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1. Introduction

Although there has been significant progress in the struggle with infectious diseases in the 20th

century, various diseases still pose a substantial threat to public health in underdeveloped
countries [1, 2]. In particular, diseases like yellow fever, HIV/AIDS, Malaria, and Ebola continue to
cause suffering and increase mortality rates. One reason these diseases continue is due to the shortage
of access to healthcare and basic requirements like fresh and clean water and hygiene in
underdeveloped countries. In addition, poverty, starvation, and other social factors of health can also
worsen the impact of infectious diseases. The struggles are in progress to report these problems,
though, including improving access to healthcare and executing precautionary measures like
vaccinations and mosquito control. Additionally, there is constant research to improve novel
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treatments and vaccines for these diseases. It is important to identify that infectious diseases are a
global health dispute that needs a joint effort from all countries to resolve the conflict [3, 4]. However,
although improvements have been made, there is still much work to be done to confirm that
everybody has access to quality healthcare and the tools essential to inhibit and treat infectious
diseases. In recent years, the mathematical modeling has become a countless way for investigation of
infectious diseases and control schemes improvement. Numerous scientists and scholars have been
working on infectious diseases considering different mathematical models including SIQR Covid-19
model [5], Rubella disease [6], Agitation of SARS-CoV-2 disease [7], spatiotemporal HIV CD4+ T
cell model [8], the monkeypox disease [9, 10] and some other fractional order models with control
tactics [11, 12] to analyze the dynamics of diseases considering various factors.

Malaria is an infectious disease caused by the Plasmodium parasites. These parasites are
transferred to humans through bites by Anopheles mosquitoes which are already infected. The major
kinds of species of the Plasmodium are four that can infect humans in which falciparum and vivax are
the most common species found in different countries. Plasmodium falciparum is generally
considered to be the most dangerous species, as it can cause severe malaria and is responsible for
most malaria-related deaths globally. Plasmodium vivax, while generally causing less severe illness,
can lead to long-term health problems if left untreated. Malaria is serious public health issue in the
world. The different governments have implemented a number of measures to control malaria’s
spread, which includes distribution of bed nets which are insecticide-treated and use of antimalarial
medicines. Despite these efforts, malaria remains a significant cause of illness and death, particularly
among vulnerable populations such as young children and pregnant women [13].

Malaria is mainly contracted through the bites of female mosquitoes that are infected with the
Plasmodium parasite. If diagnosed and treated properly on time, the disease can be well managed [14].
It is a persistent illness having substantial economic, social, and health concerns, particularly in tropical
regions and countries. Despite centuries of research, malaria is a major public health problem, with 109
countries classified as having endemic levels of the disease in 2008. In that year alone, an estimated
one million people, mostly children under the age of five, died from malaria, and 243 million infected
cases were reported [15].

Presently, the major recommendation for individuals who are sick with malaria is anticipation
through the use of bed nets, since there is no known vaccine and many available anti-malarial drugs
are becoming less effective due to parasite drug tolerance. The relevance of malaria has grown in
recent years due to concerns about how climate change or global warming might affect its prevalence.
Temperature changes can affect both the parasite and vector life cycles. For over a century,
mathematical models have been used to study the patterns of human malaria transmission. However,
it is important to critically review existing models and investigate their effectiveness in describing
host-parasite biology, as the disease continues to be a significant threat to health and wellbeing in the
face of shifting environmental and socioeconomic conditions [16].

Here, we consider [15]
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D%t (Sh1(t)) = Ah + b1Rh1 − wr1Sh1Ih1 − ζr2Sh1Im1 − (d1 + %h)Sh1 ,

D%t (Eh1(t)) = wr1Sh1Ih1 + ζr2Sh1Im1 − (%h + b2 + d2)Eh1 ,

D%t (Ih1(t)) = b2Eh1(t) − (%h + α + ων)Ih1 ,

D%t (Rh1(t)) = νωIh1 + d1Sh1 + d2Eh1 − (b1 + %h)Rh1 ,

D%t (Sm1(t)) = Am − qr3Sm1Ih1 − (%M + υ)Sm1 ,

D%t (Im1(t)) = qr3Sm1Ih1 − (%M + υ)Im1 ,

(1.1)

with NH = Sh1 + Eh1 + Ih1 + Rh1 is four classes of humans, and NM = Sm1 + Im1 is two classes of
mosquitos, in which, Sh1 represents the susceptible human individuals, Eh1 represents exposed
humans, Ih1 and Rh1 stands for the infected and recovered humans, Sm1 and Im1 represents
susceptible and infected mosquitoes, Ah is recruitment rate into Sh1 , Am recruitment rate into Sm1 ,
b1 rate of recovery of humans, b2 rate of transition from Eh1 to Ih1 , w is blood transfusion’s average
number from Sh1 to Ih1 in specific period, r1 is rate of transfer of disease from Ih1 to Sh1 , r2 is rate
of transfer of disease from Im1 to Sh1 , r3 probability of Im1 , ζ the average rate of biting of Sh1 by
infected mosquito, d1 is recovery rate of Sh1 , d2 is recovery rate of Eh1 , ςh natural rate of mortality of
humans, ςM natural rate of mortality of mosquitoes, α is the death rate of Ih1 because of disease, ω is
the human’s recovery rate, v the rate of medicines potency which are anti-malarial, the Sm1 and Im1

classes die at ν because of the spraying use in specific time, and q at which Sm1 bites those who are
infected with the disease in specific time. The compartmental model, as shown in Figure 1, represents
malaria disease transmission.

Figure 1. Compartmental flowchart for the malaria mathematical model’s transmission.

Various operators, including fractal derivative, non-integer order derivative with kernel of
singularity and non-singularity, fractal-fractional operator have been proposed to address crossover
behavior in different fields such as infectious disease models, heat transfer, fluid dynamics, and other
advection problems [17, 18].

