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Abstract: This paper investigates the optimality of the risk probability for finite horizon partially
observable discrete-time Markov decision processes (POMDPs). The probability of the risk is optimized
based on the criterion of total rewards not exceeding the preset goal value, which is different from
the optimal problem of expected rewards. Based on the Bayes operator and the filter equations, the
optimization problem of risk probability can be equivalently reformulated as filtered Markov decision
processes. As an advantage of developing the value iteration technique, the optimality equation satisfied
by the value function is established and the existence of the risk probability optimal policy is proven.
Finally, an example is given to illustrate the effectiveness of using the value iteration algorithm to
compute the value function and optimal policy.
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1. Introduction

Analyzing the risk performance of a stochastic dynamic system is an important optimization control
problem. Additionally, both theoretical and applied aspects are observed in relation to financial
insurance [1], communication networks [2] and queuing systems [3]. Since the conventional expectation
criterion could not effectively reflect the risk performance of the system, the criteria of risk probability
were first proposed by Sobel [4], and implemented in Markov decision processes (MDPs). Afterwards,
many scholars focused on the research of optimization problems of risk probability in MDPs. According
to the characteristics of the sojourn time of the system state, these existing studies can be roughly divided
into four categories: (i) Discrete-time Markov decision processes (DTMDPs) [5–8]; (ii) Semi-Markov
decision processes (SMDPs) [9–11]; (iii) Continuous-time Markov decision processes (CTMDPs)
[12–14]; and (iv) Piecewise deterministic Markov decision processes (PDMDPs) [15]. A common

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231455


28436

feature of these existing literatures is that the system state is completely observable. However, in
practical applications such as machine maintenance and finance, the traditional models of MDPs cannot
effectively depict these practical problems because the information of the decision environment cannot
be completely observed or perceived. Therefore, it is necessary to establish partially observable Markov
decision processes (POMDPs) to optimize the risk probability of the control system.

Compared with completely observable Markov decision processes (COMDPs), the model of
POMDPs is a more extensive stochastic control model with important theoretical significance and
practical application values, and is widely used in fields such as industry, computational science,
finance, and artificial intelligence. Therefore, many scholars began to focus on the problem of expected
optimal for POMDPs. More specifically, Drake [16] established the POMDPs model, which attracted
the attention of many experts and scholars. Regarding the expected optimal problem, Hinderer [17]
discussed the finite state situation. Rhenius [18] and Hernández-Lema [19] discussed a more general
state situation. Smallwood and Sondik [20] further expanded the algorithm to calculate the optimal
strategies and value function (VF) by employing the dynamic programming method. Sawaki and
Ichikawa [21] proposed a successive approximation method to calculate the optimal strategy and VF.
White and Scherer [22] solved the infinite discounted optimization problem by modifying the reward
function and employing the iterative approximation algorithm. Bäuerle and Rieder [1] established the
optimality equation by equivalently converting POMDPs into a filter MDPs model and proved the
existence of an optimal strategy. Feinberg et al. [23] established some sufficient conditions to assure the
existence of optimal strategies and an optimality equation for more general state and action spaces. In
addition, many scholars have focused on the research of computational algorithms for the
POMDPs [24]. However, these criteria mainly focus on the expected value of the total rewards, which
could not effectively describe the risk situation faced by the control system. Therefore, it is necessary to
introduce the criteria of the risk probability that can effectively demonstrate the risk performance of the
system. An overview of the existing literature indicates that the criterion of the risk probability
concerning POMDPs has not been researched thus far. This paper is the first attempt to solve the
optimization problem of the risk probability for POMDPs.

The optimization problem intends to minimize the risk probability criterion, that is, the probability
value of the system’s total rewards does not exceed the the profit goal. Because the reward levels are
regarded as the second component of the extended state, it is necessary to redescribe the evolution
process of the system and redefine the history-dependent, Markov and stationary policies. Thus,
for any given redefined policy, a new probability space must be reconstructed using the well-known
Ionescu Tulcea’s theorem (see e.g., Proposition 7.45 in [25]), which is based on any initial system state
and reward goal. Second, the unobservable state’s conditional probability distribution is constructed,
by redefining the Bayes operator (including the reward levels) and establishing the filter equations.
Then, based on the aforementioned conditional probability distribution, a new filtered risk probability
MDPs model is established by expanding the state and action space and modifying the transfer kernel
and reward function. Furthermore, we prove that the newly filtered MDPs model can reveal the
regular relationship between partially and completely observable optimal problems. On account of
risk probability optimality theory for COMDPs, by using the value iteration advanced technique, the
optimality equation is established, and the existence of optimal policies is proven. Finally, a machine
maintenance example is given to present our main results, which include using the iteration algorithm to
calculate the value function and an optimal policy.
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The rest of the manuscript is outlined as follows. Section 2 presents a minimization risk probability
problem dealing for POMDPs. Section 3 presents the main results, including the existence of the
optimality equation and optimal policies. An illustration is given to present the value iteration algorithm
for calculating the VF and OP in Section 4.

