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1. Introduction

Dengue, mainly transmitted by Aedes aegypti and Aedes albopictus, is one of the top ten global
health threats, causing more than 390 million people to be infected annually in the tropical and
subtropical world [1–3]. In China, the dengue epidemic first occurred in 1978 Guangdong, a coastal
province with a mild climate [4]. Since then, the Chinese people in the warm temperate zone have
been suffering from the disease, and the people in Guangdong are the most afflicted. In 2014, there
were 45, 053 cases reported in Guangdong. From 2017 to 2021, 34, 036 cases were recorded, among
which 10, 594 cases were identified in Guangdong [5,6]. As there are neither specific drugs nor safety
vaccines available, the most appropriate method to prevent dengue outbreak is to suppress the density
of vector mosquitoes such that the level of the dengue viruses present in mosquitoes is below the
disease epidemic proportion [7–9].

For wild mosquitoes, figuring out their intrinsic population growth dynamics contributes a lot to
the control of their density. Mosquitoes undergo four developmental stages during a lifetime: egg,
larva, pupa and adult. The density dependence mainly occurs in the first three stages, called the aquatic
stages [10]. Keeping these facts in mind and inspired by [11], we formulate the ordinary differential
equation model

dw
dt

= awe−bw − µw (1.1)

with Ricker-type density-dependent survival probability [12–14] to depict the population dynamics of
wild mosquitoes. In Eq (1.1), w = w(t) denotes the number of wild mosquitoes at time t, a > 0
represents the per capita daily egg production rate, 1/b > 0 estimates the size at which the population
reproduces at its maximum rate [15, 16], and µ > 0 describes the density-independent death rate of
wild mosquitoes. We assume a > µ in this work such that (1.1) has a unique positive equilibrium
e∗ = ln(a/µ )/b besides the trivial equilibrium e0 = 0, and a study of the direction field associated
with (1.1) shows the instability of e0 and the global asymptotic stability of e∗ [17, 18].

Among the tools for combating wild mosquitoes, the incompatible insect technique (IIT) has proven
to be an effective, eco-friendly and scalable tactic [19–21]. IIT relies on releases of the obligate
intracellular bacteria Wolbachia-infected male mosquitoes (we refer to them as W-males hereafter)
reared in laboratories or mosquito factories to sterilize wild females and thus to suppress wild mosquito
population. The feasibility of IIT is due to Wolbachia in each released male mosquito, which not only
induces the cytoplasmic incompatibility (CI) mechanism, as the eggs laid by a wild female mosquito
that mated with an infected male mosquito will hatch partially, but also brings fitness alterations to
the hosts [22, 23]. Based on [24, 25], we assume that Wolbachia induces complete CI, which means
that no viable offspring will be produced when a wild female mosquito mates with an infected male
mosquito, and it causes no apparent changes to the mating competitiveness of the infected male
mosquito compared with the wild one.

Since the sole role that the W-males play in the suppression dynamics is to sterilize wild females
through matings, Yu in [26] proposed an innovative modeling idea that only those W-males being
sexually active are included. Therefore, due to the releases of W-males, the compatible mating
probability between wild and W-males in Eq (1.1) decreases from 1 to w/(w + g) , where g = g(t)
is the number of sexually active W-males at time t, and the population dynamics of wild mosquitoes
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thus can be governed by
dw
dt

=
aw2

w + g
e−bw − µw. (1.2)

In addition, for W-males, their sexual lifespan is shorter than their lifespan [10]. Thus, the death
of those W-males can be neglected. Consequently, g(t) can be treated as a given function in advance,
and it is determined by the release strategy implemented. Meanwhile, the author in [26] proposed
a periodic and impulsive release strategy that a constant amount of c of W-males is released after a
constant waiting period T , that is, the W-males are released periodically and impulsively at discrete
time points Tk = kT, k = 0, 1, 2, · · · .

Following [26], the authors in [27] introduced T̄ as the sexual lifespan of W-males. Regarding the
release period T and the sexual lifespan T̄ , the critical case is T = T̄ , under which model (1.2) becomes

dw
dt

=
aw2

w + c
e−bw − µw. (1.3)

The dynamics of model (1.3) are simple, as they are only determined by the release amount c. However,
the release strategy with T = T̄ is not practical, since this critical release case is not that easy to
implement. A more reasonable release strategy is T > T̄ when the density of wild mosquitoes is
slightly below the threshold required for dengue prevalence, or T < T̄ when the density is above the
threshold.

In the current study, we focus on the case with T > T̄ , under which g(t) takes the form

g(t) =

c, t ∈ [iT, iT + T̄ ),
0, t ∈ [iT + T̄ , (i + 1)T ),

i = 0, 1, 2, · · · , (1.4)

and then Eq (1.2) can be specified as

dw
dt

=
aw2

w + c
e−bw − µw, t ∈ [iT, iT + T̄ ) (1.5)

and
dw
dt

= awe−bw − µw, t ∈ [iT + T̄ , (i + 1)T ), (1.6)

where i = 0, 1, 2, · · · .
The rest of the paper is organized as follows. Section 2 gives release amount thresholds c∗ and

