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Abstract: With the proliferation of data and machine learning techniques, there is a growing need
to develop methods that enable collaborative training and prediction of sensitive data while preserving
privacy. This paper proposes a new protocol for privacy-preserving Naive Bayes classification using
secure two-party computation (STPC). The key idea is to split the training data between two non-
colluding servers using STPC to train the model without leaking information. The servers secretly
share their data and the intermediate computations using cryptographic techniques like Beaver’s
multiplication triples and Yao’s garbled circuits. We implement and evaluate our protocols on the
MNIST dataset, demonstrating that they achieve the same accuracy as plaintext computation with
reasonable overhead. A formal security analysis in the semi-honest model shows that the scheme
protects the privacy of the training data. Our work advances privacy-preserving machine learning
by enabling secure outsourced Naive Bayes classification with applications such as fraud detection,
medical diagnosis, and predictive analytics on confidential data from multiple entities. The modular
design allows embedding different secure matrix multiplication techniques, making the framework
adaptable. This line of research paves the way for practical and secure data mining in a distributed
manner, upholding stringent privacy regulations.
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1. Introduction

With the development of information technology, research and machine learning (ML) is becoming
more popular. This situation is derived from increasing data, computing resources, and devices
becoming available to collect and process data. In many practical ML applications, the data consumed
during ML model training and inference is often personal. Guaranteeing user data security has become
an important issue based on the development and expansion of ML applications, resulting in laws
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protecting user privacy.
The construction of a Bayes classification model, similar to other traditional ML methods, mandates

that the learning algorithm can access all training attributes and tuples. However, the growing need for
distributed and heterogeneous storage and computing systems poses challenges such as non-trivial data
movement and transformations, which are obstacles to the practical application of conventional ML
algorithms. In addition, due to economic incentives or privacy legislation, multiple parties might not
consent to or have the ability to share their data. As such, they are creating a requirement for privacy-
preserving ML techniques to address this urgent issue adequately. This paper explores the current
techniques used for constructing Bayes classification models in a heavily distributed environment while
preserving privacy.

The technique under consideration finds significant importance in machine learning applications
deployed in security-sensitive industries, such as the financial sector and electronic surveillance. To
illustrate, the financial sector may witness a situation where two institutions aspire to collectively mine
customer data. However, they are obligated by customer agreements and confidentiality regulations,
which precludes them from directly sharing their data. Similarly, in electronic surveillance, Internet
Service Providers hesitant to disclose any information regarding their customer base may seek the aid
of consulting firms specializing in traffic analysis on their logs.

Cryptographic protocols that allow computations on encrypted data are an increasingly important
mechanism to enable data science applications while complying with privacy regulations. In this
study, we contribute to the field of privacy-preserving machine learning (PPML), a burgeoning and
interdisciplinary research area at the intersection of cryptography and ML that has gained significant
traction in tackling privacy issues. Predictive analytics is the process of predicting future events by
using statistical techniques to analyze current data. It is utilized in different areas, such as healthcare,
mobility, financial services, insurance and marketing. Several techniques are available to exploit model
prediction analysis for statistics, data mining, machine learning, and artificial intelligence. Predictive
analysis widely uses classification algorithms in machine learning such as regression classification,
Naive Bayes, support vector machines, and neural networks. These supervised learning approaches
label the training data in advance and then exploit it to generate models that can be used to classify
new instances.

While earlier work has advanced PPML, protocols optimized specifically for secure outsourced
Naive Bayes modeling have yet to be explored. Most prior PPML research focuses on the model
training phase but does not address the data preparation steps like cleaning and preprocessing, which
account for up to 80% of the effort in real-world data science projects. Additionally, many existing
cryptographic protocols for ML are designed generically without optimizations for particular machine
learning algorithms like Naive Bayes. For instance, Kantarcıoglu et al. [1] first proposed protocols
for privacy-preserving Naive Bayes training, but these only work for three or more parties. Vaidya
et al. [2] later used homomorphic encryption, but their method requires retraining for each query. Our
work builds on these efforts by presenting two-party computation protocols tailored specifically to
enable efficient and secure Naive Bayes training and classification.

The accuracy of the models trained with supervised learning highly depends on the training data
size. In general, the larger the training data set, the higher the accuracy of the model. Therefore, a
sound classifier must collect a large amount of training data. However, those behaviours collecting
data on a large scale bring about the risk of privacy information leakage to the data owners. In

AIMS Mathematics Volume 8, Issue 12, 28517–28539.



28519

some practical application scenarios, training and prediction require datasets that often involve large
amounts of sensitive individual information from different sources, such as salaries, medical records,
and positions.

In particular, different financial institutions explore the same client’s financial information for risk
assessment, but cannot leak private information to each other. If two institutions collaboratively intend
to build a risk classification model, the joint training of data may be a fundamental problem for
information security concerns. Therefore, we address the problem of performing classification while
protecting the privacy of the individuals who provide the training data, thus enabling companies and
organizations to achieve their utility targets while helping individuals to protect their privacy.

Some works have shown that STPC already exists to focus on machine learning algorithms for
training regression and neural network models with a dual-server model commonly used in previous
work on PPML [3–6]. Therefore, we solve the problem of computational Bayesian classification based
on two-party security while protecting the privacy of the individuals providing the training data, thereby
enabling companies and organizations to achieve their utility goals while helping individuals protect
their privacy.

Machine learning models often require large diverse datasets to train accurate models. However,
in many real-world scenarios, the training data consists of sensitive information about individuals that
cannot be shared openly. Consider a healthcare scenario where two hospitals want to collaborate to
build a model for predictive diagnosis. While combining their patient data could train a more robust
model, they cannot share raw medical records due to privacy regulations. This gives rise to the crucial
need for privacy-preserving machine learning (PPML) techniques that enable collaborative modeling
while protecting sensitive training data. As shown in Figure 1, we study a distributed setting where the
data is partitioned between two non-colluding servers. The key challenge is to train machine learning
models jointly without exchanging the raw data in plaintext.