2. The model of POMDPs

The model of POMDPs consists of the following elements:

{EX × EY , {A(x) ⊆ A, x ∈ EX},Q(·, · | x, y, a), r(x, y, a),Q0} (2.1)

which have the following meanings:

(a) EX×EY represents a Borel space with a Borel σ-algebra B(EX×EY). The element (x, y) ∈ EX×EY

is the system state, where x denotes the state’s observable portion, and y denotes the state’s
unobservable portion.

(b) A represents the action space of a Borel space with a Borel σ-algebra A . A(x) ⊆ A represents the
set of admissible actions in state x ∈ EX, which is assumed to be finite. Moreover, the set of all
composable pairs of state actions is denoted by K := {(x, a) | x ∈ EX, a ∈ A(x)}.

(c) Q(·, · | x, y, a) denotes the probability of the transition from EX × EY × A to EX × EY , which is used
to describe the transition mechanism in the controlled state process. For simplicity, we introduce
QX to represent the marginal transition probability QX(B|x, y, a) := QX(B × EY |x, y, a).

(e) r(x, y, a) denotes a nonnegative real-valued measurable reward function from K × EY to R+ :=
[0,+∞).

(d) Q0 denotes the initial probability distribution of the unobservable state.

The evolution of the risk probability POMDP is characterized as follows: At s0 = 0, based on the
observed state x0 and the reward goal (reward level) λ̃0 := λ0, the decision maker could pick an action a0

from the set of allowed actions A(x0). Then, the observed state of the system stays until time s1 = 1, at
which point, the system state transfers to the state x1 ∈ B1 ⊆ EX based on the probability of the transition∫

B1

∫
EY

Q(x1, y1 | x0, y0, a0)Q0(dy0). Meanwhile, the unobservable state y0 also transfers to the next state
y1 with a certain probability, which is constructed by the Bayes operator in the undermentioned (3.3).
Moreover, during this period, the control system will generate the rewards r(x0, y0, a0). Then, the goal
of the corresponding reward would become λ̃1 = λ0 − r(x0, y0, a0). At the new decision time s1 = 1,
based on the observable information of the system h1 = (x0, λ0, a0, x1, λ̃1), the decision maker picks a
new action a1 ∈ A(x1). Afterward, the system evolves similarly and produces a so-called observable
history up to time sk = k:

hk := (x0, λ0, a0, x1, λ̃1, a1, . . . , xk, λ̃k), (2.2)

where xk, yk denote the system state’s observable and unobservable section at the k-th moment of
decision, respectively, ak represents the action chosen by the decision maker at time sk = k, λ̃k denotes
the reward goal, which means that the decision maker will try his/her best to regulate the total rewards
not exceeding the goal of the reward, and it conforms to the following relation:

λ̃k+1 := λ̃k − r(xk, yk, ak), (2.3)
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for k = 0, 1, . . . .
The sets of all the histories of observable hk are represented by H0 := EX×R, Hk := Hk−1×A×EX×R

for k ≥ 1. Based on all observable histories, some policies are introduced.

Definition 2.1. (a) A sequence π = {πk, k ≥ 0} is said to be a randomized history-dependent policy if a
stochastic kernel πk : Hk → A satisfying the following:

πk(A(xk)|hk) = 1 for all hk ∈ Hk, k = 0, 1, 2 . . . .

(b) A randomized history-dependent policy is said to be deterministic if there exists a sequence {gk}

of measurable functions gk from Hk to A with gk(hk) ∈ A(xk), and πk(·|hk) is the Dirac measure at gk(hk)
for all hk ∈ Hk, k ≥ 0. The sets of all the randomized, deterministic policies are represented by Π,ΠDH,
respectively.

The risk probability POMDP needs to consider the system state and the reward goal, which is
different from the conventional expectation MDP that only considers the system state. Thus, the results
of the available classical expectation MDP cannot be applied to the proposed model. First, we need to
reconstruct the measurable space (Ω,F ) as follows: Ω := {(x0, y0, λ0, a0, x1, y1, λ1, a1, . . . , xk, yk, λk

ak, . . . , )|x0 ∈ EX, y0 ∈ EY , λ0 ∈ R, a0 ∈ A, xl ∈ E, yl ∈ EY , λl ∈ R, al ∈ A with 1 ≤ l ≤ k, k ≥ 1} denotes
the sample space, which is endowed with the Borel σ-algebra F . For any
ω := (x0, y0, λ0, a0, x1, y1, λ1, a1, . . . , xk, yk, λk ak, . . . , ) ∈ Ω, some random variables are defined as
follows:

Xk(ω) := xk,Yk(ω) := yk,Λk(ω) := λk, Ak(ω) := ak, k ≥ 0.