c∗∗ and the release period threshold T ∗. In addition, we define a Poincaré map for seeking periodic
solutions of (1.5) and (1.6) and offer a lemma to build the connection between the monotonicity of the
Poincaré map and the asymptotic stability of the origin. Section 3 shares and proves two theorems:
One guarantees the existence of a unique globally asymptotically stable periodic solution, and the other
provides sufficient conditions for the existence of at most two periodic solutions. We point out here
that a fixed point of the Poincaré map corresponds to an initial value evolving a periodic solution,
and the stability of the periodic solution is determined by the relation between the derivative of the
Poincaré map at the fixed point and 1. Different from the extant works [27–29], the derivative of the
Poincaré map at a fixed point has no explicit expressions. Nevertheless, we skillfully find that the
derivative of the Poincaré map can be generated with two crucial functions. Then, by investigating
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the qualitative properties of the two functions, we obtained the above theorems. Next, we offer two
numerical examples to support and expand the theoretical results in Section 4. Finally, in Section 5,
through comparing the conclusions of (1.5) and (1.6) and those derived from the existing models, we
make clear the rationality of the choice of the Ricker-type survival probability in our model and provide
a short discussion on our future works.

2. Preliminaries

Obviously, (1.5) and (1.6) possess the origin, denoted by E0, as the unique equilibrium. Assume
that w(t) = w(t; 0, u) is the solution of (1.5) and (1.6) which initiates at w(0) = u > 0. Then, w(t)
is a continuous and piecewise differentiable function defined on [0,+∞) which satisfies Eq (1.5) with
initial value w(0) = u on [0, T̄ ) and Eq (1.6) with initial value w(T̄ ) on [T̄ ,T ), where w(T̄ ) is defined
as the right limit of w(t) at T̄ . As to the other intervals [iT, (i + 1)T )(i = 1, 2, 3, · · · ), the solution can
be depicted by a similar method. It then follows from the continuous dependence and differentiable
theorems of solutions upon initial values [30] that w(T ) = w(T ; 0, u) is continuously differentiable
with respect to u, since w(T̄ ) is continuously differentiable with respect to initial value u, and w(T ) is
continuously differentiable with respect to initial value w(T̄ ).

In biology, the sign of the per capita growth rate of a specific population is an indicator which
shows whether the density of the population under consideration is increasing. In Eq (1.5), the per
capita growth rate of the wild mosquito population satisfies

w′

w
=

awe−bw

w + c
− µ := F(w, c). (2.1)

To determine the sign of F(w, c), we first calculate the partial derivative of F(w, c) with respect to w,
which yields

∂F(w, c)
∂w

=
ae−bw

(w + c)2 (−bw2 − bcw + c).

Define G(w, c) = −bw2 − bcw + c. Then, ∂F(w,c)
∂w = ae−bw

(w+c)2 G(w, c), and it is easy to see that G(w, c) = 0
has a unique positive real root, denoted by

w+ = w+(c) =

√
b2c2 + 4bc − bc

2b
. (2.2)

So, G(w, c) > 0 holds for w ∈ [0,w+), and G(w, c) ≤ 0 holds for w ∈ [w+,+∞). Hence, F(w, c)
increases for w ∈ [0,w+) and decreases for w ∈ [w+,+∞). Together with the fact F(0, c) = −µ < 0,
F(w, c) attains its maximum at w = w+ with

F(w+, c) =
aw+

w+ + c
e−bw+ − µ =

a
2

(bc + 2 −
√

b2c2 + 4bc)e
bc−
√

b2c2+4bc
2 − µ. (2.3)

Moreover, with simple algebraic operations from (2.3), we know that the function F(w+, c) is strictly
decreasing with respect to c. This, combined with the fact F(w+, 0) = a−µ > 0, shows that there exists
a unique c∗ such that F(w+, c∗) = 0, and

F(w+, c) > 0, 0 < c < c∗, and F(w+, c) < 0, c > c∗.
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See Figure 1 for illustration. Thus, we obtain the following theorem.

Figure 1. Schematic diagrams illustrating the evolving trends of G(w, c) and F(w, c).

Theorem 2.1. For Eq (1.5) with t ≥ 0, there exists a positive implicit threshold c∗ such that the
following statements are valid.

(1) If 0 < c < c∗, then (1.5) with t ≥ 0 has three equilibria: the origin, denoted by e0, and two positive
equilibria: e1, e2 with e1 < w+ < e2, where w+ is defined in (2.2). Furthermore, the equilibria e0

and e2 are asymptotically stable, while e1 is unstable.

(2) If c = c∗, then e1 and e2 coincide to a unique positive equilibrium e∗, and the whole equilibria of
(1.5) with t ≥ 0 are e0 and e∗. Moreover, e0 is also asymptotically stable and e∗ is semi-stable:
stable from the right-hand side and unstable from the left-hand side.

(3) If c > c∗, then (1.5) with t ≥ 0 admits a unique equilibrium e0, which is globally asymptotically
stable.

Theorem 2.1 and the dynamical analysis of (1.1) show that the dynamics of single Eq (1.5) or (1.6)
are simple. However, with the occurrence of the switches, (1.5) and (1.6) can generate very complicated
dynamics, which may not be dealt with mathematically. In consideration of making the relevant
dynamical analyses tractable, we discuss the situation c > c∗ hereafter.

The elimination of the wild mosquito population eventually, which mathematically is shown as the
attractivity of E0, can prevent the outbreak of dengue fever. While achieving the goal of eradicating
the wild mosquito population is not that easy, it is unclear whether the lack of the ecological niche
of the wild mosquitoes is safe for the local ecosystem. Thus, when applying IIT to combat dengue,
suppressing wild mosquitoes to ensure their density be kept below the risk threshold required for the
prevalence of the disease, which biologically means the coexistence state of the wild and W-males, is
a more realistic and economic strategy than wiping them out.