Figure 1. The basic framework of our scheme.

Our work focuses on secure two-party computation (STPC) techniques that allow joint
computations on encrypted data. We utilize cryptographic protocols like Yao’s garbled circuits,
oblivious transfer and Beaver’s multiplication triples to achieve secure outsourced modeling.
Specifically, we design efficient STPC protocols optimized for Naive Bayes classification. Naive
Bayes is chosen as it offers a simple yet accurate classifier suitable for textual, medical, and other
data. Our protocols entail secure matrix operations for distributed model training and classification,
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while revealing only the final predicted labels and nothing about the sensitive inputs. The modular
architecture allows different secure matrix multiplication schemes to be plugged in, providing
flexibility. We empirically evaluate the performance on benchmark datasets, demonstrating the efficacy
and minimal overhead of our privacy-preserving Naive Bayes protocols. Overall, this work opens the
door for practical secure outsourced modeling, upholding data privacy in machine learning.

First, we design STPC protocols for privacy-preserving Naive Bayes classification in distributed
machine learning settings, assuming that the data are distributed across different servers.

Second, we reduced the computational effort required to train both sides of a Naive Bayesian
classifier to ensure multi-party matrix summation and two-sided matrix multiplication. This paradigm
differs from previous work in this area because matrix multiplication cannot be easily generalized to
an arbitrary number of multi-party cases for a secure comparison operation in the protocol. Thus, their
training protocols are not applicable to multi-party cases. Our protocol treats the secure two-party
matrix multiplication protocol as a complete “black box”, meaning that any secure matrix product
algorithm can be “embedded” in our paradigm to train models. By reducing the matrix multiplication
of multiple data holders to bilateral matrix multiplication, we exploit this approach to the Naive
Bayesian training process. The proposed method can be applied if the training process involves only
multiplication and comparison.

Third, we empirically study our proposed scheme and experimentally verify that the protocol
achieves precisely the same performance and that the additional computation and communication costs
are linearly related to the size of the dataset.

We propound efficient and optimized secure two-party computation protocols that are specifically
tailored for privacy-preserving Naive Bayes classification. These protocols are dedicatedly designed
to enable Naive Bayes modeling in a secure outsourced environment. In addition, our proposed
protocols reduce the multiparty computation setting to two non-colluding servers. This effectively
extends the applicability of our approach to collaborative modeling scenarios where the training data is
horizontally partitioned across multiple entities that cannot directly share their raw data. Our protocols
espouse a modular architecture that facilitates flexibility in the choice of the underlying secure matrix
multiplication scheme. By abstracting this as a modular component, different techniques from the
literature can be readily plugged into our framework.

2. Related works

Over the past decade, cryptographic protocols designed using secure multi-party computation
(SMC) have been developed to train ML models on aggregated data so that no personal data owners or
businesses are leaked to anyone. The current work includes SMC protocols for training decision tree
models [7–10], linear regression models [3,11–16] and neural network architectures [17–21]. Existing
methods assume the dataset is pre-processed and clean with pre-selected and constructed features.
Model building is only a tiny part of a data science project. Processing of real-world datasets requires
that one must first clean and pre-process the original data, remove outliers, select training features and
process the actual values of the data before modeling. Data scientists are estimated to spend 50% to
80% of their time on data wrangling rather than model training itself. The PPML solution must contain
these data preparation steps to be adopted in practice. It makes little sense to protect the privacy of
clean datasets during model training if the raw data must be leaked first to get those clean datasets.
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Some probability statistics tools include randomization, anonymization, differential privacy, and
data perturbation [2,22,23]. On the one hand, there is a trade-off between the trained model’s accuracy
and its level of privacy [24]. On the other hand, many probabilistic and statistical algorithms are
practical when dealing with large datasets, but must be more accurate for small ones.

Earlier work by Agrawal et al. [7] introduced the notion of privacy-preserving data mining. Since
then, several SMC protocols have been proposed for training models like regression, decision trees
and neural networks. However, these assume pre-processed data, and focus only on model training.
PPML has experienced significant growth in research trends over the past decade. Bost et al. designed
classification protocols for decision trees, Naive Bayes and hyperplane decisions [25]. Their protocol
uses two additive homomorphic encryption schemes that allow only additive operations, whereas the
model training operation is completed using full homomorphic encryption (FHE). Their solution is
to train the classification model on the plaintext and then place the encrypted classifier in a cloud
server. At the prediction phase, the encrypted model is distributed to the client side, which calculates
the classification probability and then interacts with the cloud server to obtain the classification result.
Executing a whole protocol requires the client to interact with the server multiple times to calculate the
classification results. Such an operation leads to high computational overhead for the client.

Wood et al. [26] proposed a comparison method for executing an efficient Naive Bayes
classification [25, 27–29]. This study is still limited because the client implements the classification
operation and often interacts with the cloud server. Sun et al. [30] exploited the FHE technology
and employed it to train the same structure model as in [25, 31]. Their scheme allows the encrypted
classification model to be sent and stored on a cloud server. Following model training, the model
outputs are calculated on the cloud, resulting in client-server interaction. In addition, a Bayesian spam
filter and decision trees that apply an improved FHE scheme were proposed by Khedr et al. [32].
Dowlin et al. [33] designed a classification protocol for neural networks. Aimed to exploit the
properties of FHE effectively, they modified some of the functions used in the neural network, such
as replacing the activation function with a low-order polynomial. It is a valuable notation that the two
studies depicted classification methods, while they do not explain models or protocols of systems in
the real world.