Similarly, fractional operators have been used to analyze bifurcations and control
mechanisms [19, 20] and discrete predator-prey competitive models [21]. However, despite the
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addition of stochastic terms to capture randomness and provide more realistic dynamics, crossover
behavior remain a significant challenge [22, 23]. To address this issue, a novel approach called
piece-wise differentiation and the integration was recently developed and discussed in reference [24].
The authors explore classical and global piecewise derivatives and provide examples. Further, the
analysis of piecewise tumor-immune interaction [25, 26], dengue internal transmission and
Leftospirosis models have been extensively studied using different fractional derivatives [27, 28].

Here, we interpret the system (1.1) for both theoretical and numerical analysis using the Caputo
and ABC piece-wise derivative. The remaining sections are organized as follows: Section 2 presents
model (1.1) using the piecewise derivative, considering singular as well as non-singular kernels. The
basic results are covered in Section 3. In Section 4 the existence and uniqueness of the model is
presented. Section 5 includes the numerical investigations of the model, while the simulations and
discussions of the system are included in Section 6. Finally, Section 7 provides concluding remarks
and future work.

2. Malaria model with piecewise derivative

The equation represented by model (1.1) can be expressed using a piecewise derivative having the
singular and the non-singular kernels in the form:

CABC
0 D%

t (Sh1(t)) = Ah + b1Rh1 − wr1Sh1Ih1 − ζr2Sh1Im1 − (d1 + %h)Sh1 ,
CABC
0 D%

t (Eh1(t)) = wr1Sh1Ih1 + ζr2Sh1Im1 − (%h + b2 + d2)Eh1 ,
CABC
0 D%

t (Ih1(t)) = b2Eh1(t) − (%h + α + ων)Ih1 ,
CABC
0 D%

t (Rh1(t)) = νωIh1 + d1Sh1 + d2Eh1 − (b1 + %h)Rh1 ,
CABC
0 D%

t (Sm1(t)) = Am − qr3Sm1Ih1 − (%M + υ)Sm1 ,
CABC
0 D%

t (Im1(t)) = qr3Sm1Ih1 − (%M + υ)Im1 ,

(2.1)

for 0 < % ≤ 1, t ∈ [0,T ]. To elaborate further, Eq (2.1) can be expressed in the form

CABC
0 D%

t (Sh1(t)) =

C
0 D%

t (Sh1(t)) =CM1(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), 0 < t ≤ t1,
ABC
0 D%

t (Sh1(t)) =ABCM1(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), t1 < t ≤ T,

CABC
0 D%

t (Eh1(t)) =

C
0 D%

t (Eh1(t)) =CM2(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), 0 < t ≤ t1,
ABC
0 D%

t (Eh1(t)) =ABCM2(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), t1 < t ≤ T,

CABC
0 D%

t (Ih1(t)) =

C
0 D%

t (Ih1(t)) =CM3(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), 0 < t ≤ t1,
ABC
0 D%

t (Ih1(t)) =ABCM3(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), t1 < t ≤ T,
(2.2)

CABC
0 D%

t (Rh1(t)) =

C
0 D%

t (Rh1(t)) =CM4(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), 0 < t ≤ t1,
ABC
0 D%

t (Rh1(t)) =ABCM4(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), t1 < t ≤ T,

CABC
0 D%

t (Sm1(t)) =

C
0 D%

t (Sm1(t)) =CM5(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), 0 < t ≤ t1,
ABC
0 D%

t (Sm1(t)) =ABCM5(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), t1 < t ≤ T,

CABC
0 D%

t (Im1(t)) =

C
0 D%

t (Im1(t)) =CM6(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), 0 < t ≤ t1,
ABC
0 D%

t (Im1(t)) =ABCM6(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t), t1 < t ≤ T,
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where C
0 D%

t and ABC
0 D%

t are Caputo’s and ABC derivatives, respectively, and

CM1(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t) = ABCM1(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t)
= Ah + b1Rh1 − wr1Sh1Ih1 − ζr2Sh1Im1 − (d1 + %h)Sh1 ,
CM2(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t) = ABCM2(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t)
= wr1Sh1Ih1 + ζr2Sh1Im1 − (%h + b2 + d2)Eh1 ,
CM3(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t) = ABCM3(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t)
= b2Eh1(t) − (%h + α + ων)Ih1 ,
CM4(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t) = ABCM4(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t)
= νωIh1 + d1Rh1 + d2Eh1 − (b1 + %h)Rh1 ,
CM5(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t) = ABCM5(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t)
= Am − qr3Sm1Ih1 − (%M + υ)Sm1 ,
CM6(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t) = ABCM6(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t)
= qr3Sm1Ih1 − (%M + υ)Im1 .

3. Definitions and preliminaries

Here, we provide some important definitions and preliminaries of the Caputo and the ABC fractional
order derivatives and integrals.

Definition 3.1. Suppose U(t) ∈H 1(0, τ), the ABC derivative of function U(t) is given by [17]

ABC
0D%

t (U(t)) =
ABC(%)
1 − %

∫ t

0

d
dφ

U(φ)E%
[
−%

1 − %

(
t − φ

)%]
dφ. (3.1)

Definition 3.2. Let U(t) is differentiable function, then the Caputo and the ABC fractional piecewise
derivative is given by [24] :

CABC
0 D%

t U(t) =

C
0 D%

t U(t), 0 < t ≤ t1,
ABC
0 D%

t U(t) t1 < t ≤ T.

Here, CABC
0 D%

t U(t) is piecewise derivative in which the Caputo operator for 0 < t ≤ t1 and the ABC
operator for t1 < t ≤ T.