The ω will be omitted for convenience.
For any policy π ∈ Π, (x, λ) ∈ EX×R, Q0 of Y0 on EY , based on the Ionescu Tulcea’s (e.g., Proposition

7.45 in [25]), the unique probability measure Pπ(x,λ) =
∫

EY
Pπ(x,λ,y)(·)Q0(dy) on (Ω,F ) is constructed as

follows: for all B ∈ B(EX),C ∈ B(EY),G ∈ B(R),D ∈ B(A), hk ∈ Hk, k = 0, 1, . . .

Pπ(x,λ,y)(X0 = x,Λ0 = λ) = 1, (2.4)

Pπ(x,λ,y)(Ak ∈ D|hk) =
∫

D
πk(dak|hk), (2.5)

Pπ(x,λ,y)(Xk+1 ∈ B,Yk+1 ∈ C,Λk+1 ∈ G|hk, yk, ak) =
∫

B

∫
C

∫
G

Q(dxk+1, dyk+1|xk, yk, ak) (2.6)

×I[λk−r(xk ,yk ,ak)](dλk+1).

The expectation operator corresponding to the probability measure Pπ(x,λ) can be expressed as Eπ(x,λ).
For any (x, λ) ∈ EX × R and π ∈ Π, the risk probability criterion of POMDPs is defined as follows:

FπN(x, λ) =
∫

EY

Pπ(x,y,λ)

( N∑
n=0

r(Xn,Yn, An) ≤ λ
)
Q0(dy). (2.7)

Then, F∗N(x, λ) := infπ∈Π FπN(x, λ) is known as the risk probability value function.

Definition 2.2. A policy π∗ ∈ Π is called the optimal of the risk probability if

Fπ
∗

N (x, λ) = F∗N(x, λ) for all (x, λ) ∈ E × R. (2.8)
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3. Main result

The general objective of the manuscript is to optimize the criterion of the risk probability and
establish both the optimality equation’s solution and the existence of the strategy’s conditions.
Notation: Let P(EY) be the space of all the probability measures on EY .

Assumption 3.1. Assume that the transition probability has a probability density function q that
satisfies Q(d(x

′

, y
′

)|x, y, a) = q(x
′

, y
′

|x, y, a)ρ(dx
′

)ν(dy
′

) for some σ-finite measures ρ and ν.

The Bayes operator Φ : EX × R × A × EX × R × P(EY)→ P(EY) is first defined as follows:

Φ(x, λ, a, x
′

, λ
′

, µ)(C) :=

∫
C

∫
EY

q(x
′

, y
′

|x, y, a)I{λ−r(x,y,a)}(λ
′

)µ(dy)ν(dy
′

)∫
EY

∫
EY

q(x′ , y′ |x, y, a)µ(dy)ν(dy′)
, (3.1)

where C ∈ B(EY), µ denotes the distribution of the unobservable state. Furthermore, by using the
iterative method, for any hk ∈ Hk, k = 0, 1, . . ., the conditional probability distribution µn of the
unobservable variable Yn is presented by the following:

µ0(C|h0) := Q0(C), (3.2)
µk+1(C|hk, a, x

′

, λ
′

) := Φ(xk, λk, a, x
′

, λ
′

, µk(·|hk))(C), (3.3)

which are called filter equations.

Lemma 3.1. Under Assumption 3.1, for any π ∈ Π, B ∈ B(EY), the following statement holds:

Pπ(x,λ)(Yn ∈ B|X0,Λ0, A0, . . . , Xn,Λn) = µn(B|X0,Λ0, A0, . . . , Xn,Λn). (3.4)

Proof. For each π ∈ Π and x ∈ EX, λ ∈ R, the following result is proven by induction:

Eπ(x,λ)[V(X0,Λ0, A0, . . . , Xn,Λn,Yn)] = Eπ(x,λ)[V̂(X0,Λ0, A0, . . . , Xn,Λn)], (3.5)

for the bounded and measurable function V : Hk × EY → R and V̂(hn) =
∫

V(hn, yn)µn(dyn|hn).
Since V̂(h0) =

∫
V(h0, y)Q0(dy), Fact (3.5) is true when n = 0. For any given hn−1 ∈ Hn−1, n ≥ 1,

suppose that the Fact (3.5) holds for k = n − 1. Using (2.6), the Bayes operator’s definition and Fubini’s
theorem, we obtain the following:

Eπ(x,λ)[V̂(hn−1, An−1, Xn,Λn)]

=

∫
EY

µn−1(dyn−1|hn−1)
∫

EX

∫
A

QX(dxn|xn−1, yn−1, an−1)

×

∫
R

I{λn−1−r(xn−1,yn−1,an−1)}(dλn)V̂(hn−1, an−1, xn, λn)πn−1(dan−1|hn−1)

=

∫
EY

µn−1(dyn−1|hn−1)
∫

EX

∫
A

QX(dxn|xn−1, yn−1, an−1)
∫

R
I{λn−1−r(xn−1,yn−1,an−1)}(dλn)

×

∫
EY

V(hn−1, an−1, xn, λn, yn)µn(dyn|hn−1, an−1, xn, λn)πn−1(dan−1|hn−1)
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=