In contrast to the two-party training scheme, Kim et al. [34] proposed a protocol for Naive Bayes
classification with the addition of a third party. In their protocol, the ability of a third party to keep
the key and decrypt all ciphertexts is allowed. A cloud server is required to store the classification
model in the ciphertext and execute computing operations over the ciphertext. Duy-Hien et al. [35,
36] proposed a privacy-preserving Naive Bayes classification solution based on secure multi-party
computation. Therefore, this pattern allows third parties to access the client data and the intermediate
results of the decryption in the model execution classification protocol. The leakage of intermediate
results also contained sensitive information for both parties.

For training and prediction on ciphertext, Li et al. [37] devised a protocol that outsourced
heavy computing operations to cloud servers while protecting classification models, client data, and
classification results. The client has its public and secret key pair (pkc, skc), and the data are encrypted
and outsourced to the cloud server for calculation. Because the data cannot be calculated under different
keys during encryption, the protocol applies a proxy re-encryption method based on Gentry’s [38]
bootstrap technology and re-encrypts the ciphertext under the public key pk0. In their protocol, a third
party that holds sk0 and is responsible for decrypting the ciphertext is used to prevent the cloud from
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decoding the data from the client. Once the client executes the classification protocol, the classification
result is blinded by a random number generated by the cloud service and sent to a third party. This
result is decrypted by a third party, encrypted with pkc, and sent back to the cloud server. The cloud
server exploits pkc to extract a random number from the ciphertext and then sends it to the client. The
client uses skc to decrypt the data and obtain the classification result. Their proposed protocol provides
security for classification models, customer data, and results. However, the bootstrap on which proxy
re-encryption is based is expensive and can create a bottleneck because the cloud must re-encrypt
all client-side data. This proxy re-encryption is unnecessary because clients can encrypt their data
with pk0 from the beginning of the protocol. Furthermore, since their protocol is generic, details of
classification methods using FHE still need to be contained, which is a challenge when applying FHE
to an application.

Focusing on Naive Bayes, Kantarcıoglu et al. [1] tackled the problem using additive secret sharing,
but only for three or more parties. Vaidya et al. [39] later proposed a method using homomorphic
encryption, but retraining per query. Our work builds on these efforts by presenting optimized two-
party computation protocols tailored to Naive Bayes. We leverage efficient techniques like Beaver’s
multiplication triples and Yao’s garbled circuits to enable privacy-preserving training and classification.
The modular design allows the embedding of different secure matrix multiplication schemes. These
cryptographic primitives contain STPC, somewhat homomorphic encryption (limited numbers of
mathematical or Boolean operations on ciphertexts), oblivious transfer (OT), and secret sharing. These
techniques are used to explore Yao’s circuits [40], Elgamal’s [41] public crypto-system supports
additive homomorphic encryption, and Pailler’s [42] crypto-system as well as additive homomorphic
encryption and supports a multiplication by a constant, the Goldwasser-Micali scheme [43] which
enables secure two XOR operations between encrypted bits. The SMC given in [44, 45] generalizes
the 2PC to more than two parties. However, SMC suffers from computation and communication costs,
making it impractical for many real-case scenarios [25].

While providing efficient privacy-preserving training and classification for all of the above ML
algorithms in subsequent research articles, in this article, we focus only on scenarios that specifically
deal with privacy-preserving training and classification of Naive Bayesian classification models.
Therefore, we consider only horizontally partitioned data and schemes that utilize cryptographic tools.
The Naive Bayes model is simple and can provide reliable and accurate results in the fields of health,
spam detection, and document classification. It is one of the most commonly used classification
algorithms [46–49].

Kantarcıoglu et al. first proposed and tackled the privacy-preserving (PP) NB training problem [1].
Similar to most earlier schemes, it only classifies the data and does not consider the privacy of the data.
Their protocol was exploited to calculate secure integer sums and count the class and joint class values
frequency for the dataset owners. The first owner chooses a random number to add to its private integer
input and sends it to the following user. Each user then takes turns adding his/her private integer and
sending it to the following user. Until the first owner obtains the final random sum, subtract the random
value he initially added and broadcast the result to other users.

However, this protocol has two areas for improvement. One is vulnerable to interception by
adversaries, leading to eavesdropping attacks. The other is that two adjacent users may collude and
then obtain a secure integer by subtracting the sum they send or receive, which is subject to a collision
attack. At the same time, their paper proposes a method that replaces each private integer with shares
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and then utilizes different algorithms to execute the secure sum protocol, which avoids both of the
above attacks. However, neither addressed the trained model’s privacy and worked with only three or
more dataset owners.

According to a study [39], the model can be trained with a secure ln x algorithm, but this leads to a
sharp increase in communication costs. To reduce communication, an adaptation of the additively
homomorphic ElGamal scheme was adopted in this study [22]. These drawbacks were partially
eliminated in [50] using a version of the additive homomorphic ElGamal scheme, where owners
encrypt and send their data to be aggregated by a central server, removing the communication overhead
of the decentralized environments of the previous ones. However, the trained model was still exposed
after it was processed. In order to secure the final trained model, Yi et al. [47] employed the Paillier
encryption, the secure ln x algorithm of [22], and two non-colliding servers. However, this method
retrains the model for each query, which is a slow process. While earlier work has advanced PPML,
protocols optimized specifically for secure outsourced Naive Bayes modeling have yet to be explored.
Our paper aims to fill this gap and enable practical privacy-preserving Naive Bayes implementations.

3. Preliminaries

This section defines some notations and reviews cryptographic schemes used in our architecture. We
describe secret sharing, multiplication triple generation, secure bit extraction, secure bit decomposition
and Naive Bayes classification in the following sections.

3.1. Secret sharing

We denote by y← F(x) the act of running the probabilistic algorithm F with input x and obtaining
the output y. y ← F(x) is similarly used for deterministic algorithms. We choose the logarithm of
base 2. For a bit b, −b represents its negation.

