 10
MNIS T α = 1 α = 100 α = 1 α = 10, β = 10

It’s worth noting that the proposed SGCF is a semi-supervised learning method, and the
performance of the algorithm is closely related to the proportion of labeled data. In order to
demonstrate how the performance of SGCF varies with labeled data, we select the proportions of
labeled data from each class with the label percentage varying from 10% to 50% as the labeled data
constructs the label indicator matrix D for each dataset. We randomly choose five classes from each
dataset and independently run on 20 times for each experiment, and the experimental results are
shown in Figure 7. From Figure 7, we can see that the clustering performance of CCF, CDCF, CNMF,
DNMF and SGCF are generally improved with the increase of the proportion of the labeled data,
while the unsupervised learning methods K-means, NMF, CF and LCCF have clustreing
performances that are not changed because it’s irrespective of the proportion of the labeled data
variation. However, it can be found that the SGCF can achieve better performance when the
proportion of the labeled data is small. Therefore, the proposed SGCF is a more robust method.
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Figure 7. The performance with a varied proportion of the labeled data. a: COIL20, b: PIE,
c: YaleB and d: MNIST.

6. Conclusions

In this paper, a new SGCF with the class-driven constraint was proposed. In this framework, the
label information with the class-driven constraint was encoded in CF, which forces the new
representations of samples to be more similar within the same class while different between unalike
classes. To extract the geometric information of the original data space, a graph regularization was
added to the objective function of SGCF. For the proposed SGCF method, iterative updated rules were
proposed and the convergence was proven both theoretically and experimentally. The experimental
results on four databases have demonstrated the better performance of SGCF in comparison to the
other state-of-the-art matrix factorization methods.
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