∫
EY

µn−1(dyn−1|hn−1)
∫

EX

∫
EY

∫
A
ρ(dxn)ν(dy)q(xn, y|xn−1, yn−1, an−1)

∫
R

I{λn−1−r(xn−1,yn−1,an−1)}(dλn)

×

∫
EY

V(hn−1, an−1, xn, λn, yn)Φ(xn−1, λn−1, an−1, xn, λn, µn−1)(dyn)πn−1(dan−1|hn−1)

=

∫
EY

µn−1(dyn−1|hn−1)
∫

EX

∫
EY

∫
A

q(xn, yn|xn−1, yn−1, an−1)ρ(dxn)ν(dyn)

×V(hn−1, an−1, xn, λn−1 − r(xn−1, yn−1, an−1), yn)πn−1(dan−1|hn−1), (3.6)

On the other hand, by induction, we have the following:

Eπ(x,λ)[V(hn−1, An−1, Xn,Λn,Yn)]

=

∫
EY

µn−1(dyn−1|hn−1)
∫

EX

∫
EY

∫
A

Q(d(xn, yn)|xn−1, yn−1, an−1)

×

∫
R

I{λn−1−r(xn−1,yn−1,an−1)}(dλn)V(hn−1, an−1, xn, λn, yn)πn−1(dan−1|hn−1),

=

∫
EY

µn−1(dyn−1|hn−1)
∫

EX

∫
EY

∫
A

q(xn, yn|xn−1, yn−1, an−1)ρ(dxn)ν(dyn)

×

∫
R

I{λn−1−r(xn−1,yn−1,an−1)}(dλn)V(hn−1, an−1, xn, λn, yn)πn−1(dan−1|hn−1),

=

∫
EY

µn−1(dyn−1|hn−1)
∫

EX

∫
EY

∫
A

q(xn, yn|xn−1, yn−1, an−1)ρ(dxn)ν(dyn)

×V(hn−1, an−1, xn, λn−1 − r(xn−1, yn−1, an−1), yn)πn−1(dan−1|hn−1), (3.7)

which, together with Eq (3.6), implies the fact that (3.5) is satisfied. Specially, V(X0,Λ0, A0, . . . , Xn,

Λn,Yn) = IB×C(Yn, (X0,Λ0, A0, . . . , Xn,Λn)), we obtain the following:

Pπ(x,λ)

(
Yn ∈ B, (X0,Λ0, A0, . . . , Xn,Λn) ∈ C

)
= Eπ(x,λ)[µn(B|X0,Λ0, A0, . . . , Xn,Λn)IC(X0,Λ0, A0, . . . , Xn,Λn)],

which implies that the Lemma holds.

The partially observable risk probability MDPs can be transformed into the filtered risk probability
MDPs by enlarging the state space, modifying the transfer kernel and reward function.

Definition 3.1. The filtered model of POMDPs consists of the following elements {E, A, Q̂, r̂}, which
have the following meanings:
• E := EX × P(EY) denotes the state space, and its element is marked as (x, µ) ∈ E, where x denotes

the observable state and µ denotes the unobservable state’s conditional probability distribution.
• A denotes the action space. A(x, µ) := A(x) ⊆ A denotes the class of selectable actions in the

state (x, µ) ∈ E.
• r̂ denotes a nonnegative real-valued measurable reward function on K and satisfies the following:

r̂(x, µ, a) =
∫

r(x, y, a)µ(dy).
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• Q̂ denotes the transition law from E × R × A to E × R, which is specifically expressed as follows:

Q̂(B ×C × D|x, λ, µ, a) :=
∫

B

∫
C

∫
EY

ID(Φ(x, λ, a, x̂, λ̂, µ))I{λ−r̂(x,µ,a)}(dλ̂)

×QX(dx̂|x, µ, a),

where QX(B|x, µ, a) =
∫

B
QX(B|x, y, a)µ(dy) for all (x, µ) ∈ E, λ ∈ R, a ∈ A(x), B ⊂ EX,D ⊂ P(EY),C ⊂

R.

To strictly assure the optimal problems normalization, some notations and the definition of some
policies are given in the filtered MDPs. Φ stands for the class of stochastic kernels φ on A provided E×R
with the property φ(A(x)|x, λ, µ) = 1 for all (x, λ, µ) ∈ E ×R. F stands for the class of all the measurable
mappings f from E × R to A with f (x, λ, µ) ∈ A(x) for all (x, λ, µ) ∈ E × R.

Definition 3.2. A randomized Markov policy is a sequence πM = {φ̂k, k ≥ 0} of stochastic kernels φ̂k ∈ Φ

satisfying φ̂k(A(xk)|xk, λk, µk) = 1 for each µk ∈ P(EY), k ≥ 0. This randomized Markov policy is
represented as πM = {φ̂k}.