Definition 3.3. Let U(t) be a differentiable function, then the Caputo and the ABC piece-wise
integration is defined by [24]:

PCABC
0 ItU(t) =


1

Γ(%)

∫ t

t1
(t − φ)%−1U(φ)d(φ), 0 < t ≤ t1,

1 − %
ABC(%)

U(t) +
%

ABC(%)Γ(%)

∫ t

t1
(t − φ)%−1U(φ)d(φ) t1 < t ≤ T,

where CABC
0 I%t U(t) is piecewise integral in which Caputo operator is in 0 < t ≤ t1 and ABC operator in

t1 < t ≤ T.

Lemma 3.1. The solution of a piecewise differentiable equation

PCABC
0 D%

t G(t) = H(t,G(t)), 0 < % ≤ 1,
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can be obtained in the form [24]

G(t) =


G(0) +

1
Γ(%)

∫ t

0
H(φ,G(φ))(t − φ)%−1dφ, 0 < t ≤ t1,

G(t1) +
1 − %

ABC(%)
H(t,G(t)) +

%

ABC%Γ(%)

∫ t

t1
(t − φ)%−1H(φG(φ))d(φ) t1 < t ≤ T.

4. Qualitative analysis

In this section, we establish both the existence and uniqueness of the proposed model (2.2) using
the piecewise approach. For this, we can represent model (2.2) as shown in Lemma 3.1, which can be
further elaborated as follows:

PCABC
0 D%

tK(t) = M(t,K(t)), 0 < % ≤ 1,

with

K(t) =


K0 +

1
Γ(%)

∫ t

0
M(φ,K(φ, ))(t − φ, )%−1dφ, 0 < t ≤ t1,

K(t1) +
1 − %

ABC(%)
M(t,K(t)) +

%

ABC(%)Γ(%)

∫ t

t1
(t − φ)%−1M(φ,K(φ))dφ, t1 < t ≤ T,

(4.1)

where

K(t) =



Sh1(t)
Eh1(t)
Ih1(t)
Rh1(t)
Sm1(t)
Im1(t)

, K0 =



Sh1(0)
Eh1(0)
Ih1(0)
Rh1(0)
Sm1(0)
Im1(0)

, K(t1) =



Sh1(t1)
Eh1(t1)
Ih1(t1)
Rh1(t1)
Sm1(t1)
Im1(t1)

, (4.2)

M(t,K(t)) =



M1 =

CM1(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t),
ABCM1(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t),

M2 =

CM2(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t),
ABCM2(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t),

M3 =

CM3(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t),
ABCM3(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t).

(4.3)

Consider 0 < t ≤ T < ∞ and define E1 = C[0,T ] (Banach space) with

‖K‖ = maxt∈[0,T ]|K(t)|.

Let the growth and Lipschitz condition be in the form:

C1: ∃ LM > 0; ∀M, K̄ ∈ E, we have |M(t,K) −M(t, K̄)| ≤ LM|K − K̄|,
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C2: ∃ CM > 0 & MM > 0,
|M(t,K(t))| ≤ CM|K| + MM.

IfM is piecewise continuous on 0 < t ≤ t1 and t1 < t ≤ T in [0,T ], also satisfy (C2), then model (2.2)
has at least single solution in the sub-intervals.

Proof. Consider closed sub-set in both sub-intervals on [0,T ] in the form of E and B. Then using
Schauder FP theorem [29], we have

B = {K ∈ E : ‖K‖ ≤ R1,2, R > 0},

next consider operator Q : B→ B and apply to (4.1) in the form

Q(K) =


K0 +

1
Γ(%)

∫ t1

0
M(φ,U(φ))(t − φ)φ−1dφ, 0 < t ≤ t1,

K(t1) +
1 − ρ

ABC(ρ)
M(t,K(t)) +

ρ

ABC(ρ)Γ(ρ)

∫ t

t1
(t − φ)ρ−1M(φ,K(φ))d(φ), t ∈ (t1,T ].

(4.4)

For any K ∈ B, one can get

|Q(K(t))| ≤


|K0| +

1
Γ(%)

∫ t1

0
(t − φ)%−1|M(φ,K(φ))|dφ,

|K(t1)| +
1 − %

ABC(%)
|M(t,K(t))| +

%

ABC(%)Γ(%)

∫ t

t1
(t − φ)%−1|M(φK(φ))|d(φ),

≤


|K0| +

1
Γ(%)

∫ t1

0
(t − φ)%−1[CM|K| + MM]dφ,

|K(t1)| +
1 − %

ABC(%)
[CM|K| + MM] +

%

ABC(%)Γ(%)

∫ t

t1
(t − φ)%−1[CM|K| + MM]d(φ),

≤


|K0| +

T%

Γ(% + 1)
[CH |U| + MM] = R1, 0 < t ≤ t1,

|K(t1)| +
1 − %

ABC(%)
[CM|K| + MM] +

%(T − T)%

ABC(%)Γ% + 1
[CM|K| + MM]d(φ) = R2, t ∈ (t1,T ],

≤

R1, 0 < t ≤ t1,

R2, t ∈ (t1,T ].
(4.5)

From Eq (4.5), since K ∈ B and Q(B) ⊂ B. Therefore, it shows that Q is a close as well as complete.
Furthermore to prove that it is completely continuous, we take ti < t j ∈ [0, t1], so

|Q(K)(t j) − Q(K)(ti)| =

∣∣∣∣∣ 1
Γ(%)

∫ t j

0
(t j − φ)%−1M(φ,K(φ))dφ,

−
1

Γ(%)

∫ ti

0
(ti − φ)%−1M(φ,K(φ))dφ

∣∣∣∣∣
≤

1
Γ(%)

∫ ti

0
[(ti − φ)%−1 − (t j − φ)%−1]|M(φ,K(φ))|dφ
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+
1

Γ(%)

∫ t j

ti
(t j − φ)%−1|M(φ,K(φ))|dφ

≤
1

Γ(%)

[ ∫ ti

0
[(ti − φ)%−1 − (t j − φ)%−1]dφ

+

∫ t j

ti
(t j − φ)%−1dφ

]
(CM|K| + MM)

≤
(CMK + MM)

Γ(% + 1)
[t%j − t%i + 2(t j − ti)%]. (4.6)

Further (4.6), we get ti → t j, so

|Q(K)(t j) − Q(K)(ti)| → 0, as ti → t j.

