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Abstract: This article introduces the concept of residual and past Tsallis extropy as a continuous
information measure within the context of continuous distribution. Moreover, the characteristics and
their relationships with other models are evaluated. Several stochastic comparisons are provided, along
with outcomes concerning order statistics. Additionally, the models acquired include instances such
as uniform and power function distributions. The measure incorporates its monotonic traits, and the
outcomes defining its characteristics are presented. On the other hand, a different portrayal of the
Tsallis extropy is introduced, expressed in relation to the hazard rate function. The Tsallis extropy
of the lifetime for both mixed and coherent systems is explored. In the case of mixed systems,
components’ lifetimes are considered independent and identically distributed. Additionally, constraints
on the Tsallis extropy of these systems are established, along with a clarification of their practical
applicability. Non-parametric estimation using an alternative form of Tsallis function extropy for
simulated and real data is performed.
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1. Introduction

Shannon [27] illustrated the classical Shannon of entropy measure of uncertainty. Supported with R,
the continuous Shannon entropy function for the random variable (RV) X with the probability density
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function (PDF) f (x) is provided as follows:

S N(X) = −E(ln f (X)) = −

∫
R

f (x) ln f (x)dx. (1.1)

Lad et al. [12] presented the idea of an extropy measure as a complementary measure to Shannon’s
entropy. The extropy of the discrete RV X, which is defined over the set Q = {x1, ..., xN} and has a
probability vector denoted as p = (p1, ..., pN), can be formulated in the following manner:

Ext(X) = −

N∑
i=1

(1 − pi) ln(1 − pi); (1.2)

see additional details in [10] and the references therein. Additionally, the concept of the continuous
RV (C-RV) X’s extropy, which is defined over the set of real numbers R, has been presented by Raqab
and Qiu [23] and Qiu [21], and it is defined as

Ext(X) = −
1
2

∫
R

f 2(x)dx. (1.3)

Denote the non-negative and absolutely C-RV X as the new system life length with time t and
cumulative distribution function (CDF) F(.). The residual lifetime of an individual is denoted by
X(R)

t := [X − t|X ≥ t] with the PDF f (R)(x; t) =
f (x)
F(t)

, x ≥ t. Moreover, the past lifetime of an item is

denoted by X(P)
t := [X|X ≤ t] with the PDF f (P)(x; t) =

f (x)
F(t) , x ≤ t, F(t) = 1 − F(t). Qiu and Jia [22]

presented the extropy for the residual life time X(R)
t as

RExt(X(R)
t ) = −

1
2

∫ ∞

t

(
f (x)

1 − F(t)

)2

dx. (1.4)

Moreover, Krishnan et al. [11] studied the past extropy as

PExt(X(P)
t ) = −

1
2

∫ t

0

(
f (x)
F(t)

)2

dx. (1.5)

Numerous researchers proposed multiple measures of entropy and their extensions. Among these
extensions to account for different forms of uncertainty, Tsallis [29] illustrated the so-called Tsallis
entropy. In the context of a C-RV X defined over R, with β , 1, β > 0, the continuous Tsallis entropy
is defined as

Tnβ(X) =
1

β − 1

(
1 −

∫
R

f β(x)dx
)
, (1.6)

where limβ→1 Tnβ(X) = S N(X). In addition, the connection between Tsallis and Renyi entropy can
be found in Mariz [18], as we can see that Rnβ(X) = log(1 + (1 − β)Tnβ(X))/(1 − β), with β , 1 and
β > 0, where Rnβ(X) is the Renyi entropy defined in [24]. Moreover, for cumulative Tsallis entropy
see Mohamed et al. [17] and the references therein.

Extropy can be used as an alternate measure to examine uncertainty because it has many matching
effects to entropy (Meng et al. [15]; Xie et al. [32]). Under the concept of extropy, numerous dual
structures for the entropy have been offered (Zhou and Deng [34]). Jahanshahi et al. [6] suggested a
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cumulative residual extropy. In addition, a negative cumulative extropy (Tahmasebi and Toomaj [28])
has been presented. Moreover, ordered variables (Noughabi and Jarrahiferiz [20]; Raqab and Qiu [23];
Qiu [21]), lifetime distribution (Kamari and Buono [8]), forecast distribution (Lad et al. [13]) and
estimators of RVs (Noughabi and Jarrahiferiz [19]) have been discussed.

Drawing from the context of a discrete distribution lifetime, Xue and Deng [33] suggested the
Tsallis extropy model, which serves as the dual counterpart to the Tsallis entropy, and explored its
maximization value. Additionally, Balakrishnan et al. [3] investigated the Tsallis extropy, employing it
in the realm of pattern recognition. Using the softmax function, Jawa et al. [7] delved into the residual
and past aspects of Renyi and Tsalliss extropy.

Recently, Mohamed et al. [16] presented the continuous Tsallis extropy of the RV X backed by
[a,b], −∞ < a < b < ∞, as follows

T xβ(X) =
1

β − 1

(∫ b

a
(1 − f (x))dx −

∫ b

a
(1 − f (x))βdx

)
=

1
β − 1

(
b − a − 1 −

∫ b

a
(1 − f (x))βdx

)
,

(1.7)

where the conditions on β can be given as follows:

(1) β , 1, β > 0 if f (x) ≤ 1.

(2) β ∈ Z+\{1} if f (x) > 1.

Moreover, regarding the relation to dynamical information measures and the use of survival functions,
we can see Contreras-Reyes et al. [4].