The coexistence state of two species, a common phenomenon in ecosystems [18], can be indicated
dynamically by the existence of a periodic solution, and the robustness of this state can be determined
by the stability of the periodic solution. To investigate the number of periodic solutions of (1.5)
and (1.6) and their corresponding stabilities, we define

h̄n(u) = w(nT + T̄ ; 0, u), hn(u) = w(nT ; 0, u), n = 0, 1, 2, · · · . (2.4)
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Then, we have h0(u) = u, and by induction, we obtain

h̄n(u) = h̄(hn(u)), hn+1(u) = w(T ; 0, hn(u)) = h(hn(u)).

For convenience, we label

h̄0(u) = h̄(u) = w(T̄ ; 0, u), h1(u) = h(u) = w(T ; 0.u).

The relation (2.4), along with the existence and uniqueness theorem of solutions of initial value
problems, implies that hi+1(u) > hi(u) provided h(u) > u, where i = 0, 1, 2, · · · . More precisely, we
have the following lemma.

Lemma 2.2 ( [27]). Let H(u) = h(u) − u. Then, for any given initial value u > 0, the following
statements are valid.

(1) If H(u) > 0, then sequences {h̄n(u)} and {hn(u)} are both strictly increasing.
(2) If H(u) = 0, then hn(u) ≡ u, n = 0, 1, 2, · · · . Moreover, w(t) is a T-periodic solution of (1.5)

and (1.6).
(3) If H(u) < 0, then sequences {h̄n(u)} and {hn(u)} are both strictly decreasing.

Lemma 2.2 (2) says that the fixed points of the Poincaré map are precisely the initial values of the
periodic solutions of (1.5) and (1.6). Thus, for obtaining periodic solutions, in the following, we are
going to seek points u solving h(u) = u.

To this end, we first set A = 1
b ln a

µ
, and then Eq (1.6) becomes

dw
dt

= awe−bA(e−b(w−A) − 1),

which shows that dw/dt ≤ 0 holds for Eq (1.6) when w ≥ A. Moreover, it follows from Theorem 2.1 (3)
that dw/dt < 0 holds for Eq (1.5) for any initial value, that is, we reach

h(u) ≤ h̄(u) < u, u ≥ A, (2.5)

which implies that any potential initial value evolving some periodic solution lies in the interval (0,A)
and gives us an inspiration that we only need to discuss initial values contained in this interval for
seeking periodic solutions.

Furthermore, Lemma 2.2 also implies that the sign of H′(u), or, equivalently, the relation between
h′(u) and 1, plays a crucial role in determining the number of periodic solutions and their corresponding
asymptotic stabilities [31]. Hence, subsequently, we intend to derive the expression for h′(u).

For fulfilling this goal, we ought to solve initial value problem (1.5) with w(0) = u to obtain the
expression for h̄(u) and then solve initial value problem (1.6) with w(T̄ ) = h̄(u) to gain the relation
between h(u) and h̄(u). We begin with separating variables on both sides of (1.5) and then integrating
from 0 to T̄ , which provides ∫ h̄(u)

u

w + c
w[(ae−bw − µ)w − µc]

dw = T̄ . (2.6)

Note that the function (w + c)
/{

w
[(

ae−bw − µ
)

w − µc
]}

is not integrable, which indicates that the
method used in [27] is not applicable to the analyses of our model dynamics anymore. Nevertheless,
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by deliberating [27], we find that the expression for h′(u) can be obtained even in the sense that the
expression for h̄(u) is implicit.

Keeping this in mind, we go further by taking the derivative of both sides of (2.6) with respect to u,
which yields

h̄′(u) =
u + c

h̄(u) + c
·

h̄(u)
[(

ae−bh̄(u) − µ
)

h̄(u) − µc
]

u
[(

ae−bu − µ
)

u − µc
] . (2.7)

Then, by the same token as above, with the integral upper and lower limits being T̄ and T , respectively,
we attain

h′(u) = h̄′(u)
h(u)(ae−bh(u) − µ)
h̄(u)(ae−bh̄(u) − µ)

. (2.8)

Finally, substituting (2.7) into (2.8), we arrive at

h′(u) =
h(u)

(
ae−bh(u) − µ

) [
h̄(u)(ae−bh̄(u) − µ) − µc

]
(u + c)

u(ae−bh̄(u) − µ)
[
u
(
ae−bu − µ

)
− µc

] (
h̄(u) + c

) . (2.9)

Let

Ω1(u) = u(ae−bu − µ), Ω2(u) =
u
[(

ae−bu − µ
)

u − µc
]

u + c
, (2.10)

and then we achieve

h′(u) =
Ω1(h(u))

Ω1(u)
·

Ω1(u)
Ω2(u)

·
Ω2(h̄(u))
Ω1(h̄(u))

. (2.11)

Clearly, under the assumptions u ∈ (0,A) and c > c∗, we get

Ω1(u) > 0 and Ω2(u) < 0, (2.12)

respectively. Set Γ(u) = Ω1(u)/Ω2(u) . Then, we have Γ(u) < 0, and (2.11) becomes

h′(u) =
Ω1(h(u))

Ω1(u)
·

Γ(u)
Γ(h̄(u))

. (2.13)

The facts
h(A) < A and h(u) is continuously differentiable in u (2.14)

show that the relation between h(u) and u when u > 0 and sufficiently approaches zero is vital to the
existence of periodic solutions of (1.5) and (1.6). In other words, the relation between h′(0) and 1
directly determines the existence of periodic solutions of the model. We thus focus on computing h′(0)
in the following.