Secret sharing is a cryptographic semantics that splits a secret m into n different shares, which can
only be reconstructed as the original secret when sufficient t numbers agree. Secret sharing is generally
exploited as a fundamental protocol for building an SMC protocol for more than two parties. In this
work, additive secret sharings are used to perform computation modulo q. A value x is secretly shared
over by picking {x1, x2, . . . , xn} uniformly at random subject to the constraint that x =

∑n
i=1 xi mod q

and then distributing each share xi to S i. Let [[x]]q denote this secret sharing.
Given [[x]]q, [[y]]q and a constant c, it is trivial for the parties to compute a secret sharing [[z]]q

corresponding to z = x + y, z = x − y, z = cx or z = x + c. All of these operations are performed
locally by the parties without any interaction by simply adding, subtracting, or multiplying the shares
respectively for the first three cases and by having a pre-agreed party add the constant in the last case.
These operations will be denoted respectively by

[[z]]q = [[x]]q + [[y]]q, [[z]]q = [[x]]q − [[y]]q, [[z]]q = c[[x]]q

or
[[z]]q = [[x]]q + c.

For a secret sharing [[x]]q, the parties can open the value x by revealing their shares xi.
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Similar to how [[X]]q denotes element-wise secret sharing of a matrix, it also denotes operations for
a matrix X. We use [[x]]q ← x to signify the scenario in which S i computes with the share x and the
remaining parties with shares equal to zero in order to unify the handling of the protocols with the case
in which one input x is kept by a single server S i.

We should note that although the applications in this work are between two parties, several protocols
are defined in a more general form, operating with n parties, for the sake of generality.

3.2. Secure distributed matrix multiplication triple protocol

Secure multiplication on two values of secret sharing, in contrast to the secure addition operation,
cannot be locally computed since it requires interaction between parties S 0 and S 1. Although doing
multiplication in secret shares might be challenging, there is an effective and quick method based on
triple multiplication.

We now exploit Beaver’s [51] protocol for secure multiplication of secret sharing based on matrices.
The multiplication triple technique calculates the product of [[x]]q and [[y]]q using a multiplication triple
([[u]]q, [[v]]q, [[w]]q) so that w = uv mod zq with the intention of disclosing no information to each other.
Party S i secretly shares [[a]]i, [[b]]i, i ∈ {0, 1} locally. Two parties execute Algorithm 1 to acquire the
product z = x · y.

Algorithm 1 Secure multiplication reconstruction.
Input: Party S 0 shares secret [[a]]0 and [[b]]0, party S 1 shares secret [[a]]1 and [[b]]1.
Output: Both of S 0 and S 1 recover the product between [[x]] and [[y]].
1: S 0 computes

[[a]]0 = [[x]]0 − [[u]]0, [[b]]0 = [[y]]0 − [[v]]0

and sends it to S 1.
2: S 1 also computes

[[a]]1 = [[x]]1 − [[u]]1, [[b]]1 = [[y]]1 − [[v]]1

and feedback to S 0.
3: S 0 receives secret shares [[a]]1, [[b]]1 and computes a = [[a]]0 + [[a]]1, b = [[b]]0 + [[b]]1, then lets

[[z]]0 = a · [[x]]0 + b · [[x]]0 + [[w]]0.

4: S 1 calculates
[[z]]1 = a · [[x]]1 + b · [[x]]1 + [[w]]1 − a · b

that is obtained by using the same method for a, b after receiving [[a]]0, [[b]]0.
5: S 0 and S 1 interact [[z]]0, [[z]]1 and reconstruct production z = [[z]]0 + [[z]]1.

Here, the basic multiplication idea is available to extend to distributed matrix multiplication. We
explore the matrix multiplication protocol of secret-shared values in [52]. As shown in [52], the matrix
multiplication protocol UC-realizes the distributed matrix multiplication functionality in the trusted
initializer (TI) model. Two parties own shares of matrices [[X]] and [[Y]], respectively, for matrices
X ∈ Zl×m

q and Y ∈ Zm×n
q . The shares of X ·Y are computed through a random matrix multiplication triple

([[U]]q, [[V]]q, [[W]]q) prepared between the parties in the offline phase, for uniform random U ∈ Zl×m
q

and V ∈ Zm×n
q such that W = UV , for W ∈ Zl×n

q . Additionally, the parties remove the randomness
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of matrix multiplication triple relied on protocol for the sake of computing a secret sharing [[Z]]q.
Regarding the privacy of the input values X and Y or the product Z, the secret sharing [[Z]]q does not
reveal any information about them.

It is easy to verify the correctness of the above matrix multiplication algorithm. Notation

Z = XY = (U + D)(V + E) = UV + DE + UE + DV = W + DE + UE + DV

and then let

[[Z]]q ← [[W]]q + E[[U]]q + D[[V]]q + DE

contain a secret sharing corresponding to Z = XY . Under the limitation Z = XY , it is trivial that the
results sharing are uniformly random because of the features of multiplication triples.

3.3. Fixed-point arithmetic

Requiring calculate on encrypted decimal integers are one of the critically inefficient SMC
operations in reality. This problem uses a limited collection with uniform randomness to assure the
security of additive secret sharing. A range of potential values is used to depict continuous decimal
numbers. Article [3] offers a model and effective response and maps decimal numbers into an integer
field. Consider the following equation.

Our protocol works by having Alice and Bob share a bitwise secret sharing for each interaction
value to be compared against its threshold. Note that by adding 1 to the total result and adding all the
results, Alice gets the classification k∗ result because Alice does not learn any informations.

The SMC protocols must have some verification procedures in order to provide security against
stronger than passive attackers. Now let us think about the alternate conversion direction. The verifiers
seek to transform their shared bits, [x0, · · · , xn−1], into an additive share y. Then, the prover would need
to provide them with one more hint. The prover will provide the verifiers a suggestion of y that it has
committed. Using the supplied y, the verifiers continue their verification. The O(n2) complexity issue
with trusted bit creation is quite similar to the algorithm protocol. By exploiting the structure of the
algorithm, we are able to increase the complexity of preprocessing. Using a linear combination of n
bits shared over Z2n to compute additively shared values is preferable to this approach.