Hence, Q is equi-continuous in interval [0, t1]. Now consider second sub-interval ti, t j ∈ [t1,T ] as

|Q(K)(t j) − Q(K)(ti)| =

∣∣∣∣∣ 1 − %
ABC(%)

M(t,K(t)) +
%

ABC(%)Γ(%)

∫ t j

t1
(t j − φ)%−1M(φ,K(φ))dφ

−
1 − %

ABC(%)
M(t,K(t)) +

(%)
ABC(%)Γ(%)

∫ ti

t1
(ti − φ)%−1M(φ,K(φ))dφ

∣∣∣∣∣
≤

%

ABC(%)Γ(%)

∫ ti

t1
[(ti − φ)%−1 − (t j − φ)%−1]|M(φ,K(φ))|dφ

+
%

ABC(%)Γ(%)

∫ t j

ti
(t j − φ)%−1|M(φ,K(φ))|dφ

≤
%

ABC(%)Γ(%)

[ ∫ ti

t1
[(ti − φ)%−1 − (t j − φ)%−1]dφ

+

∫ t j

ti
(t j − φ)%−1dφ

]
(CM|K| + MM)

≤
%(CMK + MM)
ABC(%)Γ(% + 1)

[t%j − t%i + 2(t j − ti)%]. (4.7)

Further as in (4.7), we take ti → t j, then

|Q(K)(t j) − Q(K)(ti)| → 0, as ti → t j.

So Q shows that it is equi-continuous in [t1,T ]. Hence, Q is uniform continuous, completely
continuous, and is bounded, due to Arzela-Ascoli result. Hence, the suggested model exhibits at least
single solution in each interval. �

Theorem 4.1. With (C1), the model’s solution is unique if Q is contraction.

Proof. Since the operator is piecewise continuous, then consider K and K̄ ∈ B on [0, t1]

‖Q(K) − Q(K̄)‖ = max
t∈[0,t1]

∣∣∣∣∣ 1
Γ(%)

∫ t

0
(t − φ)%−1M(φ,K(φ))dφ −

1
Γ(%)

∫ t

0
(t − φ)%−1M(φ, K̄(φ))dφ

∣∣∣∣∣
≤

T%

Γ(% + 1)
LM‖K − K̄‖. (4.8)
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From (4.8), we have

‖Q(K) − Q(K̄)‖ ≤
T%

Γ(% + 1)
LM‖K − K̄‖. (4.9)

So Q is contraction. Hence, using Banach’s contraction, the suggested system has unique solution [30].
Further on t ∈ [t1,T ], we have

‖Q(K) − Q(K̄)‖ ≤
1 − %

ABC(%)
LM‖K − K̄‖ +

%(T − T %)
ABC(%)Γ(% + 1)

LM‖K − K̄‖. (4.10)

or

‖Q(K) − Q(K̄)‖ ≤ LM
[ 1 − %
ABC(%)

+
%(T − T)%

ABC(%)Γ(% + 1)

]
‖K − K̄‖. (4.11)

Hence, Q is a contraction. Hence, from Eqs (4.9) and (4.11), the piecewise differentiable function has
a unique solution. �

5. Stability analysis

Here, we established the Hyers-Ulam stability for the proposed model.

Definition 5.1. The piecewise malaria transmission disease model (2.1) is Ulam-Hyers stable if ∀
α > 0, ∣∣∣PCABCD%

tK(t) −M(t,K(t))
∣∣∣ < α,∀ t ∈ T , (5.1)

and ∃ H > 0 and a unique solution K ∈ Z ,∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
≤ Hα,∀ t ∈ T . (5.2)

Additionally, for the inequality shown above, for a non-decreasing function Φ : [0,∞)→ R+∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
≤ HΦ(α),∀ t ∈ T . (5.3)

If Φ(0) = 0 as fated, then the resultant solution is typically U-H stable.

Definition 5.2. Our suggested model (2.1) is Hyers-Ulam-Rassias stable if Ψ : [0,∞)→ R+, ∀ α > 0,
and the inequality ∣∣∣PCABCD%

tK(t) −M(t,K(t))
∣∣∣ < αΨ(t),∀ t ∈ T , (5.4)

and ∃ HΨ > 0 and a unique solution K ∈ Z, so that∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
≤ HΨαΨ(t), t ∈ T . (5.5)

If there exist Ψ : [0,∞)→ R+ for the inequality∣∣∣PCABCD%
tK(t) −M(t,K(t))

∣∣∣ < Ψ(t), t ∈ T . (5.6)

If there exist a unique solution K ∈ Z with constant HΨ > 0, so∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
≤ HΨΨ(t), t ∈ T . (5.7)

Then, the result is typically H-U-R stable.
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Remark 5.1. Suppose a function φ ∈ C(T ) is not dependent on K ∈ Z, and φ(0) = 0, then

|φ(t)| ≤ α, t ∈ T ,
PCABCD

%
tK(t) = M (t,K(t)) + φ(t), t ∈ T .