First, noting that h̄(u)→ 0 and h(u)→ 0 as u→ 0, we achieve w(t)→ 0 as u→ 0, where t ∈ [0,T ].
When t ∈ [0, T̄ ), (1.5) gives

dw
w

=

( aw
w + c

e−bu − µ
)

dt, (2.15)

and then integrating (2.15) from 0 to T̄ , we obtain

h̄(u) = ue
∫ T̄

0 ( aw
w+c e−bw−µ)dt.
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Thus, we get

h̄′(0) = lim
u→0

h̄(u)
u

= lim
u→0

e
∫ T̄

0 ( aw
w+c e−bw−µ)dt = e−µT̄ . (2.16)

Furthermore, when t ∈ [T̄ ,T ), (1.6) yields

dw
w

= (ae−bw − µ)dt, (2.17)

and then integrating (2.17) from T̄ to T , we have

h(u) = h̄(u)e
∫ T

T̄ (ae−bw−µ)dt,

which yields

lim
u→0

h(u)
h̄(u)

= lim
u→0

e
∫ T

T̄ (ae−bw−µ)dt = e(a−µ)(T−T̄ ). (2.18)

Then, (2.16) and (2.18) imply

h′(0) = lim
u→0

h(u)
u

= lim
u→0

(
h(u)
h̄(u)

·
h̄(u)

u

)
= lim

u→0

h(u)
h̄(u)

· lim
u→0

h̄(u)
u

= e(a−µ)(T− a
a−µ T̄ ). (2.19)

We then define the release period threshold T ∗ and the other release amount threshold c∗∗ as follows:

T ∗ =
a

a − µ
T̄ , c∗∗ =

a − µ
bµ

. (2.20)

Thus, we arrive at
h′(0) = e(a−µ)(T−T ∗). (2.21)

Moreover, simple calculations give c∗∗ > c∗. In fact, from (2.3), we have

F(w+, c∗∗) =
a
2

(
bc∗∗ + 2 −

√
b2(c∗∗)2 + 4bc∗∗

)
e

bc∗∗−
√

b2(c∗∗)2+4bc∗∗
2 − µ

<
a
2

a − µ
µ

+ 2 −

√
(a − µ)2

µ2 +
4(a − µ)

µ

 − µ
=

1
2

 (a − µ)(a + 2µ)
µ

− a

√
(a − µ)2

µ2 +
4(a − µ)

µ

 .
Note that (

(a − µ)(a + 2µ)
µ

)2

−

a
√

(a − µ)2

µ2 +
4(a − µ)

µ


2

= −4µ(a − µ) < 0,

and we obtain F(w+, c∗∗) < 0. As F(w+, c) is decreasing with respect to c and F(w+, c∗) = 0, we derive
c∗∗ > c∗.

On the basis of the above, we have been primed to share our main results below.
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3. Model dynamics

According to (2.21), the condition T > T ∗ guarantees h′(0) > 1, which, together with (2.14), implies
that (1.5) and (1.6) have at least one periodic solution. In fact, (1.5) and (1.6) have a unique globally
asymptotically stable periodic solution provided T > T ∗, that is, the following theorem.

Theorem 3.1. Assume T > T ∗. Then, (1.5) and (1.6) have a unique periodic solution, which is globally
asymptotically stable.

Proof. By (2.21), T > T ∗ signals that there exists δ > 0 sufficiently small such that

h(u) > u, u ∈ (0, δ).

The above inequality, together with (2.14), implies the existence of periodic solutions of (1.5)
and (1.6).

We now turn to prove the uniqueness of periodic solutions. For convenience, we divide the proof
into two cases, c ≥ c∗∗ and c∗ < c < c∗∗.

We first consider the case c ≥ c∗∗. Assume by contradiction that the model has at least two periodic
solutions. Then, there must exist ū > 0 such that

h(ū) = ū, and h′(ū) ≥ 1. (3.1)

Inserting h(u) = u into (2.13), we have

h′(u)|u=h(u) =
Γ(u)

Γ(h̄(u))
. (3.2)

Since h̄(u) < u, to reveal the relation between h′(u) and 1 with u satisfying h(u) = u, we need to check
the monotonicity of Γ(u).

Taking the derivative of Γ(u), we have

Γ′(u) =
abcµe−bu

(
c − ae−bu−µ−bµu

bµ

)
[
u
(
ae−bu − µ

)
− µc

]2 .

Note that the function (ae−bu − µ − bµu)
/
(bµ) is strictly decreasing with respect to u when u ∈ (0,A),

and its maximum is less than (a − µ)/(bµ) (= c∗∗), which indicates Γ′(u) > 0 when c ≥ c∗∗, that is,
Γ(u) is strictly increasing in this case. This, combined with the facts h̄(u) < u and Γ(u) < 0, gives
0 < h′(u) < 1, a contradiction to (3.1).

Subsequently, we analyze the case c∗ < c < c∗∗. Assume by contradiction that (1.5) and (1.6)
possess at least two periodic solutions, and then there exist v1, v2 contained in (0,A) with v1 < v2, such
that

h(vi) = vi, h′(vi) ≤ 1.