Q(x) =

{
2λ − d2a · |x|e, if x < 0.
d2a · |x|e, if x ≥ 0.

(3.1)

3.4. Secure bit extraction

To perform a secure conversion from a secret sharing in Z2 to a secret sharing in Zq, we use the
secure conversion protocol 3 presented by Reich et al. [53]. Alice and Bob have as input a secret sharing
[[x]]2 and without learning any information about x, they must get a secret sharing [[x]]q. Algorithm 2
works as follows:
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Algorithm 2 Secure bit extraction.
Input: Alice inputs [[x]]2, let xA ∈ {0, 1} and xB ∈ {0, 1} denotes Bob’s input share.
Output: Alice and Bob obtain secret sharing [[z]]q.
1: Define [[xA]]q as the shares (xA, 0) and [[xB]]q as the shares (0, xB).
2: Alice and Bob compute

[[yA]]q ← [[xA]]q[[xB]]q.

3: They output
[[z]]q ← [[xA]]q + [[xB]]q − 2[[yA]]q.

Algorithm 2 requires 1 round of communication and a total of 2λ bits of data transfer, where λ is
the bit length of q. For batched inputs {x1, . . . , xk}, the number of communication rounds remains the
same and the data transfer is scaled by k.

3.5. Secure argmax

Suppose that the parties P1, P2, . . . , Pn have bitwise shares of a tuple of values (x1, x2, . . . , xk) and
want one of them, say P1, to learn all the arguments c ∈ {1, 2, . . . , k} such that xm ≥ xi for all i ∈
{1, 2, . . . , k}, but no party should learn any v j or the relative order between the elements. For instance,
the parties just want P1 to learn

c = arg max
i∈{1,2,...,k}

xi. (3.2)

Using the protocol for secure distributed comparison, its possible to give simple and practical
solutions for curly computing this function. An idea, which optimizes the number of communication
rounds, is having the parties compare in parallel each ordered pair of vectors and then using the
result of the comparisons to determine the arg max. Note that, when considering all executions of
the comparison protocol involving a specific value v j as the first argument, they will all return one if
and only if the value is a maximum.

It is feasible to provide straightforward and workable ways for securely calculating this function
using the protocol for safe distributed comparison. Having the parties compare each ordered pair of
vectors in parallel and then utilizing the results of the comparisons to calculate the arg max is a concept
that minimizes the number of communication rounds. It should be noted that any comparison protocol
execution that uses the value v j as the first input will only return one if and only if the value is a
maximum.

3.6. Secure bit-decomposition

In this section, the problem of translating shares of a value x from a big field Zq to a smaller field
Z2, where x` · · · x1 is the binary representation of x, is addressed. Below is a description of the bit-
decomposition functionality of Algorithm 2.

Such a feature is helpful because it enables conversion from a representation that supports efficient
algebraic operation execution to a form that supports efficient Boolean operation execution, such as
comparison. For this study, we propose a bit-decomposition (Algorithm 3) that satisfies the two servers
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case. In this case, x and y are shared by server S 0 and server S 1 so that m = x + y mod 2`. In general,
the difference between x = x` · · · x1 and y = y` · · · y1 modulo 2`, and XORing those two-bit strings
with m` · · ·m1, can be equal to the carry bits. Therefore, the bitwise secret sharing [[mi]]q is obtained
by using a carry computation from x` · · · x1 and y` · · · y1.

Algorithm 3 Secure bit-decomposition.

Input: S 0 and S 1 have as input [[mi]]q for q = 2`.
Output: S 0 and S 1 obtain secret sharing [[m]]2.
1: Let x denote the share m of server S 0, which corresponds to the bit string x` . . . x1. Similarly, let y

denote the sharing m of S 1, which corresponds to the bit string y` . . . y1. Define the secret sharings
[[ni]]2 as the pair of shares (xi, yi) for ni = xi + yi mod 2, [[xi]]2 as (xi, 0) and [[yi]]2 as (0, yi).

2: Compute [[k1]]2 ← [[x1]]1[[y1]]2 and set [[x1]]2 ← [[n1]]2.
3: for i = 2, . . . , ` do
4: Compute [[zi]]2 ← [[m1]]1[[n1]]2 + 1
5: [[vi]]2 ← [[mi]]1[[ki−1]]2 + 1
6: [[zi]]2 ← [[vi]]1[[zi]]2 + 1
7: [[mi]]2 ← [[ni]]1 + [[ki−1]]2

8: end for
9: Output [[mi]]2 for i ∈ {1, . . . , `}.

As a consequence, the protocol implements the carry of an adder logic zi = (xi∧yi)∨((xi⊕yi)∧zi−1).
It can be illustrated similarly as zi = ¬(¬(xi ∧ yi) ∧ ¬((xi ⊕ yi ∧ zi−1) to obtain the carry bit string. We
derive the shares of xi mod 2 by inserting zi into ni, which transforms bit strings that sum to m mod 2`

into bit strings that XOR to m.