Lemma 5.1. Suppose the function

PCABC
0 D%

tK(t) = M(t,K(t)), 0 < % ≤ 1. (5.8)

The solution of Eq (5.8) can be obtained in the form

K(t) =


K0 +

1
Γ(%)

∫ t

0
M(φ,K(φ))(t − φ)%−1dφ, 0 < t ≤ t1,

K(t1) +
1 − %

ABC(%)
M(t,K(t)) +

%

ABC(%)Γ(%)

∫ t

t1
(t − φ)%−1M(φ,K(φ))d(φ), t1 < t ≤ T,

(5.9)

∣∣∣∣∣∣∣∣M(K) −M(K)
∣∣∣∣∣∣∣∣ ≤


T

%
1

Γ(% + 1)
α, t ∈ T1,[

(1 − %)Γ(%) + (T %
2 )

ABC(%)Γ(%)

]
α = Θα, t ∈ T2.

(5.10)

Theorem 5.1. Considering Lemma 5.1, if the condition L fT
%

Γ(%) < 1 satisfy, then the solution of
model (2.1) is Hyers-Ulam as well as generalized Hyers-Ulam stable.

Proof. Suppose K ∈ Z is the solution of model (2.1) and K ∈ Z is a unique solution of model (2.1).
Thus we have
Case 1: For t ∈ T , we have∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ = sup

t∈T

∣∣∣∣∣∣K −
(
K◦ +

1
Γ(%)

∫ t1

0
(t1 − s)%−1M

(
s,K(s)

)
ds

)∣∣∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣∣K −
(
K◦ +

1
Γ(%)

∫ t1

0
(t1 − s)%−1M

(
s,K(s)

)
ds

)∣∣∣∣∣∣
+ sup

t∈T

∣∣∣∣∣∣+ 1
Γ(%)

∫ t1

0
(t1 − s)%−1M (s,K(s)) ds

−
1

Γ(%)

∫ t1

0
(t1 − s)%−1M

(
s,K(s)

)
ds

∣∣∣∣∣∣
≤

T∞
%

Γ(% + 1)
α +

L fT∞

Γ(% + 1)

∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ .
On further simplification, we obtain

∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ ≤


T∞
Γ(%+1)

1 − L fT∞

Γ(%+1)

α. (5.11)
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Case 2: ∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ ≤ sup
t∈T

∣∣∣∣∣∣K −
[
K(t1) +

1 − %
ABC(%)

[M (t,K(t))]

+
%

ABC(%)Γ(%)

[∫ t

t1
(t − s)%−1M

(
s,K(s)

)
d(s)

]]∣∣∣∣∣∣
+ sup

t∈T

1 − %
ABC(%)

∣∣∣∣M (t,K(t)) −M
(
t,K(t)

)∣∣∣∣
+ sup

t∈T

%

ABC(%)Γ(%)

∫ t

t1
(t − s)%−1

∣∣∣∣M (s,K(s)) −M
(
s,K(s)

)∣∣∣∣ ds.

By further simplification and using Θ =

[
(1−%)Γ(%)+T %

2
ABC(%)Γ(%)

]
, we obtain∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣

Z
≤ Θα + ΘL f

∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
, (5.12)

and ∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
≤

 Θ

1 − Θ
L f

α ∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
,

by using

H = max




T1
Γ(%+1)

1 − L fT1

Γ(%+1)

 , Θ

1 − ΘL f

1−M f

 .
Finally, from Eqs (5.11) and (5.12), we have∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣

Z
≤ Hα, t ∈ T .

Hence, the solution of model (2.1) is Hyers-Ulam stable. Also, if we replace α by Φ(α) then
from (5.13), we obtain ∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣

Z
≤ HΦ(α), t ∈ T .

Now, Φ(0) = 0 shows that solution of our proposed model (2.1) is generalized Hyers-Ulam stable. �

We include the following remark to conclude the Rassias stability results and also the generalized
form.

Remark 5.2. Suppose a function φ ∈ C(T ) does not depend upon K ∈ Z, and φ(0) = 0, then

|φ(t)| ≤ Ψ(t)α, t ∈ T ,
PCABCD

%
tK(t) = M (t,K(t)) + φ(t), t ∈ T ,∫ t

0
Ψ(s)ds ≤ CΨΨ(t), t ∈ T .
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Lemma 5.2. Solution to the model

PCABCD
%
tK(t) = M (t,K(t)) + φ(t),

K(0) = K◦,

holds the relation

∣∣∣∣∣∣∣∣M(K) −M(K)
∣∣∣∣∣∣∣∣ ≤


T

%
1

Γ(% + 1)
CΨΨ(t)α, t ∈ T1,[

(1 − %)Γ(%) + (T %
2 )

ABC(%)Γ(%)

]
CΨΨ(t)α = ΘCΨΨ(t)α, t ∈ T2.

(5.13)

Where H f ,Ψ,Θ = ΘH f ,Ψ. With the help of Remark 5.2, one can get Eq (5.13).

Theorem 5.2. The solution of model (5.13) is H-U-R stable if the following conditions hold
H1 : For each K , v ∈ Z and a constant CΦ > 0, we get

|Φ(K) − Φ(v)| ≤ CΦ |K − v| ;

H2 : For each K , v,K , v ∈ Z and constant L f > 0, 0 < M f < 1, we get∣∣∣∣M(t,K , v) −M(t,K , v)
∣∣∣∣ ≤ L f

∣∣∣∣K −K ∣∣∣∣ + M f |v − v|

M f < 1.