This paper introduces the continuous dynamical version of Tsallis extropy for a continuous
distribution lifetime. The residual and past functions for Tsallis extropy and their properties are
obtained. Another alternative representation of the Tsallis extropy with additional features is given.
The remaining part of the article is therefore structured as follows. In Section 2, the past and residual
functions for Tsallis extropy with some bounds, as well as monotone characterization results are
introduced. Furthermore, the relation between our models and other measures is obtained. In Section 3,
a thorough exploration of multiple properties of the dynamic versions is conducted. Moving on to
Section 4, an analysis is presented concerning the Tsallis extropy and its characteristics in terms of
both coherent and mixed structures under the conditions of the independent and identically distributed
(iid) condition. Additionally, the section provides limits for the Tsallis entropy of system life times.
Finally, in Section 4, the Tsallis extropy estimator is presented.

2. Properties of residual and past functions for Tsallis extropy

Inspired by the concepts of Tsallis entropy and extropy functions, this section presents the related
measures of residual and past functions for Tsallis extropy as follows.

Likewise, following the approach presented by Lad et al. [12], we can express the residual and past
functions for extropy, respectively, as shown below:

RExt(X(R)
t ) = −

∫ ∞

t
(1 −

f (x)

F(t)
) ln(1 −

f (x)

F(t)
)dx, (2.1)
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with f (x)
F(t)

< 1, and

PExt(X(P)
t ) = −

∫ ∞

0
(1 −

f (x)
F(t)

) ln(1 −
f (x)
F(t)

)dx, (2.2)

with f (x)
F(t) < 1. There is a significant amount of literature on the use of Eqs (1.4) and (1.5) to discuss

extropy. In our research, we will also address Eqs (2.1) and (2.2) as an illustrative representation of
extropy. In what follows, we will present the definitions of the residual and past functions for Tsallis
extropy.

Definition 2.1. Let X be a C-RV backed by [a, b], −∞ < a < b < ∞, with a PDF f (.). Then, the
residual function for the Tsallis extropy of the residual lifetime X(R)

t can be provided as

RT xβ(X; t) =
1

β − 1

∫ b

a
(1 − f (x))dx −

∫ b

t

(
1 −

f (x)

F(t)

)β
dx


=

1
β − 1

b − a − 1 −
∫ b

t

(
1 −

f (x)

F(t)

)β
dx

 , (2.3)

where the conditions on β are as follows:

(1) β , 1, β > 0 if f (x)
F(t)
≤ 1.

(2) β ∈ Z+\{1} if f (x)
F(t)

> 1.

Definition 2.2. Let X be a C-RV backed by [a, b], −∞ < a < b < ∞, with a PDF f (.). Then, the past
function for the Tsallis extropy of the past lifetime X(P)

t can be provided as

PT xβ(X; t) =
1

β − 1

∫ b

a
(1 − f (x))dx −

∫ t

a

(
1 −

f (x)
F(t)

)β
dx


=

1
β − 1

b − a − 1 −
∫ t

a

(
1 −

f (x)
F(t)

)β
dx

 , (2.4)

where the conditions on β are as follows:

(1) β , 1, β > 0 if f (x)
F(t) ≤ 1.

(2) β ∈ Z+\{1} if f (x)
F(t) > 1.

Proposition 2.1. Suppose that X is a non-negative C-RV backed by [a, b], 0 < a < b < ∞. Then, from
Eqs (2.1)–(2.4), we have

lim
β→1

RT xβ(X; t) = RExt(X(R)
t ), (2.5)

where β , 1, β > 0 and f (x)
F(t)
≤ 1.

lim
β→1

PT xβ(X; t) = PExt(X(R)
t ), (2.6)

where β , 1, β > 0 and f (x)
F(t) ≤ 1.
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Proof. By directly applying L’Hôpital’s rule, the results are obtained. �

Now, to discuss some further properties, it is useful to discuss the sign of our models. The following
proposition discusses the conditions that guarantee the non-negativity of the residual and past functions
for Tsallis extropy.

Proposition 2.2. Assume that X is a non-negative C-RV backed by [a, b], 0 < a < b < ∞, with a PDF
f (.) and CDF F(.). From Eqs (2.3) and (2.4), if β > 1 (β < 1) and f (x)

F(t)
≤ 1, ∀a < t < b < ∞, then the

residual function for Tsallis extropy is non-negative (negative). Moreover, if β > 1 (β < 1) and f (x)
F(t) ≤ 1,

∀a < t < b < ∞, then the past function for Tsallis extropy is non-negative (negative).

Proof. Since f (x)
F(t)
≤ 1, then we have

0 ≤
∫ b

t

(
1 −

f (x)

F(t)

)β
dx ≤

∫ b

t

(
1 −

f (x)

F(t)

)
dx = b − t − 1.

Therefore, from Eq (2.3), when β > 1 (β < 1), we obtain

RT xβ(X; t) =
1

β − 1

b − a − 1 −
∫ b

t

(
1 −

f (x)

F(t)

)β
dx


≥ (≤)

1
β − 1

(t − a) ≥ (≤)0.

Similarly, from Eq (2.4), the result follows. �

Example 2.1. Suppose that the C-RV X has a continuous uniform distribution over [a, b], −∞ < a <
b < ∞, denoted by U(a, b), with a CDF F(x) = x−a

b−a and PDF f (x) = 1
b−a . Then, from (2.3) and (2.4),

the residual and past functions for Tsallis extropy are given, respectively, by

RT xβ(X; t) =
1

β − 1

b − a − 1 − (b − t)
(
1 −

1
(b − t)

)β ,
PT xβ(X; t) =

1
β − 1

b − a − 1 − (−a + t)
(
1 −

1
(−a + t)

)β .
Example 2.2. Suppose that the C-RV X has a power function distribution with a CDF and PDF shown,
respectively, by

F(x) =

( x
λ

)θ
,

f (x) =
θx(θ−1)

λθ
, 0 ≤ x ≤ λ and θ, λ > 0.