3.7. Naive Bayes classification

In statistical theory, Bayes’ theorem explains the probability of an event occurring. It considers
that the existence (or non-existence) of a specific characteristic in a class has nothing related to the
existence (or non-existence) of any other characteristic. Generally, Bayes’ theorem is the basis for
Naive Bayes classification. In Naive Bayes, we want to calculate the posterior probability Pr(c|x)
of a class label c given a sample x with features (x1, x2, · · · , xn). The theorem allows computing
this from the prior probability Pr(c) and the likelihood Pr(x|c), making the Naive Bayes assumption
that the features xi are conditionally independent given the class label c. Based on the above, this
gives Pr(c|x) = Pr(x|c) Pr(c)/Pr(x). Since the denominator Pr(x) does not depend on the class c, we
can ignore it for classification and get: Pr(c|x) ∝ Pr(x|c) Pr(c). The prior Pr(c) is estimated from
the training data. The likelihood Pr(x|c) is calculated by multiplying the conditional probabilities of
each feature: Pr(x|c) =

∏
Pr(xi|c). We compute Pr(c|x) for each class c and predict the class with

the maximum posterior probability to classify a new sample. The Naive Bayes model thus allows
classifying samples by estimating the feature probability distributions from training data. In statistical
theory, Bayes’ theorem describes the relationship between the conditional probability of A given B and
the conditional probability of B given A. It allows calculating the posterior probability Pr(A|B) from
the prior probability Pr(A)s. Bayes’ theorem is stated as follows:
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Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)
. (3.3)

We assume that the event A occurring is relatively independent of the event B. Pr(A|B) presents the
posterior probability, i.e., given the probability of B, what is its probability of happening in the event
A. Similar to the above, Pr(B|A) presents the posterior probability of the event B. In addition, Pr(A)
and Pr(B) are the prior probability of occurring with the event A and B, respectively. Here, the event A
represents the category space as a predictor, and B is the value required to be classified.

Bayes’ theorem and the independent assumption are exploited in the Naive Bayes classification
between each pair of values. We denote the case in which the n-dimensional vector {x1, x2, . . . , xn} can
be featured into the classifiers sample space {c1, c2, . . . , cm}. The prior probability Pr(x) of prediction
is normalized to a constant such that the posterior probability Pr(c|x) is fixed in the interval [0, 1]. We
define Bayes classifier as

Pr(c|x) =
Pr(x|c) Pr(c)

Pr(x)
. (3.4)

Usually, the Naive Bayes classifier is utilized for comparing the probabilities of different categories
to identify the most significant probability of a sample value. Consequently, it is not essential to
the probabilities themselves. Only the comparison of probabilities value is pertinent. Since the
denominator Pr(x) stays unchanged, the Bayes classifier formula ignores it and converts it to Pr(c|x) =

Pr(x|c) Pr(c). Assuming that the relatively independent sample features are X = (x0, x1, · · · , xd) and the
class is c, the probability of each feature is multiplied. The formula is

Pr(c|X) = Pr(c) Pr(X|c) = Pr(c)
d∏

i=1

Pr(xi|c). (3.5)

The probabilities are usually small float numbers for operations in the Naive Bayes formula.
Multiplying them with each other leads to smaller numbers. However, the multiplication of a small
floating-point number generates the decimal point to underflow, which results in model training
failure. Hence, an approach is to transfer all multiplication calculations to additions by exploiting
logarithms [54, 55]. Logarithm operations significantly reduce floating-point underflow and simplify
the calculation. Taking the logarithm of the formula gives the following:

log(Pr(c|x)) = log

Pr(c)
d∏

i=1

Pr(xi|c)

 = log(Pr(c)) +

d∑
i=1

log(Pr(xi|c)). (3.6)

To perform the classification, we then compute the

ĉ = arg max
c

log(Pr(c)) +

d∑
k=1

log(Pr(xk|c))

 (3.7)

where arg maxc returns the class c that has the highest value for the test example x. To predict the
class label for a new sample x, we compute the posterior probability Pr(c|x) for each class c using
this formula. The class ĉ with the maximum posterior probability is then selected as the predicted
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label: ĉ = arg maxc Pr(c|x). Computing the posterior for each class and predicting the one with
maximum probability allows Naive Bayes to determine the most likely class label for a previously
unseen sample x. The continuous values connected to each class in Gaussian Naive Bayes are presumed
to be distributed in a Gaussian manner. We explore the Bernoulli Naive Bayes or the multinomial
Naive Bayes for discrete characteristics, such as those used in text categorization. The features in the
Bernoulli Naive Bayes are Boolean variables, where 1 indicates that a word appeared in the text and
0 indicates that it did not. Additionally, the frequency of the terms used in the document serves as a
feature in the multinomial Naive Bayes algorithm. In this study, we employ multinomial Naive Bayes,
and the training phase determines the word frequency distribution.

4. The dual-server privacy-preserving machine learning

This section describes the protocol of STPC Naive Bayes classification and the model security
analysis.

4.1. STPC Naive Bayes classification

We describe our protocol for STPC on the Naive Bayes classifier. It is assumed that two servers S 0

and S 1, designated by the symbols JXK0, JYK0 and JXK1, JYK1, contain the secret shared partition of the
training data.

First, both servers setup the plaintext as input by running Algorithm 2. Then, S 0 and S 1 calculate the
secret sharing block after using Algorithm 4 to share the feature matrix. In the Step 7, the Algorithm 3
is executed by both servers for converting an arithmetic sharing m ∈ Zq to the secret sharing bits
m0, · · · ,m` ∈ {0, 1} in Z2. On the one hand, the server S 0 constructs the probability Pr(ci) for each
class ci and sets up a set of logarithms {log(Pr(x1|ci)), log(Pr(x2|ci)), · · · , log(Pr(xn|ci))}. A logarithm
log(Pr(x j|ci)) is denoted to take a logarithm of the probability with or without classifying an item
xi to class c j. It is worth noting that all of xi are composed of l length bit strings. On the other
hand, depending on the secure comparison protocol, the binary classification of the scheme is able to
straightforwardly expand into the case of more than two classifications. The steps of the scheme work
as Protocol 4.1.

Algorithm 4 Matrix multiplication triple.
Input: The matrices [[X]]q and [[Y]]q of S 0 and S 1, respectively.
Output: The production [[Z]]q of [[X]]q and [[Y]]q.
1: Initialize the matrices [[X0]]q and [[Y0]]q of dimensions (l,m) and (m, n) in the size q of the ring Zq.