Proof. We prove these results in two cases.
Case 1: for t ∈ T , we have∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ = sup

t∈T

∣∣∣∣∣∣K −
(
K◦ +

1
Γ(%)

∫ t1

0
(t1 − s)%−1M

(
s,K(s)

)
ds

)∣∣∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣∣K −
(
K◦ +

1
Γ(%)

∫ t1

0
(t1 − s)%−1M

(
s,K(s)

)
ds

)∣∣∣∣∣∣
+ sup

t∈T

∣∣∣∣∣∣+ 1
Γ(%)

∫ t1

0
(t1 − s)%−1M (s,K(s)) ds

−
1

Γ(%)

∫ t1

0
(t1 − s)%−1M

(
s,K(s)

)
ds

∣∣∣∣∣∣
≤

T
%
1

Γ(% + 1)
CΦΦ(t)α +

L fT∞

Γ(% + 1)

∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ .
On further simplification

∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ ≤
CΦΦ(t) T1

Γ(%+1)

1 − L fT1

Γ(%+1)

α. (5.14)

Case 2: ∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ ≤ sup
t∈T

∣∣∣∣∣∣K −
[
K(t1) +

1 − %
ABC(%)

[M (t,K(t))]
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+
%

ABC(%)Γ(%)

[∫ t

t1
(t − s)%−1M

(
s,K(s)

)
d(s)

]]∣∣∣∣∣∣
+ sup

t∈T

1 − %
ABC(%)

∣∣∣∣M (t,K(t)) −M
(
t,K(t)

)∣∣∣∣
+ sup

t∈T

%

ABC(%)Γ(%)

∫ t

t1
(t − s)%−1

∣∣∣∣M (s,K(s)) −M
(
s,K(s)

)∣∣∣∣ ds.

By further simplification and using Θ =

[
(1−%)Γ(%)+T %

2
ABC(%)Γ(%)

]
, we obtain

∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
≤ ΘCΦΦ(t)α + ΘL f

∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
, (5.15)

and

∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
≤

ΘCΦΦ(t)
1 − Θ

L f

α ∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
,

by using

HΘ,CΦ
= max




T1
Γ(%+1)

1 − L fT1

Γ(%+1)

 , CΦΦ(t)Θ

1 − ΘL f

1−M f

 .
Now from Eqs (5.14) and (5.15), we have∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣

Z
≤ HΘ,CΦ

α, t ∈ T .

So the solution of model (2.1) is H-U-R stable. �

Remark 5.3. Suppose a function φ ∈ C(T ) does not depend upon K ∈ Z, and φ(0) = 0, then

|φ(t)| ≤ Ψ(t), t ∈ T .

Theorem 5.3. In light of H1, H2, Remark 5.3 and Lemma 5.2, the solution of model 2.1 is generalized
H-U-R stable, if M f < 1.

Where
H1 : For each K , v ∈ Z and constant CΦ > 0, we get

|Φ(K) − Φ(v)| ≤ CΦ |K − v| ,

and
H2 : For each K , v,K , v ∈ Z and constant L f > 0, 0 < M f < 1, we get∣∣∣∣M(t,K , v) −M(t,K , v)

∣∣∣∣ ≤ L f

∣∣∣∣K −K ∣∣∣∣ + M f |v − v| .

AIMS Mathematics Volume 8, Issue 12, 28353–28375.



28366

Proof. Here, we will discuss two cases:
Case 1: For t ∈ T , we have∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ = sup

t∈T

∣∣∣∣∣∣K −
(
K◦ +

1
Γ(%)

∫ t1

0
(t1 − s)%−1M

(
s,K(s)

)
ds

)∣∣∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣∣K −
(
K◦ +

1
Γ(%)

∫ t1

0
(t1 − s)%−1M

(
s,K(s)

)
ds

)∣∣∣∣∣∣
+ sup

t∈T

∣∣∣∣∣∣+ 1
Γ(%)

∫ t1

0
(t1 − s)%−1M (s,K(s)) ds

−
1

Γ(%)

∫ t1

0
(t1 − s)%−1M

(
s,K(s)

)
ds

∣∣∣∣∣∣
≤

T
%
1

Γ(% + 1)
CΦΦ(t)α +

L fT∞

Γ(% + 1)

∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ .
On further simplification ∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ ≤

CΦΦ(t) T1
Γ(%+1)

1 − L fT1

Γ(%+1)

α. (5.16)

Case 2: ∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣ ≤ sup
t∈T

∣∣∣∣∣∣K −
[
K(t1) +

1 − %
ABC(%)

[M (t,K(t))]

+
%

ABC(%)Γ(%)

[∫ t

t1
(t − s)%−1M

(
s,K(s)

)
d(s)

]]∣∣∣∣∣∣
+ sup

t∈T

1 − %
ABC(%)

∣∣∣∣M (t,K(t)) −M
(
t,K(t)

)∣∣∣∣
+ sup

t∈T

%

ABC(%)Γ(%)

∫ t

t1
(t − s)%−1

∣∣∣∣M (s,K(s)) −M
(
s,K(s)

)∣∣∣∣ ds.

By further simplification and using Θ =

[
(1−%)Γ(%)+T %

2
ABC(%)Γ(%)

]
, we have∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣

Z
≤ ΘCΦΦ(t)α + ΘL f

∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
, (5.17)

we have ∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
≤

(
ΘCΦΦ(t)
1 − ΘL f

) ∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣
Z
,

using

HΘ,CΦ
= max




T1
Γ(%+1)

1 − L fT1

Γ(%+1)

 , CΦΦ(t)Θ
1 − ΘL f

 .
Now from Eqs (5.16) and (5.17), we have∣∣∣∣∣∣∣∣K −K ∣∣∣∣∣∣∣∣

Z
≤ HΘ,CΦ

, t ∈ T .