Furthermore, revisit the expression for Γ′(u), and we know that there is u∗ = u∗(c) ∈ (0,A) such that

Γ′(u) < 0, u ∈ (0, u∗); Γ′(u∗) = 0; Γ′(u) > 0, u ∈ (u∗,A), (3.3)
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which means that Γ(u) is strictly decreasing in (0, u∗) and strictly increasing in (u∗,A). Then, the facts
Γ(u) < 0 and h̄(u) < u, coupled with (3.2) and (3.3), imply that there is û ∈ (u∗,A) such that

h′(u) > 1, u ∈ (0, û); h′(û) = 1; h′(u) < 1, u ∈ (û,A). (3.4)

Obviously, the critical conclusion (3.4) excludes the possibility that h(u) has three or more fixed points.
Next, we focus on obviating the situation that h(u) has exactly two fixed points. To this end, we need
to consider the following two cases:

(a) h′(v1) ≤ 1, h′(v2) = 1; (b) h′(v1) = 1, h′(v2) ≤ 1. (3.5)

See Figure 2 for illustration.

Figure 2. Schematic diagrams to exclude (3.1) and (3.5) and hence to prove the uniqueness
of periodic solutions of (1.5) and (1.6). Here, the red dotted curve in panel (B) represents
Hk(u), which is a small perturbation of H(u).

Moreover, (3.4) can also show that case (a) of (3.5) is not true, and we thus only need to exclude
case (b) to finish the proof of the uniqueness of periodic solutions of (1.5) and (1.6).

Now, we turn to a perturbation method for obtaining a contradiction. Define Hk(u) = h(u) − ku.
Let k − 1 > 0 be sufficiently small such that Hk(u) = 0 has exactly three roots, denoted by v̄1, v̄2, v̄3,
satisfying v̄1 < v̄3 < v̄2. Then, we have

h′(v̄1) ≤ k, h′(v̄3) ≥ k, h′(v̄2) ≤ k. (3.6)

Substituting h(u) = ku into (2.9), we get

h′(u)|u= h(u)/k = k ·
ae−bku − µ

ae−bu − µ
·

Γ(u)
Γ(h̄(u))

, (3.7)

and (3.6) becomes

Γ(v̄1)
Γ(h̄(v̄1))

≤
ae−bv̄1 − µ

ae−bkv̄1 − µ
,

Γ(v̄3)
Γ(h̄(v̄3))

≥
ae−bv̄3 − µ

ae−bkv̄3 − µ
,

Γ(v̄2)
Γ(h̄(v̄2))

≤
ae−bv̄2 − µ

ae−bkv̄2 − µ
,

which, together with the facts h̄(v̄1) < v̄1, h̄(v̄3) < v̄3, and (3.4), gives v̄3 ≤ û ≤ v̄1. This contradicts the
fact v̄3 > v̄1 and completes the proof of the uniqueness of periodic solutions of (1.5) and (1.6).
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Denote the unique periodic solution of the model by w̄(t), and assume that its initial value is ū0 ∈

(0,A). From the above analyses, we can deduce that

(u − ū0)(h(u) − u) < 0, u , ū0. (3.8)

Then by [31], we know that w̄(t) is stable. Moreover, (3.8) and Lemma 2.2 imply that the basin of
attraction of w̄(t) is {u|u > 0, u , ū0}, which means that w̄(t) is globally attractive, and the proof is
finished. �

Theorem 3.1 signals the potential relation between the stability of the origin and the exact number
of periodic solutions of (1.5) and (1.6): The instability of the origin is sufficient to ensure the existence
of periodic solutions. However, if the origin is stable, then the analyses on the exact number of periodic
solutions become rather complicated, and we may also need to restrict the release amount c to seek the
exact number of periodic solutions, which is reflected in the following theorem.

Theorem 3.2. Assume that T < T ∗. Then, (1.5) and (1.6) have at most two periodic solutions, and the
origin is asymptotically stable. Moreover, the following two conclusions hold.

(i) If c ≥ c∗∗, then the model has no periodic solutions, and the origin is globally asymptotically
stable.

(ii) If c∗ < c < c∗∗, and the model admits one or two periodic solutions, then there exist two positive
numbers δ̃ and ũ, with δ̃ sufficiently small and ũ ∈ (0,A), such that at least one initial value of the
periodic solution(s) is located in the interval (̃δ, ũ).

Proof. Since T < T ∗, from (2.21), we have h′(0) < 1, which shows that there exists δ̃ > 0 sufficiently
small such that

h(u) < u, u ∈ (0, δ̃). (3.9)

This implies the asymptotic stability of the origin.
(i) By utilizing a similar method to that of Theorem 3.1, we can also derive 0 < h′(u)|u=h(u) < 1 in

this situation.
Assume by contradiction that the model has a periodic solution with initial value u ∈ (0,A).

Thus, combining (3.9) and the fact h(A) < A, we can also obtain h′(u) ≥ 1, a contradiction to
0 < h′(u)|u=h(u) < 1, which finishes the proof of the nonexistence of periodic solutions for the model.

Since the model has no periodic solutions when u ∈ (0,A), we get

h(u) < u, u ∈ (0,A),

which gives, together with (2.5),
h(u) < u, ∀u > 0.