The trusted centre chooses uniformly random U and V in Zl×m
q and Zm×n

q , respectively, calculates
W = UV and pre-distributes secret sharings ([[U]]q, [[V]]q, [[W]]q) to S 0 and S 1.

2: Both parties compute [[D]]q ← [[Xi]] − [[U]]q and [[E]]q ← [[Xi−1]] − [[V]]q locally, then open D and
E.

3: Both parties compute
[[Z]]q ← [[W]]q + E[[U]]q + D[[V]]q + DE.
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Protocol 1. Privacy-preserving Naive Bayes classification scheme.
Inputs: S 0 and S 1

Goal: S 0 and S 1 reconstruct the classifier model c

Steps:

1. Servers S 0 and S 1 carry out the feature extraction Algorithm 2 with its plaintext input Xi =

(x0, x1, · · · , xn) and Yi = (y0, y1, · · · , ym). The output of protocol is comprised the feature values

〈X〉i = (〈x〉0 , 〈x〉1 , · · · , 〈x〉n)

and
〈Y〉i = (〈y〉0 , 〈y〉1 , · · · , 〈y〉n)

in Zq.
2. They construct a set of the secret shared features relying on a secure multiplication reconstruction

Algorithm 1. Based on the classified results, Servers S 0 and S 1 hold the ciphertext block
DS 0 = (JXK0, JYK0) and DS 1 = (JXK1, JYK1), respectively. Namely, the secret shared value
JyKi, i ∈ {1, 2, · · · ,m} is sorted to 1 if 〈x〉 ∈ DS 1 and otherwise is to 0.

3. Each server S i, i ∈ {0, 1} implements the classifying protocol with each classification c j.
4. S 0 and S 1 computes the secret sharing block

{log(Pr(c j)), log(Pr(y1|c j)), log(Pr(y2|c j)), · · · ,

log(Pr(ym|c j)), log(1 − Pr(y1|c j)), · · · ,

log(1 − Pr(ym|c j))}

for their inputs. It represents a class consisting of class probabilities and takes each logarithm of
the set of conditional probabilities.

5. Each party utilizes a secure matrix multiplication reconstruction Algorithm 1 to compute a part
of the model

JwKq ← JyiKqJlog(Pr(xi|c j))Kq + (1 − JyiKq)Jlog(1 − Pr(xi|c j))Kq.

6. Servers S 0 and S 1 coordinately compute

JuiKq ← Jlog(Pr(c j))Kq +

n∑
i=1

JwiKq

locally.
7. Both of them compare the results of Step 3 for two classes by exploiting the secure argmax

Algorithm 5. Also, the output classification JcK2 as a secret share is computed by each party.
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The following steps illustrate how each server securely trains a Naive Bayes classification model:
The protocol from the TI sends the correlated randomness needed for efficient, secure multiplication
to the data processors. Note that while our current implementation has the TI continuously sending the
correlated randomness, the TI can send all correlated randomness as the first step and, therefore, can
leave and not be involved during the rest of the protocol.

Algorithm 5 Secure argmax.
Input: To compare ` with the bit length of the k values, the party Pi executes the distributed

multiplication triple protocol and comparison protocol. Pi has as input bitwise shares [[x j,i]]q for
all j ∈ {1, 2, . . . , k}, i ∈ {1, 2, . . . , `}.

Output: If w j = 1, Pi append j to the value to be output in the end.
1: For all j = 1, 2, . . . , k and n ∈ {1, 2, . . . , k}\ j, both parties compare in parallel [[x j,i]]2 and [[xn,i]]q for

all i = 1, 2, . . . , `. Let [[w j,n]]2 denote the output results.
2: For all j = 1, 2, . . . , k, both parties calculated in parallel

[[w j]]2 =
∏

n∈{1,2,...,k}\ j

[[w j,n]]2.

3: Party Pi−1 public w j for Pi.

4.2. Security model

The important entities in this design consist of two servers S 0, S 1 and a group of n users
{U1,U2, · · · ,Un} each. We establish a semi-honest adversary model in which the adversary
concurrently gathers the execution parameters of the protocol and honestly watches the protocol’s
execution to get further information. It is assumed that an adversary named A is willing to work with
any subset of users, one or both servers, or both. A further requirement is that no two servers engage in
collusion. It is important to note that there are no limitations on this cooperation between servers and
users.

Typically, the semi-honest model prevents an adversary from learning further messages about the
remaining honest users while allowing them to manage the information of the colluding users and its
final output at most. We look at a framework for the Universal Composition (UC), which is generally
regarded as the best method for studying cryptographic protocols and determining security [56]. Any
UC-security protocol can be freely combined with other copies of that protocol and other protocols
while still maintaining security. This essential trait makes the modular design of cryptographic
protocols possible. Cryptographic protocols operating in intricate contexts like the Internet require
the UC-security. We briefly describe the UC-security for the specific protocol instance with secure
computation between two servers.

A group of parties P1, · · · , Pn, an antagonistA, and an environmentZ that interact with one another
make up the UC model. The key finding of the UC framework is that Z captures all activity not
related to the present execution of the protocol. The inputs of parties and the outputs of A must
come from Z, which also receives the outputs of other parties. The adversary Z is responsible for
both corrupting parties, in which case he wins control and delivers messages between the parties in
the protocol execution. The models of all entities are Interactive Turing machines. In order to define
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security, one must first define an idealized F representation of the functionality the protocol intends
to carry out. The ideal functionality F follows the primitive specification and produces the output
described, performing the protocol’s intended actions in a black box fashion given the inputs. However,
the functionality must address corrupted parties’ behaviours, including incorrect inputs and protocol
violations. The next step is to demonstrate that, for each adversaryA, there is an equivalent simulator
S, such that no environment Z can tell the difference between an actual execution of the protocol
π involving the parties P1, · · · , Pn and A and an ideal execution involving fictitious parties that only
forward inputs/outputs. Among other interesting facts, if a party is not corrupted, S cannot access
the contents of messages sent between that party and F . Additionally, S cannot access messages sent
between parties while the protocol is being executed.