Then, from Eqs (2.3) and (2.4), the residual and past functions for Tsallis extropy are given,
respectively, by

RT xβ(X; t) =
1

β − 1

λ − 1 −
∫ λ

t

(
1 +

θx(θ−1)

(tθ − λθ)

)θ
dx

 ,
PT xβ(X; t) =

1
β − 1

(
λ − 1 −

∫ t

a
(1 − θt−θx(θ−1))θdx

)
.
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Using different values of θ and λ, Figure 1 gives the residual and past functions for Tsallis extropy
of the power function distribution.

Figure 1. Power function distributions for residual function for Tsallis extropy with t = 1
(upper panel) and past function for Tsallis extropy with t = 3 (lower panel).

Proposition 2.3. Suppose that X is a non-negative C-RV backed by [a, b], 0 < a < b < ∞, with the
PDF f (.) and CDF F(.). From Eqs (2.3) and (2.4), we have the following properties.

i) From Eq (2.3) and under the conditions that 0 < f (x)
F(t)

< 1, β , 1 and β > 0, we have

RT xβ(X; t) ≤
1

β − 1
(t − a − 1 + β) .

ii) From Eq (2.4) and under the conditions that 0 < f (x)
F(t) < 1, β , 1 and β > 0, we have

PT xβ(X; t) ≤
1

β − 1
(b − t − 1 + β) .
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Proof. i) Property (i) can be obtained from Eq (2.3) and under the conditions 0 < f (x)
F(t)

< 1, β , 1 and
β > 0. Furthermore, employing Bernoulli’s inequality, we have

RT xβ(X; t) =
1

β − 1

b − a − 1 −
∫ b

t

(
1 −

f (x)

F(t)

)β
dx


≤

1
β − 1

(
b − a − 1 −

∫ b

t

(
1 − β

f (x)

F(t)

)
dx

)
=

1
β − 1

(
t − a − 1 + β

∫ b

t

f (x)

F(t)
dx

)
=

1
β − 1

(t − a − 1 + β) .

Similarly, (ii) can be obtained. �

Definition 2.3. Suppose that X is a C-RV backed by [a, b], −∞ < a < b < ∞. Then,

(1) X is a decreasing (increasing) residual function for Tsallis extropy of order β (DRT EXβ (IRT EXβ))
if RT xβ(X; t) is decreasing (increasing) in terms of t, where β is defined in Eq (2.3).

(2) X is a decreasing (increasing) past function for Tsallis extropy of order β (DPT EXβ (IPT EXβ)) if
PT xβ(X; t) is decreasing (increasing) in terms of t, where β is defined in Eq (2.4).

Proposition 2.4. Let X be a C-RV backed by [a, b], −∞ < a < b < ∞, with a PDF f (.). Therefore,
an alternative representation of the residual function for Tsallis extropy with respect to the hazard rate
function ψ(x) =

f (x)
F(x)

is given by

RT xβ(X; t) =
1

β − 1

b − a − 1 +

Aβ∑
i=0

(
β
i

) 1
i

E[(−ψ(Xi,t))i−1]

 , (2.7)

where

Aβ =

 β, β ∈ Z+\{1};
∞, β , 1, β > 0 when f (x)

F(t)
< 1,

and the RV Xi,t has the PDF

fXi,t(x, t) =
i f (x)

F(t)

F(x)

F(t)

i−1

, x ≥ t > 0.

Proposition 2.5. Let X be a C-RV backed by [a, b], −∞ < a < b < ∞, with a PDF f (.). Therefore, an
alternative representation of the past function for Tsallis extropy with respect to the reversed hazard
rate function Ω(x) =

f (x)
F(x) is given by

PT xβ(X; t) =
1

β − 1

b − a − 1 +

Bβ∑
i=0

(
β
i

) 1
i

E[(−Ω(Xi,t))i−1]

 , (2.8)
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where

Bβ =

{
β, β ∈ Z+\{1};
∞, β , 1, β > 0 when f (x)

F(t) < 1,

and the RV Xi,t has the PDF

gXi,t(x, t) =
i f (x)
F(t)

(
F(x)
F(t)

)i−1

, a < t < x < b.

Lemma 2.1. According to Eqs (2.7) and (2.8), we have

d
dt

RT xβ(X; t) =
ψ(t)
β − 1

− Aβ∑
i=0

(
β
i

)
(−ψ(t))i−1 +

Aβ∑
i=0

(
β
i

)
E[(−ψ(Xi,t))i−1]

 , (2.9)

d
dt

PT xβ(X; t) =
Ω(t)
β − 1

 Bβ∑
i=0

(
β
i

)
(−Ω(t))i−1 −

Bβ∑
i=0

(
β
i

)
E[(−Ω(Xi,t))i−1]

 (2.10)

for all t ≥ 0.

Remark 2.1. (1) If X is DRT EXβ (IRT EXβ), then d
dt RT xβ(X; t) = 0 and we have∑Aβ

i=0

(
β
i

)
E[(−ψ(Xi,t))i−1] =

∑Aβ
i=0

(
β
i

)
(−ψ(t))i−1.

(2) If X is DPT EXβ (IPT EXβ), then d
dt PT xβ(X; t) = 0 and we have∑Bβ

i=0

(
β
i

)
E[(−Ω(Xi,t))i−1] =

∑Bβ
i=0

(
β
i

)
(−Ω(t))i−1.

In the upcoming theorem, we examine the connection between IRT EXβ with increasing failure rate
(IFR) and DPT EXβ with decreasing reversed failure rate (DRFR).