A randomized Markov policy πM = {φ̂k} is called a deterministic Markov if a function
sequence { fk, k ≥ 0} exists such that φ̂k(·|xk, λk, µk) is concentrated at fk(xk, λk, µk) for any fk ∈ F.

The class of all randomized and deterministic Markov policies are recorded as ΠRM,ΠDM,
respectively. In fact, from the above definition, these randomized Markov policies rely on historical
information hk, k ≥ 0. Then, for any πM = {φ̂0, φ̂1, . . .} ∈ ΠM, we can find a policy π = {π0, π1, . . .} ∈ Π

that satisfies the following:

π0(da0|x0, y0, λ0) := φ̂0(da0|x0, µ0(y0|x0, λ0), λ0), (3.8)
πk(dak|hk) := φ̂k(dak|xk, µk(yk|hk), λk), (3.9)

for k ≥ 0, hk ∈ Hk. Thus, ΠDM ⊆ ΠRM ⊆ Π.
Based on the probability of the transition Q̂ and initial distribution µ0, for any (x, λ, µ) ∈ E × R

and π ∈ Π, according to the Ionescu Tulcea theorem (e.g., Proposition 7.45 in [25]), the probability
measure P̂π(x,λ,µ) can be constructed on (Ω,F ) as follows:

P̂π(x,λ,µ)(X0 = x,Λ0 = λ) = 1, (3.10)

P̂π(x,λ,µ)(Ak ∈ G|hk) = πk(G|hk), (3.11)

P̂π(x,λ,µ)(Xk+1 ∈ B,Yk+1 ∈ C,Λk+1 ∈ D|hk, µk) =
∫

B

∫
C

∫
D

∫
A

×Q̂(dxk+1, dλk+1, dµk+1|xk, λk, µk, ak)
×πk(dak|hk), (3.12)

for all hk ∈ Hk, a ∈ A(xk), B ⊂ EX,C ∈ EY ,D ⊂ R,G ∈ B(A). The expected operator corresponds to the
probability measure P̂π(x,λ,µ) and is expressed as Êπ(x,λ,µ).

For any (x, λ, µ) ∈ E × R and π ∈ Π, the value function of the filtered MDP is given by the following:

UπN(x, λ, µ) := P̂π(x,λ,µ)

( N∑
n=0

r̂(Xn, µn, An) ≤ λ
)
, (3.13)
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U∗N(x, λ, µ) := inf
π∈Π

UπN(x, λ, µ). (3.14)

Notation: For any policy π ∈ Π and (x, λ, µ) ∈ E × R, the risk probability of the total rewards Uπn is
defined as follows:

Uπn (x, λ, µ) := P̂π(x,λ,µ)

( n∑
k=0

r̂(Xk, µk, Ak) ≤ λ
)
,

with n = 0, 1, . . . ,N.
Moreover, the minimal risk probability of the filtered MDPs model is defined by the following:

U∗n(x, λ, µ) := inf
π∈Π

Uπn (x, λ, µ).

Let U be the class of mappings U : E × R → [0, 1]. For any (x, λ, µ) ∈ E × R,U ∈ U, φ ∈ ϕ,
and a ∈ A(x), the operators T φU and TU are defined as follows:

T aU(x, λ, µ) :=
∫

EX

∫
EY

U
(
x̂, λ − r̂(x, µ, a),Φ(x, λ, a, x̂, λ − r̂(x, µ, a), µ)

)
×QX(dx̂|x, µ, a),

T φU(x, λ, µ) :=
∫

A
T aU(x, λ, µ)φ(da|x, λ, µ), (3.15)

TU(x, λ, µ) := min
a∈A(x)

T aU(x, λ, µ). (3.16)

To strictly show the unobservable state’s conditional distribution, some characteristics of the filter
equation are given.

Lemma 3.2. Under Assumption 3.1, for each π ∈ Π,x ∈ EX, λ ∈ R. Then, FπN(x, λ) = UπN(x, λ,Q0),
F∗N(x, λ) = U∗N(x, λ,Q0).

Proof. For each π ∈ Π and x ∈ EX, the following result is first proven by induction:

Fπn(x,Λ) = Uπn (x, Λ̂, µ), (3.17)

with n = −1, 0, 1, 2, . . ., for the reward goal function Λ : K × EY → R+ and Λ̂ =
∫
Λ(x, y, a)µ(dy).