This illustrates the global asymptotic stability of the origin and completes the proof of case (i).
(ii) Suppose by contradiction that the model has at least three periodic solutions. We first analyze

the case that the model has exactly three periodic solutions and denote their initial values by u1, u2 and
u3. Then, inevitably, we need to discuss the following four cases:

(1) h′(u1) ≥ 1, h′(u2) ≤ 1, h′(u3) = 1;
(2) h′(u1) = 1, h′(u2) ≥ 1, h′(u3) ≤ 1;
(3) h′(u1) = 1, h′(u2) = 1, h′(u3) = 1;
(4) h′(u1) ≥ 1, h′(u2) = 1, h′(u3) ≤ 1.

(3.10)
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See Figure 3 for illustration.

Figure 3. Schematic diagrams to exclude (3.10), in which the red dashed curve in panel (D)
represents Hk(u), which is a small perturbation of the blue solid curve H(u).

Similar to the proof of Theorem 3.1 for the case when c ∈ (c∗, c∗∗), we can see that (3.4) is also
true in the current situation, which excludes the possibilities of cases (1)–(3). Next, we concentrate on
excluding case (4).

Similarly, let k − 1 > 0 be small enough such that Hk(u) = 0 has exactly four roots, denoted by
ū1, ū21, ū22, ū3, with ū1 < ū21 < ū22 < ū3. Then, at point u satisfying h(u) = ku, we have

h′(ū1) ≥ k, h′(ū21) ≤ k, h′(ū22) ≥ k, h′(ū3) ≤ k.

Since (3.7) is also valid, the above four inequalities can be transformed to

Γ(ū1)
Γ(h̄(ū1))

≥
ae−bū1 − µ

ae−bkū1 − µ
,

Γ(ū21)
Γ(h̄(ū21))

≤
ae−bū21 − µ

ae−bkū21 − µ
,

and
Γ(ū22)

Γ(h̄(ū22))
≥

ae−bū22 − µ

ae−bkū22 − µ
,

Γ(ū3)
Γ(h̄(ū3))

≤
ae−bū3 − µ

ae−bkū3 − µ
,

respectively. Then, the facts h̄(ū21) < ū21, h̄(ū22) < ū22 and (3.4) imply ū22 ≤ û ≤ ū21, which contradicts
the fact ū22 > ū21.

Obviously, (3.4) can also exclude the possibilities of the existence of four or more periodic solutions
for the model. Thus, the model admits at most two periodic solutions in this case.

Next, we prove that there exists a positive number ũ ∈ (̃δ,A), such that at least one initial value of
the potential periodic solutions is located in (̃δ, ũ).

To this end, we need to investigate the monotonicities of Ω1(u) and Ω2(u), which are defined
in (2.10). We first analyze the monotonicity of Ω1(u). Since Ω′1(u) = ae−bu(1 − bu) − µ, we get

Ω′1(0) = a − µ > 0, Ω′1(A) = −abAe−bA < 0 (3.11)
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and Ω′′1 (u) = abe−bu(bu − 2). Thus, Ω′′1 (u) has a unique zero ŭ = 2/b > 0, and then we consider the
following two cases to compare ŭ and A and judge the sign of Ω′′1 (u).

Case 1: µ < a ≤ µe2. In this case, ŭ ≥ A, so Ω′′1 (u) < 0 holds for all u ∈ (0,A), which means that
Ω′1(u) is decreasing in (0,A). Hence, there is ũ1 ∈ (0,A), such that Ω′1(̃u1) = 0 and

Ω′1(u) > 0, u ∈ (0, ũ1); Ω′1(u) < 0, u ∈ (̃u1,A).

Case 2: a > µe2. We have 0 < ŭ < A in this case. Then,

Ω′′1 (u) < 0, u ∈ (0, ŭ); Ω′′1 (u) > 0, u ∈ (ŭ,A),

or, equivalently, Ω′1(u) is decreasing in (0, ŭ) and increasing in (ŭ,A). Then

Ω′1(u)min = Ω′1(ŭ) = −ae−2 − µ < 0,

where Ω′1(u)min denotes the minimum of Ω′1(u). Thus, there exists ũ2 ∈ (0,A), such that Ω′1(̃u2) = 0 and

Ω′1(u) > 0, u ∈ (0, ũ2); Ω′1(u) < 0, u ∈ (̃u2,A).

Based on the above analyses, we know that Ω′1(u) has a unique zero, that is, we have ũ1 = ũ2. We
denote the unique zero by ũ. Then, we obtain

Ω′1(u) > 0, u ∈ (0, ũ); Ω′1(u) < 0, u ∈ (̃u,A). (3.12)

In the following, we discuss the monotonicity of Ω2(u). Since

Ω′2(u) =
aue−bu

(
−bu2 + (1 − bc)u + 2c

)
− µu2 − 2cµu − µc2

(u + c)2

=
u(u + c)Ω′1(u) + c

(
(ae−bu − µ)u − µc

)
(u + c)2

=
u2Ω′1(u) + cΩ2(u)

u(u + c)
,

the fact Ω2(u) < 0 and (3.12) yield that Ω′2(u) < 0 holds when u ∈ (̃u,A). This, together with (2.11)
and (3.9), provides h′(u) < 1 when u ∈ (0, δ̃) ∪ (̃u,A). Consequently, if the model admits a unique
periodic solution, then its initial value must be contained in (̃δ, ũ). Otherwise, if the model admits
exactly two periodic solutions, then the smaller initial value must be limited in (̃δ, ũ). This completes
the proof. �

Theorem 3.2 signals that when the release becomes more frequent such that T < T ∗, the origin is
always asymptotically stable, which biologically means that the local wild mosquito population can
always be wiped out eventually, provided we employ the integrated mosquito management strategy to
control the wild mosquitoes such that their density is being maintained within the basin of attraction of
the origin. Furthermore, under this scenario, Theorem 3.2 implies that the model possesses at most two
periodic solutions. Nevertheless, we have not determined the corresponding conditions for the model to
admit zero, a unique or exactly two periodic solutions in the current work. As in [29], we perceive that
there exists another release period threshold, T ∗∗ say, such that the exact number of periodic solutions
is governed by the relation between T and T ∗∗, and we intend to tackle the relevant theoretical analyses
with further research efforts in future works.
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4. Numerical examples

In this section, we offer two numerical examples to support and expand Theorems 3.1 and 3.2. We
first give a numerical example to support Theorem 3.1.

Example 1. Given parameters

a = 2, µ = 0.05, b = 0.507, T̄ = 14. (4.1)

Then, we have A ≈ 7.2759, and

c∗ ≈ 56.1084, c∗∗ ≈ 76.9231, T ∗ ≈ 14.3590.

Fix T = 15 > T ∗ and limit c > c∗, and then the conditions of Theorem 3.1 are satisfied. To numerically
illustrate Theorem 3.1, we first select c = 100 > c∗∗ or c = 70 ∈ (c∗, c∗∗) in panels (A) and (B)
of Figure 4, respectively. Then, we plot the graph of w(t) in panel (A) and find that (1.5) and (1.6)
admit a unique periodic solution, which is globally asymptotically stable. In panel (B), from a different
viewpoint, we draw the image of H(u) when u ∈ (0, 8) ⊃ (0,A), where the vertical blue dotted line
represents u = A. From panel (B), we observe that H(u) = 0 has a unique positive root in (0,A), which
corresponds to the initial value of the unique periodic solution in panel (A).

0 50 100 150
0

2

4

6

8

Figure 4. Assume that the parameters are set the same as in (4.1). Then, we achieve the
above two graphs, in which the left one depicts the number of wild mosquitoes w(t) evolving
with the time t, and the right one displays the changing trends of H(u). These visualized
graphs agree with the conclusions of Theorem 3.1.

Then, we provide a numerical example to expand and extend Theorem 3.2.

Example 2. Suppose the parameters are given the same as that of (4.1) and fix T = 14.2 < T ∗.
If we choose c = 100 > c∗∗, then the conditions for Theorem 3.2 (i) are satisfied, and the origin
E0 is thus globally asymptotically stable as shown in panel (A) of Figure 5. Moreover, if we select
c = 70 ∈ (c∗, c∗∗), then the conditions for Theorem 3.2 (ii) are satisfied. To numerically explore the
exact number of periodic solutions in this situation, we plot the image of H(u) in panel (B) of Figure 5,
where the two vertical dotted lines in black and blue represent u = ũ and u = A, respectively. This
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image implies that (1.5) and (1.6) have no periodic solutions in this case, which is consistent with the
theoretical results of Theorem 3.2 (ii).

0 50 100
0

20

40

60

80

Figure 5. Let the parameters be specified the same as in (4.1), we develop the above two
numerical trials in panels (A) and (B), which aim at exploring the stability of E0 and the exact
number of periodic solutions of (1.5) and (1.6), where T = 14.2 < T ∗, and c = 100 > c∗∗ or
c = 70 ∈ (c∗, c∗∗), respectively. Panel (A) shows that E0 is globally asymptotically stable and
panel (B) shows that H′(u) < 0 holds when u ∈ (0, δ̃) ∪ (̃u,A), which supports Theorem 3.2.

5. Discussion and conclusions

Nowadays, dengue is endemic in many countries, such as Pakistan [32] and Nepal [33]. From
January to 28 September 2022, a total of 25, 932 confirmed cases and 62 deaths (CFR 0.25%) and
28, 109 detected and suspected cases and 38 identified deaths (overall CFR 0.13%) were recorded
in Pakistan and Nepal, respectively. Since there are no specific treatments, and the vaccine lacks
reliability due to the antibody-dependent enhancement effect [34], the methods for the prevention and
control of dengue mainly focus on suppressing or eliminating wild Aedes mosquitoes: the primary
vectors of the disease. There are various strategies for reducing the density of wild Aedes mosquitoes,
including larval source reduction, the use of curtains and water container covers treated with insecticide
and indoor residual spraying [35], to name a few. Nevertheless, disturbingly, the geographic range
of dengue is expanding, and the severity of its outbreaks is increasing. There is an urgent need for
appropriate alternatives to the prevention and control of dengue [22].

The incompatible insect technique (IIT) is a suitable and promising weapon for controlling the
density of wild mosquitoes, and it relies on the massive production and sufficient releases of W-males
to induce a considerable high sterility in the wild females, which causes the density of the target
population to decline [19, 36]. To guarantee the success of IIT at a relatively acceptable cost, the
release strategy, which in general is prior to the actual releases, needs to be carefully designed, and
there are numerous studies dedicated to revealing the relation between the release strategy and the
suppression effect [37–43].