Theorem 2.1. Suppose that X is a non-negative C-RV backed by [a, b], 0 < a < b < ∞, with a PDF
f (.) and CDF F(.).

(1) From Eqs (2.3) and (2.7), when β > 1 and f (x)
F(t)
≤ 1, if X is IFR, X is IRT EXβ.

(2) From Eqs (2.4) and (2.8), when β > 1 and f (x)
F(t) ≤ 1, if X is DRFR, X is DPT EXβ.

Proof. (1) Let X be the IFR; then, ψ(x) is increasing in terms of x. From Eqs (2.3) and (2.7), when
β > 1 and f (x)

F(t)
≤ 1, we have

Aβ∑
i=0

(
β
i

)
E[(−ψ(Xi,t))i−1] =

Aβ∑
i=0

(
β
i

) ∫ b

t
(−ψ(x))i−1 fXi,t(x, t)dx

≥

Aβ∑
i=0

(
β
i

)
(−ψ(t))i−1

for t ≥ 0 and from Eq (2.9) we get the result.
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(2) Let X be the DRFR; then Ω(x) is decreasing in terms of x. From Eqs (2.4) and (2.8), when β > 1
and f (x)

F(t) ≤ 1, we have

Bβ∑
i=0

(
β
i

)
E[(−Ω(Xi,t))i−1] =

Bβ∑
i=0

(
β
i

) ∫ b

t
(−Ω(x))i−1gXi,t(x, t)dx

≤

Bβ∑
i=0

(
β
i

)
(−Ω(t))i−1

for t ≥ 0 and from Eq (2.10) we get the result.
�

The plots of the residual and past functions for Tsallis extropy in Figure 2 show that X is not IRT EXβ

or DPT EXβ.

Figure 2. Power function distribution (β = 6, θ = 2, λ = 5) for the residual function for
Tsallis extropy (left panel) and past function for Tsallis extropy (right panel) with respect to t.

In the next part, we will obtain some interesting residual and past functions for Tsallis extropy when
the order β = 2 is selected.

Remark 2.2. According to Definitions 2.1 and 2.2, the residual and past functions for Tsallis extropy
of order β = 2 is selected; then, they are accurate for both f (x) ≤ 1 or f (x) > 1.

The following example gives the residual and past functions for Tsallis extropy of order β = 2 for
the finite range.

Example 2.3. Suppose that the C-RV X has a continuous finite range with a beta distribution function
F(x) = 1 − (1 − x)θ and PDF f (x) = θ(1 − x)θ−1, x ∈ (0, 1), θ > 1. Then, from Eqs (2.3) and (2.4), the
residual and past functions for Tsallis extropy of order β = 2 are given, respectively, by

RT x2(X; t) = 1 + t +
θ2

((−1 + t)(−1 + 2θ))
,

PT x2(X; t) = 2 − t −
((−1 + (1 − t)2θ + t)θ2)

((−1 + (1 − t)θ)2(−1 + t)(−1 + 2θ))
.
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Proposition 2.6. Suppose that X is a C-RV backed by [a, b], −∞ < a < b < ∞. Then, from Eqs (2.3),
(2.4), (1.4) and (1.5), we have

(1) RT x2(X; t) = t − a + RTn2(X; t) = t − a + 1 + 2RExt(X(R)
t ),

(2) PT x2(X; t) = b − t + PTn2(X; t) = b − t + 1 + 2PExt(X(R)
t ),

where RTnβ(X; t) = 1
β−1

(
1 −

∫ b

t
(1 − f (x)

F(t)
)βdx

)
and PTnβ(X; t) = 1

β−1

(
1 −

∫ t

a
(1 − f (x)

F(t) )
βdx

)
are the

residual and past functions for Tsallis entropy of order β, respectively; for more details about those
measures, see [1].

Proof. From Eq (2.3), when β = 2, we have

RT x2(X; t) =
1

2 − 1

b − a − 1 −
∫ b

t

(
1 −

f (x)

F(t)

)2

dx


= b − a − 1 −
b − t − 2 +

∫ b

t

(
1 −

f (x)

F(t)

)2

dx


= t − a + RTn2(X; t) = t − a + 1 + 2RExt(X(R)
t ).

It is similar for PT x2(X; t). �

Theorem 2.2. The residual and past functions for Tsallis entropies of order 2 are uniquely determined
by the hazard rate function ψ(t) and reversed hazard rate function Ω(t), t ≥ 0.

Proof. From Eq (2.3), when β = 2, we have

d
dt

RT x2(X; t) = 1 + 2(a − t − 1)ψ(t) + ψ2(t) + 2ψ(t)RT x2(X; t).

Therefore, we get

d
dt

RT x2(X; t) − 2ψ(t)RT x2(X; t) = 1 + 2(a − t − 1)ψ(t) + ψ2(t). (2.11)

We can solve the previous first-order linear ordinary differential equation with a varying coefficient
ψ(t) by using the integrating factor method (IFM). Thus

RT x2(X; t) = e2
∫

t ψ(t1)dt1

[∫
t
(1 + 2(a − t2 − 1)ψ(t2) + ψ2(t2))e−2

∫
t2
ψ(t1)dt1dt2 + C

]
, (2.12)

where C is a constant and RT x2(X; t)|t=0 = T x2(X). Similarly, for PT x2(X; t) and from Eq (2.4), when
β = 2, we have

d
dt

PT x2(X; t) = −1 − 2(t − b − 1)Ω(t) −Ω2(t) − 2Ω(t)PT x2(X; t).