Based on Fπ
−1 = Uπ

−1 = I[0,+∞)(λ), for any π ∈ Π and x ∈ EX, λ ∈ R, Eq (3.17) is valid when n = −1.
Suppose that Fact (3.17) holds for k = n; by (2.6),

Uπn+1(x, λ, µ0)

= P̂π(x,λ,µ0)

( n+1∑
k=0

r̂(Xk, µk, Ak) ≤ λ
)

= Êπ(x,λ,µ0)[Ê
π
(x,λ,µ0)[I{∑n+1

k=0 r̂(Xk ,µk ,Ak)≤λ}|X0,Λ0, µ0, A0, X1,Λ1, µ1]]

=

∫
EX

∫
R

∫
P(EY )

∫
A

Êπ(x,λ,µ)[I{∑n+1
k=0 r̂(Xk ,µk ,Ak)≤λ}|X0 = x,Λ0 = λ, µ0 = Q0, A0 = a0, X1 = x1,

×λ1 = λ − r̂(x,Q0, a0), µ1 = Φ(x, λ, a0, x1, λ1,Q0)]
×Q̂(dx1, dλ1, dµ1|x, λ,Q0, a0)π0(da0|x, λ)
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=

∫
EX

∫
A

∫
EY

P̂
1π
(x1,λ−r̂(x,Q0,a0),Φ(x,λ,a0,x1,λ1,Q0))

( n∑
k=0

r̂(Xk, µk, Ak) ≤ λ1

)
×QX(dx1|x,Q0, a0)π0(da0|x, λ)

=

∫
EX

∫
A

∫
EY

U
1π
n

(
x1, λ − r̂(x,Q0, a0),Φ(x, λ, a0, x1, λ1,Q0)

)
×QX(dx1|x,Q0, a0)π0(da0|x, λ) (3.18)

is obtained, where 1π := {π1, π2, ...} represents the 1-shift policy of π.
On the other side, by Eq (3.4), we have the following:

Fπn+1(x, λ)

=

∫
EY

Pπ(x,y,λ)

( n+1∑
k=0

r(Xk,Yk, Ak) ≤ λ
)
Q0(dy)

=

∫
EY

Eπ(x,y,λ)[E
π
(x,y,λ)[I{∑n+1

k=0 r(Xk ,Yk ,Ak)≤λ}|X0,Λ0,Y0, A0, X1,Λ1,Y1]]Q0(dy)

=

∫
EY

∫
EX

∫
R

∫
A

∫
EY

Eπ(x,y,λ)[E
π
(x,y,λ)[I{∑n+1

k=0 r(Xk ,Yk ,Ak)≤λ}|X0 = x,Λ0 = λ,Y0 = y, A0 = a0, X1 = x1,

Λ1 = λ1,Y1 = y1]]Φ(x, λ, a0, x1, λ1,Q0)(dy1)QX(dx1|x, y, a0)I{λ−r(x,y,a)}(dλ1)π0(da0|x, λ)Q0(dy)

=

∫
EY

∫
EX

∫
R

∫
A

∫
EY

P
1π
(x1,y1,λ−r(x,y,a0))

( n∑
k=0

r(Xk,Yk, Ak) ≤ λ − r(x, y, a0)
)
Φ(x, λ, a0, x1, λ1,Q0)(dy1)

×QX(dx1|x, y, a0)I{λ−r(x,y,a0)}(dλ1)π0(da0|x, λ)Q0(dy)

=

∫
EX

∫
A

∫
EY

F
1π
n (x1, λ − r(x, y, a0))QX(dx1|x, y, a0)π0(da0|x, λ)Q0(dy),

which, together with Eq (3.18) and the inductive hypothesis, can prove Eq (3.17) for n = 0, 1, . . . ,N, i.e,
Fπn(x, λ) = Uπn (x, λ, µ).

For n = N, FπN(x, λ) = UπN(x, λ, µ), which yields F∗N(x, λ) = U∗N(x, λ,Q0) for the arbitrary policy π.

The establishment of the optimality equation requires the following theorem.

Theorem 3.1. Suppose that Assumption 3.1 is satisfied. Then, for any
(x, λ, µ) ∈ E × R, π = {π0, π1, . . .} ∈ Π, n ≥ 0, the following statement holds:
Uπn+1(x, λ, µ) = T π0U

1π
n (x, λ, µ), where Uπ0(x, λ, µ) = I[0,+∞)(λ),1 π := {π1, π2, ...} represents the 1-shift

policy of π.

Proof. For any (x, λ, µ) ∈ E × R, π = {π0, π1, . . .} ∈ Π, n = 0, 1, . . . ,N − 1, by (3.8) and the properties of
conditional expectation, we can obtain the following:

Uπn+1(x, λ, µ)

= P̂π(x,λ,µ)

( n+1∑
k=0

r̂(Xk, µk, Ak) ≤ λ
)

= Êπ(x,λ,µ)[Ê
π
(x,λ,µ)[I{∑n+1

k=0 r̂(Xk ,µk ,Ak)≤λ}|X0,Λ0, µ0, A0, X1,Λ1, µ1]]
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=

∫
A

∫
EX

∫
R

∫
P(EY )

P̂π(x,λ,µ)

( n+1∑
k=0

r̂(Xk, µk, Ak) ≤ λ|X0 = x,Λ0 = λ, µ0 = Q0, A0 = a, X1 = x̂,

Λ1 = λ̂, µ1 = µ̂
)
Q̂(dx̂, dλ̂, dµ̂|x, λ, µ, a)π0(da|x, λ)

=

∫
EX

∫
R

∫
A

∫
EY

P̂π(x,λ,µ)