Clearly, the survival probability of wild mosquitoes in the aquatic stage could also have a non-
negligible impact on the suppression effect [28, 44, 45]. In order to assess the impact of the survival
probability on the suppression dynamics, we developed a time-switched wild mosquito population
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suppression model with Ricker-type survival probability in this work, that is, (1.5) and (1.6). It is
worth mentioning that the Ricker-type survival probability is commonly adopted in discrete models,
for it shares the advantages such as nonnegativity and high accuracy. However, this type of survival
probability is rarely applied in continuous models, especially in ordinary differential equation or
equations models, since, inevitably, a transcendental equation must be analytically solved for obtaining
equilibria of the concerned model in this case. To the best of our knowledge, it is the first time that the
Ricker-type survival probability is incorporated into an ordinary differential equations model, and the
resulting dynamics are very rich and rather complicated.

As we all know, thresholds, which can be identified via mathematical manners, play a crucial role
in mathematical biology. In this work, we found three release thresholds, i.e., two amount thresholds
c∗ and c∗∗ satisfying c∗∗ > c∗ and a period threshold T ∗. Comparing the associated thresholds defined
in (2.20) with that of [28], we observed that the two release period thresholds coincide with each other.
This is not surprising at all, since the two models share the following unified form:

dw
w

= Ł(w)dt,

where

Ł(w) =


Ł1(w) =

aw

w + g
e−bw − µ, in the current work,

Ł2(w) =
aw

w + g
(1 − ξw) − µ, in [28].

Simple calculations, together with the fact w → 0 as u → 0, give h′(0) = e(a−µ)
(
T− a

a−µ T̄
)
, which implies

that the release period threshold T ∗ equals a
a−µ T̄ , regardless of whether the form of Ł is Ł1 or Ł2.

However, the release amount thresholds specified in (2.20) and [28] are generally different: Their
ratio is equal to ξ/b . According to [45, 46], there exists some habitat of wild mosquitoes in which
the parameter b is larger than the parameter ξ, so, to ensure the global asymptotic stability of the
origin, the smallest amount of W-males needed from (1.5) and (1.6) is less than that of [28]. In other
words, to eradicate the wild mosquitoes, the model which employs a Ricker-type survival probability
yields a relatively lower cost than that of [28] in some settings. Hence, the results could stimulate
the development of more efficient and cost-effective strategies for controlling mosquito-borne diseases
including dengue fever.

In biology, the fluctuation alteration of two types of species in the system under consideration,
which mathematically can be reflected by a specific periodic solution [47], is a common phenomenon,
and it is vital to the evolution of the two species as well as the persistent stability of the relevant
system [48]. Thus, for (1.5) and (1.6), it is valuable to investigate the number of periodic solutions
and their corresponding stabilities. However, mathematically, it is very challenging to tackle these
topics. To overcome these difficulties, in this study, via defining a Poincaré map h(u) and performing
rigorous dynamical analyses, we found that the initial value of a specific periodic solution is exactly
the fixed point of h(u), and the stability of the periodic solution is determined by the relation between
h′(u)|u=h(u) and 1. Then, by seeking the fixed points of h(u) and computing h′(u)|u=h(u), we observed that
h′(u)|u=h(u) could be expressed with two functions whose signs are opposite. Moreover, the analyses on
the monotonicities of the two functions generate our main results: Theorems 3.1 and 3.2.
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Yet, for the dynamical analyses of models with Ricker-type survival probability, we still have a long
way to go. In particular, when the release parameter combination (T, c) lies in the set {(T, c)|T̄ < T <

T ∗, c∗ < c < c∗∗} and the initial value u ∈ [̃δ, ũ], the theoretical proof for the nonexistence of periodic
solutions has not been explored. In addition, the model dynamics under the critical case T = T ∗ also
have not been evaluated since it is difficult to get the explicit expression for h(u). Finally, we have not
touched the investigation of the model dynamics for the case when 0 < c < c∗. Nevertheless, we will
try our best to tackle these topics in our future efforts.
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10. N. Becker, D. Petrić, M. Zgomba, C. Boase, M. Madon, C. Dahl, et al., Mosquitoes and their
control, Spring-Verlag Berlin Heidelberg, 2010. https://dx.doi.org/10.1007/978-3-540-92874-4

11. J. Li, B. Song, X. Wang, An extended discrete Ricker population model with Allee effects, J. Differ.
Equ. Appl., 13 (2007), 309–321. https://dx.doi.org/10.1080/10236190601079191

12. T. C. Iles, A review of stock-recruitment relationships with reference to flatfish populations, Neth.
J. Sea Res., 32 (1994), 399–420. https://dx.doi.org/10.1016/0077-7579(94)90017-5

13. M. Hartmann, G. Hosack, R. Hillary, J. Vanhatalo, Gaussian process framework for temporal
dependence and discrepancy functions in Ricker-type population growth models, Ann. Appl. Stat.,
11 (2017), 1375–1402. https://dx.doi.org/10.1214/17-AOAS1029

14. G. Marinoschi, A. Martiradonna, Fish populations dynamics with nonlinear stock-
recruitment renewal conditions, Appl. Math. Comput., 277 (2016), 101–110.
https://dx.doi.org/10.1016/j.amc.2015.12.041

15. W. H. So, J. S. Yu, Global attractivity and uniform persistence in Nicholson’s blowflies, Differ.
Equ. Dyn. Syst., 2 (1994), 11–18.
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