Therefore, we get

d
dt

PT x2(X; t) + 2Ω(t)PT x2(X; t) = −1 − 2(t − b − 1)Ω(t) −Ω2(t). (2.13)
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We can solve the previous first-order linear ordinary differential equation with a varying coefficient
Ω(t) by using the IFM. Thus

PT x2(X; t) = e−2
∫

t ψ(t1)dt1

[∫
t
(−1 − 2(t − b − 1)Ω(t) −Ω2(t))e2

∫
t2
ψ(t1)dt1dt2 + G

]
, (2.14)

where G is a constant and PT x2(X; t)|t=0 = T x2(X). This completes the proof. �

Remark 2.3. According to Eqs (2.11) and (2.13), we can state that

(1) RT x2(X; t) is decreasing (increasing) in terms of t if and only if RT x2(X; t) ≤ (≥)t − a + 1 − 1+ψ2(t)
2ψ(t) ;

(2) PT x2(X; t) is decreasing (increasing) in terms of t if and only if PT x2(X; t) ≤ (≥)b − t + 1 − 1+Ω2(t)
2Ω(t) .

In what follows, we characterize the distribution of the finite range from the perspective of the
residual function for Tsallis extropy.

Theorem 2.3. Suppose that X is a C-RV with failure rate ψ(.). If RT x2(X; t) = t + 1 − 2kψ(t), where
t ≥ 0 and the non-negative constant k ≥ 0; thus, X follows a distribution of finite range if and only if
k > 1

4 .

Proof. According to Example 2.3, the necessary condition is obtained. In what follows, we will discuss
the sufficient part, assuming that RT x2(X; t) = t + 1 − 2kψ(t), t ≥ 0. From (2.11), we can see that

ψ′(t)
ψ2(t)

=
4k − 1

2k
, t ≥ 0.

By resolving the equation provided above, we get that ψ(t) = 1
qt+s , t ≥ 0; q = 1−4k

2k and s = 1
ψ(0) .

Therefore, if k > 1
4 , then p > 0 and ψ(t) is the failure rate of the distribution of the finite range, which

is uniquely determined by its failure rate. �

Residual and past functions for Tsallis extropy of order statistics

Suppose that X1, X2, ..., Xn are n independent random samples from a population with a PDF f (.)
and CDF F(.). Then, X1:n, X2:n, ..., Xn:n are the order statistics (O.S.) of the random samples, and the ith
O.S., 1 ≤ i ≤ n, is given by

fi:n(x) =
F i−1(x)F

n−i
(x) f (x)

B(i, n − i + 1)
, (2.15)

where B(i, n − i + 1) is the beta function.

Proposition 2.7. From Eqs (2.3) and (2.4), suppose RT xβ(Xi:n; t) and PT xβ(Xi:n; t) are the residual and
past functions for Tsallis extropy of the ith O.S. Xi:n, 1 ≤ i ≤ n, respectively. Then, we can conclude the
following:

(1) From Eq (2.3), we have

RT xβ(Xi:n; t) ≤
1

β − 1
(t − a − 1 + β),

where 0 ≤ f (x)
F(t)
≤ 1.
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(2) From Eq (2.3), we have

RT x2(Xi:n; t) = t − a + 1 + 2RExt(Xi:n; t)
= t − a + RTn2(Xi:n; t).

(3) From Eq (2.4), we have

PT xβ(Xi:n; t) ≤
1

β − 1
(b − t − 1 + β),

where 0 ≤ f (x)
F(t) ≤ 1.

(4) From Eq (2.4), we have

PT x2(Xi:n; t) = b − t + 1 + 2PExt(Xi:n; t)
= b − t + PTn2(Xi:n; t).

Proof. From Eqs (2.3) and (2.4), the residual and past functions for Tsallis extropy of the ith O.S. Xi:n,
1 ≤ i ≤ n, respectively, are given by

RT xβ(Xi:n; t) =
1

β − 1

b − a − 1 −
∫ b

t

(
1 −

fi:n(x)

F i:n(t)

)β
dx

 ,
PT xβ(Xi:n; t) =

1
β − 1

b − a − 1 −
∫ t

a

(
1 −

fi:n(x)
Fi:n(t)

)β
dx

 ,
where Fi:n(t) is the CDF of the ith O.S. Xi:n, 1 ≤ i ≤ n. Then, the results follow. �

Theorem 2.4. For t ≥ 0, if RT x2(Xi:n; t) = t + 1 − 2kψ(t), where t ≥ 0 and the non-negative constant
k ≥ 0, then X follows a distribution of finite range if and only if k > n

4 .

3. Further properties of Tsallis extropy

From the continuous Tsallis extropy definition presented in Eq (1.7), we can represent the
continuous Tsallis extropy of the RV X backed by [a, b], −∞ < a < b < ∞, as follows

Proposition 3.1. Let X be a C-RV backed by [a, b], −∞ < a < b < ∞, with a PDF f (.). Therefore,
an alternative representation of the Tsallis extropy in terms of the hazard rate function ψ(x) =

f (x)
F(x)

is
given by

T xβ(X) =
1

β − 1

b − a − 1 −
Tβ∑
i=0

(
β
i

) ∫ b

a
(− f (x))idx


=

1
β − 1

b − a − 1 +

Tβ∑
i=0

(
β
i

) 1
i

E[(−ψ(Xi))i−1]

 ,
(3.1)

where

Tβ =

{
β, β ∈ Z+\{1};
∞, β , 1, β > 0 when f (x) < 1,

and the RV Xi has the PDF
fXi(x, t) = iF

i−1
(t) f (x).
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According to Shaked and Shanthikumar [26], we will utilize some stochastic orders known as
stochastic order (≤S T ), hazard rate (≤HR) order and dispersive order (≤DIS ) (the order of variability
distribution). Moreover, the previous orders indicate the following:
1- ≤HR=⇒≤S T ;
2- ≤DIS =⇒≤S T .