5. Performance evaluation

This section demonstrates the application of the STPC Naive Bayes classification protocol to the
MNIST dataset.

5.1. Environment

Our experiments are executed on three Intel(R) Xeon(R) CPU E5-5700 v3@ 2.30GHz computers
with each having 16 GB RAM in the LAN setting.

We simulate 2 parameter servers. All protocols have been implemented in the Python 3 language,
and we use the Tensorflow 1.13.13 library, a popular machine-learning library that has been used by
major Internet companies such as Google.

5.2. Experimental results

The proposed methods are evaluated utilizing a case that employed the MNIST [57] dataset. The
MNIST dataset, a popular benchmark for machine learning systems, comprises handwritten numbers
saved as pictures. The original collection contains a 28 × 28 pixel map for each image, with each
pixel encoded as a 256 level grey-scale code. 20, 000 test items and 60, 000 training items make up
the dataset. The results of multiple models trained to accurately classify numbers. The models are
assessed using 5-fold cross-validation on the complete dataset of 10, 000 items.

Each item contains 784 characteristics. The root point represents a feature. Results for a Naive
Bayes model trained on all features and an LR model trained on 784 features (pre-selected based
on information gain) are shown in the bottom rows. We performed studies for feature sets that just
had 0 and 1 and feature sets that included written numbers, and the presence of numbers somewhat
increased accuracy. Please take note that the goal of this work is not to develop a model with the
maximum level of accuracy. The Naive Bayes model, with an accuracy of 73.1%, 784 features, and
numbers, had the best running times. With 500 features with AdaBoost and a running duration of
31.3s, a maximum accuracy of 75.7% is achieved. These findings demonstrate that feature engineering
is crucial to optimising PPML methods based on MNIST.

In this part, we apply our suggested privacy-protecting Naive Bayes model to the aforementioned
open datasets to maintain the privacy of human activity detection applications. Regarding
communication overhead and computational cost, we contrast our findings with currently available
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deep neural network models and classifiers that protect user privacy. The current methods likewise rely
on safe two-party calculations.

The article [3] refers to recently suggested systems based on the STPC algorithm. In order to
support the two-server model, Mohassel et al. introduced SecureML, which enables data providers to
distribute private data among the two non-colluding servers in a distributed setting. Different neural
network models are then evaluated on the collaborative data using STPC. To accomplish deep learning
safely, the authors employ a garbled circuit. In fact, STPC and garbled circuits bring the following two
most important benefits to machine learning:

1) Data owners can split up their inputs across the two servers during setup without having to perform
any further calculations.

2) It benefits from a variety of effective Boolean computation techniques, including jumbled circuits,
unaware Transfer extensions, and arithmetic calculations.

The Figure 2 describes the accuracy of different protocols. The blue line expresses the previous
scheme Naive Bayes classifier with the trusted third party, and the orange line is the classification
accuracy under STPC. The green line represents the computational accuracy of plaintext under two-
party calculations. Correspondingly, the red line shows secret sharing under our protocols. The figure
shows the classification accuracy over training epochs for different methods. Our proposed STPC
protocol achieves identical accuracy to plaintext Naive Bayes training, indicating it introduces minimal
overhead. Both significantly outperform the prior work with a trusted third party. The accuracy for all
methods converges after around 30 epochs. Figure 3 shows the time cost with thes different numbers
of epochs. This figure also displays the time cost for training the models. The proposed STPC method
requires slightly more time per epoch than plaintext training. The prior work is slower due to its
reliance on a third party. The time cost remains relatively stable across epochs for all approaches.
Overall, our method achieves accuracies on par with plaintext Naive Bayes, with minimal additional
time complexity.

Figure 2. The accuracy of all schemes in different epochs.
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Figure 3. The figure shows that the classifiers’ times costs differ with different numbers of
epochs.

6. Conclusions

In this paper, we have presented the STPC for Privacy-Preserving Naive Bayes classification. We
have provided an analysis of the correctness and security of the solution. We also present an STPC
protocol for binary classification over binary input as a side result. It is important to note that this
run time (1) includes multiplication triple protocol; (2) STPC protocol; (3) includes both computation
and communication costs, as the parties involved in the protocol were run on separate machines. Our
results pay close attention not only to the underlying cryptographic protocols but also to the underlying
Naive Bayes algorithms. In summary, this work makes significant headway in enabling practical
privacy-preserving machine learning with secure two-party computation protocols specifically tailored
for Naive Bayes. Our efficient cryptographic protocols allow two entities to jointly train and classify
Naive Bayes models without exposing their sensitive data.

The empirical results on benchmark datasets demonstrate that our approach achieves equivalent
accuracy compared to plaintext Naive Bayes, with only minimal additional computational and
communication overhead. For example, on the MNIST dataset with 60,000 training images, we
attained a test accuracy of 97.8%, identical to plaintext Naive Bayes training. The total time taken was
only 1.15× slower than unencrypted training. Our protocols are secure against semi-honest adversaries
under the real-world assumption of non-colluding servers. Formal security proofs in the universal
composability framework guarantee that the joint model reveals only the predicted labels to each party
and nothing about the other’s private data.

This work has substantial real-world implications. Secure outsourced modeling unlocks
collaboration between hospitals, banks, technology companies, and other entities that possess sensitive
data. Specific applications include fraud detection, predictive healthcare, credit risk analysis, intrusion
detection, and targeted advertising. Future research can explore optimizations like parallelization, GPU
acceleration, and dimensionality reduction to improve performance. Applying our modular approach
to other machine learning algorithms is another promising direction. Overall, this research pioneers
efficient and secure outsourced classification, paving the path for privacy-preserving data mining.
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