Hence the solution of the model (2.1) is generalized H-U-R stable. �
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6. A numerical algorithm for the piecewise Malaria model

Here, we formulate a numerical method for solving the given problem with a piecewise derivative,
presented in Eq (2.1). This approach focuses on constructing a numerical scheme applicable for two
sub-intervals within the range of [0,T ] using the Caputo and ABC operators. To achieve this, we use
the insights provided by the piecewise operator numerical scheme presented in [24]. By employing
the piecewise integration technique to Eq (2.2) in the Caputo and ABC form, the following procedure
occurs:

Sh1(t) =


Sh1(0) + 1

Γ(%)

∫ t1
0

(t − τ)%−1 CM1(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ 0 < t ≤ t1,

Sh1(t1) +
1−%

AB(%)M1(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)

+
%

AB(%)Γ(%)

∫ t

t1
(t − τ)%−1M1(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ t1 < t ≤ T,

Eh1(t) =


Eh1(0) + 1

Γ(%)

∫ t1
0

(t − τ)%−1 cM2(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ 0 < t ≤ t1,

Eh1(t1) +
1−%

AB(%)M2(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)

+
%

AB(%)Γ(%)

∫ t

t1
(t − τ)%−1M2(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ t1 < t ≤ T,

Ih1(t) =


Ih1(0) + 1

Γ(%)

∫ t1
0

(t − τ)%−1 cM3(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ 0 < t ≤ t1,

Ih1(t1) +
1−%

AB(%)M3(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)

+
%

AB(%)Γ(%)

∫ t

t1
(t − τ)%−1M3(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ t1 < t ≤ T,

(6.1)

Rh1(t) =


Rh1(0) + 1

Γ(%)

∫ t1
0

(t − τ)%−1 cM4(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ 0 < t ≤ t1,

Rh1(t1) +
1−%

AB(%)M4(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)

+
%

AB(%)Γ(%)

∫ t

t1
(t − τ)%−1M4(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ t1 < t ≤ T,

Sm1(t) =


Sm1(0) + 1

Γ(%)

∫ t1
0

(t − τ)%−1 cM5(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ 0 < t ≤ t1,

Sm1(t1) +
1−%

AB(%)M5(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)

+
%

AB(%)Γ(%)

∫ t

t1
(t − τ)%−1M5(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ t1 < t ≤ T,

Im1(t) =


Im1(0) + 1

Γ(%)

∫ t1
0

(t − τ)%−1 cM6(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ 0 < t ≤ t1,

Im1(t1) +
1−%

AB(%)M6(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)

+
%

AB(%)Γ(%)

∫ t

t1
(t − τ)%−1M6(t,Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1)dτ t1 < t ≤ T.

Here,
CMi(t) =C Mi(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t),

ABCMi(t) =ABC
i M(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , t)

are left hand sides of Eq (6.1) for i = 1, 2, 3, also given in Eq (2.2). We present a scheme for model (6.1)
which will be used for other compartments as well. At t = tn+1

Sh1(tn+1)) =



Sh1(0) +
1

Γ(%)

∫ t1

0
(t − φ)%−1 CM1(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , φ)dφ,

Sh1(t1) +
1 − %

ABC(%)
ABCM1(Sh1 ,Eh1 ,Ih1 ,Rh1 ,Sm1 ,Im1 , tn)

+
%

ABC(%)Γ(%)

∫ tn+1

t1
(t − φ)%−1 ABCM1(φ)dφ, t1 < t ≤ T.

(6.2)
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Using newton interpolation approximation, Eq (6.2) follows as [24]

Sh1(tn+1)) =



Sh1(0) +



(∆t)%−1

Γ(% + 1)

i∑
K=2

[
CM1(S K−2

h1
,E K−2

h1
,I K−2

h1
,RK−2

h1
,S K−2

m1
,I K−2

m1
, tK−2)

]
A1

+
(∆t)%−1

Γ(% + 2)

i∑
K=2

[
CM1(S K−1

h1
,E K−1

h1
,I K−1

h1
,RK−1

h1
,S K−1

m1
,I K−1

m1
, tK−1)

−C M1(S K−2
h1

,E K−2
h1

,I K−2
h1

,RK−2
h1

,S K−2
m1

,I K−2
m1

, tK−2)
]
A2

+
%(∆t)%−1

2Γ(% + 3)

i∑
K=2

[
CM1(S K

h1
,E K

h1
,I K

h1
,RK

h1
,S K

m1
,I K

m1
, tK)

− 2 CM1(S K−1
h1

,E K−1
h1

,I K−1
h1

,RK−1
h1

,S K−1
m1

,I K−1
m1

, tK−1)

+ CM1(S K−2
h1

,E K−2
h1

,I K−2
h1

,RK−2
h1

,S K−2
m1

,I K−2
m1

, tK−2)
]
∆



,

Sh1(t1) +



1 − %
ABC(%)

ABCM1(S n
h1
,E n

h1
,I n

h1
,Rn

h1
S n

m1
,I n

m1
, tn)

+
%

ABC(%)
(δt)%−1

Γ(% + 1)

n∑
K=i+3

[
ABCM1(S K−2

h1
,E K−2

h1
,I K−2

h1
,S K−2

m1
,

I K−2
m1

, tK−2)
]
A1 +

%

ABC(%)
(υt)%−1

Γ(% + 2)

n∑
K=i+3

[
ABCM1(S K−1

h1
,

E K−1
h1

I K−1
h1

,RK−1
h1

,S K−1
m1

,I K−1
m1

, tK−1)

+ ABCM1(S K−2
h1

,E K−2
h1

,I K−2
h1

,RK−2
h1

,S K−2
m1

,I K−2
m1

, tK−2)
]
A2

+
%

ABC(%)
%(υt)%−1

Γ(% + 3)

n∑
K=i+3

[
ABCM1(S K

h1
,E K

h1
,I K

h1
,RK

h1
,S K

m1
,I K

m1
, tK)

− 2 ABCM1(S K−1
h1

,E K−1
h1

,I K−1
h1

,RK−1
h1

,S K−1
m1

,I K−1
m1

, tK−1)

+ ABCM1(S K−2
h1

,E K−2
h1

,I K−2
h1

,RK−2
h1

,S K−2
m1

,I K−2
m1

, tK−2)
]
∆.



.