Definition 3.1. Suppose that X1 and X2 are non-negative C-RVs backed by [a, b], 0 < a < b < ∞. Then,
X1 is smaller than X2 for the case of Tsallis extropy of order β, (X1 ≤T x X2) if T xβ(X1) ≤ T xβ(X2), where
β is defined in Eq (1.7).

Theorem 3.1. Suppose that X1 and X2 are non-negative C-RVs backed by [a, b], 0 < a < b < ∞, with
PDFs f1, f2 and CDFs F1, F2, respectively. From (3.1), if X1 ≤DIS X2 then X1 ≤T x X2.

Proof. From (3.1) with β > 1 (< 1). If X1 ≤DIS X2, then

(β − 1)T xβ(X2) = b − a − 1 −
Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0
f i−1
2 (F−1

2 (u))du

≤ (≥)b − a − 1 −
Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0
f i−1
1 (F−1

1 (u))du = (β − 1)T xβ(X1).

Then the result follows for all values of β defined in Eq (1.7). �

The next theorem presents the effect of a transformation on the Tsallis extropy of an RV.

Theorem 3.2. Suppose that X1 is a non-negative C-RV backed by [a, b], 0 < a < b < ∞, with the PDF
f1, and that X2 = ϕ(X1) where ϕ is a continuous function with the derivative ϕ′(x) such that E(X2

2) < ∞.
If |ϕ′(x)| ≥ 1, ∀ x supported with X1, then T xβ(X1) ≤ T xβ(X2), ∀ β is defined in Eq (1.7).

Proof. Let X2 = ϕ(X1) since the Jacobian transformation Jϕ(X2) = |
dϕ−1(X2)

dX2
|. Therefore, fX2(x) =

fX1(ϕ
−1(x))| 1

ϕ′(ϕ−1(x)) |. Then,

T xβ(X2) =
1

β − 1

b − a − 1 −
Tβ∑
i=0

(
β
i

)
(−1)i

∫ b

a
f i
X2

(x)dx


=

1
β − 1

b − a − 1 −
Tβ∑
i=0

(
β
i

)
(−1)i

∫ b

a
f i
X1

(ϕ−1(x))
(

1
ϕ′(ϕ−1(x))

)i

dx


=

1
β − 1

b − a − 1 −
Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0
f i
X1

(u)
(

1
ϕ′(u)

)i−1

du

 ,
and the rest of the proof is analogous to Theorem 1 in Ebrahimi et al. [5]. �

We consider some aging restrictions of the associated RVs and the order β. The following theorem
shows the importance of the stochastic order.

Proposition 3.2. Suppose that X1 and X2 are non-negative C-RVs backed by [a, b], 0 < a < b < ∞,
with PDFs f1, f2 and CDFs F1, F2, respectively. If X1 ≤S T X2, then T xβ(X1) ≥ (≤)T xβ(X2) for β > 1
(β < 1) defined in Eq (1.7).
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Proof. Since X1 ≤S T X2, F1(x) ≤ F2(x). From (1.7), the result follows. �

Tsallis extropy of a mixture of coherent systems

The particular case of a coherent structure is the k-out-of-n system. Moreover, a mixture of coherent
schemes is deemed a mixed system; see Samaniego [25]. Under the iid case, the PDF of the mixed
system lifetime M is given by

fM(m) =

n∑
j=1

q j f j:n(x), (3.2)

where f j:n(x) is defined in Eq (2.15), 1 ≤ j ≤ n. The system signature is the vector q = (q1, ..., qn), and
q j = P(M = X j:n),

∑n
j q j = 1, 1 ≤ j ≤ n. The O.S. U j:n = F(X j:n), 1 ≤ j ≤ n, has the PDF

h j(u) =
u j−1(1 − u)n− j

B( j, n − j + 1)
.

Therefore, the PDF of W = F(M) is

hW(w) =

n∑
j=1

q jh j(w). (3.3)

By using the previous transformations, the following formula discusses the Tsallis extropy ofM.

Theorem 3.3. The Tsallis extropy of the mixed system lifetime M is

T xβ(M) =
1

1 − β

 Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0
hi

W(w) f i−1(F−1(w))dw − b + a + 1

 , (3.4)

where hW(w) is defined in Eq (3.3).

Proof. From (3.1), and using the transformation w = F(m), we have

T xβ(M) =
1

1 − β

 Tβ∑
i=0

(
β
i

)
(−1)i

∫ b

a

 n∑
j=1

q j f j:n(m)


i

dm − b + a + 1


=

1
1 − β

 Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0

 n∑
j=1

q j
w j−1(1 − w)n− j

B( j, n − j + 1)


i

f i−1(F−1(w))dw − b + a + 1


=

1
1 − β

 Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0
hi

W(w) f i−1(F−1(w))dw − b + a + 1

 .
(3.5)

�

Theorem 3.4. Under the same signature, suppose that the lifetime of two mixed systems are MX1 and
MX2 with n iid component lifetimes. Then, we have the following:

(1) If X1 ≤DIS X2, then MX1 ≤T x MX2 .
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(2) Suppose that R1 = {0 < w < 1 | f2(F−1
2 (w))

f1(F−1
1 (w)) < 1} and R2 = {0 < w < 1 | f2(F−1

2 (w))
f1(F−1

1 (w)) ≥ 1}. If X1 ≤T x X2,
then MX1 ≤T x MX2 , under the condition that R1 = R2 = φ or infw∈R1 hW(w) ≥ supw∈R2

hW(w).