( n+1∑
k=0

r̂(Xk, µk, Ak) ≤ λ|X0 = x,Λ0 = λ, µ0 = Q0, A0 = a, X1 = x̂,

Λ1 = λ̂, µ1 = µ̂
)
QX(dx̂|x, µ, a)I{λ−r̂(x,µ,a)}(dλ̂)π0(da|x, λ)

=

∫
EX

∫
A

∫
EY

P̂
1π
(x̂,λ−r̂(x,µ,a),Φ(x,λ,a,x̂,λ−r̂(x,µ,a),µ))

( n∑
k=0

r̂(Xk, µk, Ak) ≤ λ − r̂(x, µ, a)
)

×QX(dx̂|x, µ, a)π0(da|x, λ)

=

∫
EX

∫
A

∫
EY

U
1π
n

(
x̂, λ − r̂(x, µ, a),Φ(x, λ, a, x̂, λ − r̂(x, µ, a), µ)

)
QX(dx̂|x, µ, a)π0(da|x, λ)

:= T π0U
1π
n (x, λ, µ).

The proof of this conclusion has been completed.

Theorem 3.2. Suppose that Assumption 3.1 holds. For each (x, λ, µ) ∈ E × R, then:

(a) {U∗n, n = 0, 1, . . . ,N − 1} satisfies the corresponding optimality equation:

U∗0(x, λ, µ) := I[0,∞)(λ), U∗n+1(x, λ, µ) := TU∗n(x, λ, µ).

(b) There exists a policy gn ∈ ΠDM such that U∗n+1 = T gnU∗n for n = 0, 1, . . . ,N − 1. Then, the policy
π∗ := { f ∗0 , f ∗1 , . . . , fN−1} ∈ ΠDH is optimal, where f ∗n (hn) := gN−1−n(xn, λn, µn) for each hn ∈ Hn,
n = 0, 1, . . . ,N − 1.

Proof. (a) According to Theorem 3.1 and (3.16), for each (x, λ, µ) ∈ E × R, π = {π0, π1, . . .} ∈ Π, we
have the following:

Uπn+1(x, λ, µ) = T π0U
1π
n (x, λ, µ) ≥ T π0U∗n(x, λ, µ) ≥ TU∗n(x, λ, µ). (3.19)

Since π is arbitrary, this implies U∗n+1(x, λ, µ) ≥ TU∗n(x, λ, µ).
To prove the reverse condition, the following fact is needed to be proven: for any (x, λ, µ) ∈ E × R

and n ≥ −1, there is a policy η ∈ ΠDM which satisfies U∗n(x, λ, µ) = Uηn(x, λ, µ). Since U∗
−1(x, λ, µ) =

Uπ
−1(x, λ, µ) = I[0,+∞)(λ) for any π ∈ ΠM, this fact trivially holds for n = −1. Assume that there exists

a policy ζ ∈ ΠDM that satisfies U∗k (x, λ, µ) = Uζk (x, λ, µ) for n = k ≥ −1. On the other hand, since the
set of actions is finite, there exists a policy f ∈ Πs that satisfies T f U∗k (x, λ, µ) = TU∗k (x, λ, µ). Then,
let θ = { f , ζ} ∈ ΠDM, we know that

U∗k+1(x, λ, µ) ≤ Uθk+1(x, λ, µ) = T f Uζk (x, λ, µ) = T f U∗k (x, λ, µ) = TU∗k (x, λ, µ), (3.20)

where the first equality is obtained by Lemma 3.1, and the second equality follows from the induction
hypothesis. Combining (3.19) and (3.20), we have TU∗k = U∗k+1, which implies the induction hypothesis
is satisfied and the result is proven.
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(b) For each (x, λ, µ) ∈ E × R, the existence of a policy g∗n ∈ ΠDM satisfying U∗n+1 = T g∗nU∗n, is
determined by the finiteness of the action set for n = 0, 1, . . . ,N − 1. Letting
π = π(n) := {gn, gn−1, . . . , g0} ∈ Π, when n = 0, by Lemma 3.1 (b), Uπ1 = T g0U

1π
0 = T g0U∗0 = TU∗0 = U∗1.

Assuming that U∗k = U
1π∗

k for n = k, by Lemma 3.1 (b) and part (a),

Uπk+1 = T g∗k U
1π∗

k = T gkU∗k = TU∗k = U∗k+1.

Thus, the induction hypothesis is established and Uπ
∗

N = U∗N for π∗ := { f ∗0 , f ∗1 , . . . , fN−1} with f ∗n (hn) :=
gN−1−n(xn, λn, µn(·|hn)), n = 0, 1, . . . ,N − 1. Then, the policy π∗ is optimal.

Based on Theorem 3.2, the value iteration algorithm is established as follows:
The value iteration algorithm

Step 1. Let U∗0(x, λ, µ) := I[0,+∞)(λ), for (x, λ, µ) ∈ E × R.