For other five compartment, one can derive the Newton interpolation as above. Here

A1 = (n + 1 − K)%
(
2(n − K)2 + (3% + 10)(−K + n) + 2%2 + 9% + 12

)
−(−K + n)

(
2(n − K)2 + (5% + 10)(n − K) + 6%2 + 18% + 12

)
,

A2 = (1 − K + n)%
(
3 − K + 2% + n

)
− (−K + n)

(
n + 3% − K + 3

)
,

∆ = (1 + n − K)% − (n − K)%.
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7. Numerical simulations and discussion

The objective of this section is to present simulations of a mathematical model (2.1) that combines
the Caputo and ABC piecewise operators. This model is employed to investigate the dynamics of a
population consisting of susceptible, exposed, infected, and recovered humans, as well as susceptible
and infected mosquitoes. The parameter values employed to generate the figures in this section are
as follows: Ah = 0.027, Am = 0.13, b1 = 1/730, b2 = 0.001, w = 0.038, r1 = 0.020, r2 =

0.010, r3 = 0.072, ζ = 0.13, d1 = 0.001, d2 = 0.001, %h = 0.0004, %M = 0.04, α = 0.05, p =

0.611, ν = 0.01, υ = 0.01, q = 0.022. The initial population values are set as Sh1 = 1100, Eh1 =

150, Ih1 = 20, Rh1 = 200, Sm1 = 1000, Im1 = 100 considered from reference [15]. The time
interval is divided into two sub-intervals: for the left panels of Figs. 2-7, the interval is [0, t1] = [0, 23]
and [t1,T ] = [23, 60]. Similarly, for the right panels, the interval is divided as [0, t1] = [0, 13] and
[t1,T ] = [13, 400].

In Figure 2, the behavior of the susceptible human population is depicted. These sub figures
illustrate the decline in the number of susceptible individuals over time, with a more rapid decrease
observed during the second interval. Figure 3 display the evolution of the exposed individuals. These
figures show how the population of exposed individuals changes over time.
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Figure 2. The behavior of susceptible human population Sh1(t) in the C-ABC piece-wise
model (2.1).
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Figure 3. The behavior of the exposed human population Eh1(t) in the C-ABC piece-wise
model (2.1).
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The behavior of the infected population of humans is demonstrated in Figure 4. These sub figures
provide insights into the dynamics of the infected individuals and how their population varies over
time.
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Figure 4. The behavior of the infected human population Ih1(t) in the C-ABC piece-wise
model (2.1).

Similarly, Figure 5 shows the populous of recovered humans. These graphs show the initial rise in
the number of recovered individuals, which gradually enhances after t = 23 and stabilizes at t = 60.
Notably, individuals with small fractional orders of recovery get stability more quickly compared to
those with higher values.
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Figure 5. The behavior of the recovered human population Rh1(t) in the C-ABC piece-wise
model (2.1).

Furthermore, Figsures 6 and 7 illustrate the behavior of susceptible and infected mosquitoes,
respectively. These figures provide insights into the dynamics of mosquito populations in relation to
the transmission of the virus. The simulations reveal crucial insights into the behavior of the various
populations involved in the present mathematical model. The results show the decrease in the
susceptible population over time, the rapid decrease in the infections when considering the ABC
operator, and the patterns seen in the recovered population with different fractional orders. These
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findings add to our understanding of the spread and control of infections of a viral disease,
particularly in relation to human and mosquito populations.
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Figure 6. The behavior of the susceptible mosquitoes population Sm1(t) in the C-ABC piece-
wise model (2.1).
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Figure 7. The behavior of the infected mosquitoes population Im1(t) in the C-ABC piece-
wise model (2.1).

The comparison between the outcomes of the proposed model, whether real-world or simulated,
is illustrated in Figure 8. The left panel of the figure presents the recorded instances of infection
cases within the Western Pacific region, while the corresponding data from the Mediterranean region
is depicted on the right panel. These data points have been taken from [31]. It is worth noting that
the scaling factor for infections is such that a value of 1 corresponds to 1000 cases. Furthermore, the
temporal units are defined in such a way that 1 time unit equates to a span of 4 months.
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Figure 8. The comparison of the real vs simulated results of infected population of humans
in C-ABC piece-wise model (2.1).

Upon close examination of the left panel, it becomes evident that a multitude of data points align
precisely with a fractional order of 0.81 within the proposed model. A similar observation can be made
in the right panel, where the data points conform to distinct fractional orders. This intriguing finding
underscores the significance of employing piece-wise operators when analyzing biological models.
The utilization of such operators allows for a more accurate representation of the intricate dynamics
present within these systems, as evidenced by the varying fractional orders that align with the real
data points. This emphasizes the model’s capability to capture the nuanced behavior of the biological
phenomena under investigation.

8. Conclusions

We have studied a malaria model using a novel approach that incorporates both singular and
non-singular kernels through piecewise derivatives. By employing the Caputo derivative for the
singular kernel and the Atangana-Baleanu operator for the non-singular kernel, we have thoroughly
investigated the existence and uniqueness of solutions characterized by piecewise derivatives. To
approximate the solutions, we used a piecewise Newton polynomial approach. This numerical scheme
is specially designed to handle piecewise derivatives for singular and non-singular kernels. Further,
the numerical simulations are performed considering various fractional orders. These simulations
offer valuable insights into the dynamics of the malaria model, effectively taking into account
crossover behaviors and the efficacy of the proposed approach. Furthermore, the results are
thoroughly compared with real-world data, signifying their high effectiveness in analyzing disease
dynamics.

For possible future work, one possibility could involve exploring the applications of this approach
to different disease models, allowing for a broader understanding of disease dynamics and the
development of adaptable strategies for various health challenges. Additionally, investigating the
sensitivity of our results to variations in model parameters and exploring the impact of interventions
or control measures could further enhance the practical implications of our research.
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