Proof. (1) Since X1 ≤DIS X2, from Eq (3.1), we have

(1 − β)
(
T xβ(MX1) − T xβ(MX2)

)
=

Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0
hi

W(w)

×
(

f i−1
1 (F−1

1 (w)) − f i−1
2 (F−1

2 (w))
)

dw ≥ 0(≤ 0),

where β > 1(0 < β < 1), and the result follows.

(2) Since X1 ≤T x X2, from Eq (3.1) when β > 1, we have

Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0

(
f i−1
1 (F−1

1 (w)) − f i−1
2 (F−1

2 (w))
)

dw ≥ 0. (3.6)

In the sequel, we get

(1 − β)
(
T xβ(MX1) − T xβ(MX2)

)
=

Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0
hi

W(w)

×
(

f i−1
1 (F−1

1 (w)) − f i−1
2 (F−1

2 (w))
)

dw.

Thus, using (3.6) and the given infw∈R1 hW(w) ≥ supw∈R2
hW(w) for β > 1, we obtain

Tβ∑
i=0

(
β
i

)
(−1)i

∫
R1

hi
W(w)

(
f i−1
1 (F−1

1 (w)) − f i−1
2 (F−1

2 (w))
)

dw

+

Tβ∑
i=0

(
β
i

)
(−1)i

∫
R2

hi
W(w)

(
f i−1
1 (F−1

1 (w)) − f i−1
2 (F−1

2 (w))
)

dw

≥

Tβ∑
i=0

(
β
i

)
(−1)i( inf

w∈R1
hW(w))i

∫
R1

(
f i−1
1 (F−1

1 (w)) − f i−1
2 (F−1

2 (w))
)

dw

+

Tβ∑
i=0

(
β
i

)
(−1)i(sup

w∈R2

hW(w))i
∫

R2

(
f i−1
1 (F−1

1 (w)) − f i−1
2 (F−1

2 (w))
)

dw

≥

Tβ∑
i=0

(
β
i

)
(−1)i(sup

w∈R2

hW(w))i
∫

R1

(
f i−1
1 (F−1

1 (w)) − f i−1
2 (F−1

2 (w))
)

dw

+

Tβ∑
i=0

(
β
i

)
(−1)i(sup

w∈R2

hW(w))i
∫

R2

(
f i−1
1 (F−1

1 (w)) − f i−1
2 (F−1

2 (w))
)

dw

=

Tβ∑
i=0

(
β
i

)
(−1)i(sup

w∈R2

hW(w))i
∫ 1

0

(
f i−1
1 (F−1

1 (w)) − f i−1
2 (F−1

2 (w))
)

dw ≥ 0.

Similarly, the result follows for 0 < β < 1.
�
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When the components within the system cannot be quantified, or if the system involves a complex
function structure, obtaining the Tsallis extropy often becomes challenging. Consequently, establishing
the limits of this measure becomes crucial. The subsequent theorem provides the boundaries for Tsallis
extropy of the mixed system.

Theorem 3.5. Suppose that T xβ(X) < ∞, from Eq (3.4) with β > 1 (0 < β < 1), we have

T xβ(M) ≥ (≤)

(
supw∈(0,1) hW(w)

)β
(b − a − 1) − b + a + 1

1 − β
+

(
sup

w∈(0,1)
hW(w)

)β
T xβ(X).

Proof. From (3.4), we have

b − a − 1 + (1 − β)T xβ(M) =

Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0
hi

W(w)
(

f i−1(F−1(w))
)

dw

≤

Tβ∑
i=0

(
β
i

)
(−1)i

(
sup

w∈(0,1)
hW(w)

)i ∫ 1

0
f i−1(F−1(w))dw

≤

(
sup

w∈(0,1)
hW(w)

)β Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0
f i−1(F−1(w))dw

=

(
sup

w∈(0,1)
hW(w)

)β
[b − a − 1 + (1 − β)T xβ(X)],

which proves the theorem. �

In the case of the decreasing failure rate (DFR) of the lifetimes component, the following theorem
indicates that the minimum lifetime has a lower or equal Tsallis extropy order in the iid case than for
all of the mixed systems.

Theorem 3.6. Consider the iid case and the lifetime component to be DFR. Then, X1:n ≤T x M, where
M is the mixed lifetime system.

Proof. According to Bagai and Kochar [2], under the condition of the DFR lifetime, we have that
X1:n ≤HR M =⇒ X1:n ≤DIS M. From Theorem 3.1, we get that X1:n ≤T x M. �

Theorem 3.7. Suppose that T xβ(X j:n) < ∞, from Eq (3.4), we have

T xβ(M) ≥
n∑

j=1

q jT xβ(X j:n),

where T xβ(X j:n) is the Tsallis extropy of the jth O.S.

Proof. Recall Eq (3.5), we have

T xβ(M) =
1

1 − β

 Tβ∑
i=0

(
β
i

)
(−1)i

∫ b

a

 n∑
j=1

q j f j:n(m)


i

dm − b + a + 1

 .
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Using Jensen’s inequality, we obtain n∑
j=1

q j f j:n(m)


β

≥ (≤)
n∑

j=1

q j f βj:n(m),

where f βj:n is concave (convex) when 0 < β < 1 (β > 1) and m > 0. Thus,

∫ b

a
f βM(m)dm =

∫ b

a

 n∑
j=1

q j f j:n(m)


β

dm ≥ (≤)
n∑

j=1

q j

∫ b

a
f βj:n(m)dm,

=⇒

Tβ∑
i=0

(
β
i

)
(−1)i

∫ b

a

 n∑
j=1

q j f j:n(m)


i

dm ≥ (≤)
Tβ∑
i=0

(
β
i

)
(−1)i

n∑
j=1

q j

∫ b

a
f i

j:n(m)dm; (3.7)

multiplying (3.7) by 1
1−β , and noting that 1 − β > 0 (1 − β < 0), it holds that