Step 2. The computation of the value function U∗n is as follows for n = 0, 1, . . . ,N − 1 :

T aU∗n(x, λ, µ) =
∫

EX

∫
EY

U∗n
(
x̂, λ − r̂(x, µ, a),Φ(x, λ, a, x̂, λ − r̂(x, µ, a), µ)

)
×QX(dx̂|x, µ, a).

U∗n+1(x, λ, µ) = min
a∈A(x)
{T aU∗n(x, λ, µ)}.

Step 3. Find a policy gN−1 that satisfies U∗N = T gN−1U∗N−1. Then, by Theorem 3.2, the policy π∗ is
optimal.

4. Illustration

An illustration is provided to show how both the VF and OP are calculated and illustrates the
effectiveness and feasibility of the value iteration algorithm.

Example 4.1. Consider a machine production process with two types of observable product quality
states (i.e., nonconforming product 0 and qualified products 1), and two types of unobservable machine
operation states (i.e. poor state 1 and good state 2). According to the product quality situation x = 1
and the reward goal λ, at the initial time n = 0, when the production process is in the state y ∈ {1, 2},
the decision-maker can either select an ordinary maintenance action a11 or an advanced maintenance
action a12 with a reward r(x, y, a). If the product quality situation is x = 0, the decision maker must
select an action of the advanced maintenance a01. When the action of the maintenance a is applied,
the system transits to the state (x′, y′) with probability Q(·, ·|x, y, a) at the next moment. The general
objective of the decision maker is to select the optimal action to ensure that the minimum probability
value of the total rewards does not exceed the target λ from 0 to N = 15.

This evolution process can be formulated as a discrete-time POMDP with the state space EX ×

EY = {0, 1} × {1, 2}; the admissible class of actions A(0) = {a01}, A(1) = {a11, a12}. Assume that the
probabilities of the transition are given by Q(·, ·|x, y, a) = QX(·|x, y, a)p(·|y), in which the probabilities
of the transition QX(·|x, y, a) are given by the following:

QX(0|0, 1, a01) = 1, QX(1|0, 1, a01) = 0, QX(0|0, 2, a01) = 1, QX(1|0, 2, a01) = 0,
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QX(0|1, 1, a11) = 0.5, QX(1|1, 1, a11) = 0.5, QX(0|1, 1, a12) = 0.3, QX(0|1, 1, a12) = 0.7, (4.1)
QX(0|1, 2, a11) = 0.4, QX(1|1, 2, a11) = 0.6, QX(0|1, 2, a12) = 0.2, QX(0|1, 2, a12) = 0.8,

The transition probabilities of the unobserved state are given by p(2 | 2) = 1−p(1 | 2) = 0.7, p(1 | 1) = 1.
The reward rates are given as follows:

r(0, 1, a01) = r(0, 2, a01) = 0, r(1, 1, a11) = 2,
r(1, 1, a12) = 4, r(1, 2, a11) = 1, r(1, 2, a22) = 3.

Our main goal is to use the value iteration algorithm to compute the value function and the optimal
policies.

First, according to (3.13), since r(0, 1, a01) = r(0, 2, a01) = 0, it is known that U∗(0, λ, µ) = I[0,+∞)(λ).
Based on the value iteration algorithm (Algorithm 1) and Matlab software, the curves of
functions T a11U∗(1, λ, µ), T a12U∗(1, λ, µ) and the approximated value function U∗(1, λ, µ) are
plotted (see Figures 1 and 2). By observing the figures, the following conclusions are attained:

(a) As seen in Figure 1, when x = 1, if λ ∈ (0, 4), the value T a12U∗N(1, λ, µ) is less than T a11U∗N(1, λ, µ).
Otherwise, if λ ∈ [4,+∞), the value T a11U∗N(1, λ, µ) is less than T a12U∗N(1, λ, µ). As shown above, the
observable state is x = 1, λ ∈ (0, 4), the decision maker should choose the low risk action a12. Conversely,
if λ ∈ [4,+∞), the decision maker should choose the low risk action a11 instead of the action a12.

(b) Based on Figure 1, the risk probability optimal policy for POMDPs at time n = 0, 1, . . . ,N is
given by the following:

f ∗(1, λ) =

a12, 0 ≤ λ < 4;
a11, λ ≥ 4.

(4.2)
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Figure 1. The function T aU∗N(1, λ, µ).
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reward level λ 
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Figure 2. The value function U∗N(1, λ, µ).

5. Conclusions

In this paper, we studied the problem of minimizing the risk probability criterion for finite horizon
partially observable discrete-time Markov decision processes (POMDPs). Different from the classical
expectation criterion, which are regarded as a component of an extended state according to the reward
levels, we redefined a history-dependent policy, and reconstructed a new probability measure. Based on
the Bayes operator and the filter equations we constructed, the optimization problem of risk probability
can be equivalently reformulated as filtered Markov decision processes. We proposed a value iteration
algorithm to establish the existence of a solution to the optimality equation, and a risk probability
optimal policy.
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