T xβ(M) ≥
1

1 − β

 Tβ∑
i=0

(
β
i

)
(−1)i

n∑
j=1

q j

∫ b

a
f i

j:n(m)dm − b + a + 1


=

1
1 − β

 n∑
j=1

q j

Tβ∑
i=0

(
β
i

)
(−1)i

∫ b

a
f i

j:n(m)dm −
n∑

j=1

q j(b − a − 1)


=

n∑
j=1

q j

 1
1 − β

 Tβ∑
i=0

(
β
i

)
(−1)i

∫ b

a
f i

j:n(m)dm − (b − a − 1)




=

n∑
j=1

q j

[
1

1 − β

(∫ b

a
(1 − f j:n(m))βdm −

∫ b

a
(1 − f j:n(m))dm

)]

=

n∑
j=1

q jT xβ(X j:n).

�

4. Tsallis extropy estimator

The process of measuring the information of C-RVs has gained the interest of numerous researchers;
see Qiu and Jia [22], Qiu [21], Noughabi and Jarrahiferiz [19], Jahanshahi et al. [6], and Contreras-
Reyes et al. [4]. In this section, we show a non-parametric approach for estimating the extropy of the
Tsallis.

4.1. The proposed estimator

Using the operator for Vasicek’s difference (see Vasicek [30] and Kayal and Balakrishnan [9]),
the estimate is produced by utilizing the empirical CDF Fn in place of the CDF F and substituting a
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difference operator for a differential operator. Then, a function for the the O.S. is applied to estimate
the derivative of F−1(q). Therefore, from (3.1), the Tsallis extropy estimator can be provided as follows

T xβ,nm(X) =
1

β − 1

b − a − 1 −
Tβ∑
i=0

(
β
i

) ∫ b

a
(− f (x))idx


=

1
β − 1

b − a − 1 −
Tβ∑
i=0

(
β
i

)
(−1)i

∫ 1

0

[
d

dq
F−1(q)

]−i+1

dq


=

1
β − 1

b − a − 1 −
Tβ∑
i=0

(
β
i

) (−1)i

n

n∑
j=1

[
n

G jm
(X j+m − X j−m)

]−i+1
 ,

(4.1)

where

G j =


1 +

j−1
m , 1 ≤ j ≤ m

2, m + 1 ≤ j ≤ n − m
1 +

n− j
m , n − m + 1 ≤ j ≤ n,

(4.2)

a = X1:n ≤ X2:n ≤ ... ≤ Xn:n = b, the window size positive integer m < n
2 and Xi = X1 if i < 1 and

Xi = Xn if i > n.

The proposed Tsallis extropy estimators are demonstrated to be consistent by the following theorem.
Vasicek [30] has stated that its proof is apparent, so it is ignored.

Theorem 4.1. Suppose that the random sample X1, X2, ..., Xn has a CDF F, a PDF f and finite variance.
Then,

T xβ,nm(X)
P
−→ T xβ(X),

as n −→ ∞, m −→ ∞ and m
n −→ ∞.

We have generated the data from U(a, b) distribution and calculated the Tsallis extropy estimation.
Table 1 contains the root mean squared error (RMSE) and standard deviation (SD) of the Tsallis extropy
estimates after repetition 1000 times for each sample size. If β = 2, then the Tsallis extropies of
U(0, 1), U(0, 2), U(0, 3) are 0, 0.5, 2

3 , respectively. If β = 3, then the Tsallis extropies of U(0, 1),
U(0, 2), U(0, 3) are 0, 3

8 , 5
9 , respectively. Figures 3 and 4 show the behavior of the estimated value to

the theoretical value. We can conclude the following from Table 1 and Figures 3 and 4:

(1) Under a fixed n, the RMSE increases by increasing m.

(2) Under a large and fixed n, the RMSE increases by increasing the range of a and b in the U(a, b)
distribution.

(3) The SD decreases by increasing n and m.
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Figure 3. Tsallis extropy estimator for simulated U(0, 1) (upper panel) and U(0, 3) (lower
panel) when β = 2.
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Figure 4. Tsallis extropy estimator for simulated U(0, 1) (upper panel) and U(0, 3) (lower
panel) when β = 3.
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Table 1. RMSE and SD results for Tsallis extropy estimator for U(0, 1), U(0, 2), U(0, 3), and
β = 2, 3.

n m RMSE (SD) with β = 2 RMSE (SD) with β = 3
U(0, 1) U(0, 2) U(0, 3) U(0, 1) U(0, 2) U(0, 3)

5 2 0.7401 (0.7353) 0.4357 (0.4123) 0.4535 (0.3401) 4.21 (3.98) 0.9013 (0.8204) 0.4233 (0.333)
10 2 0.4975 (0.4821) 0.4552 (0.3015) 0.731 (0.2799) 1.963 (1.796) 0.4461 (0.3418) 0.3868 (0.1735)

3 0.4367 (0.3326) 0.6363 (0.2466) 0.9241 (0.2646) 1.003 (0.7084) 0.4592 (0.1553) 0.5248 (0.1497)
4 0.7425 (0.2488) 0.8184 (0.2196) 1.0469 (0.2641) 1.3207 (0.4249) 0.7386 (0.1596) 0.7151 (0.1596)

20 2 0.2948 (0.2949) 0.584 (0.188) 1.0032 (0.1811) 1.051 (0.8495) 0.3727 (0.1575) 0.4897 (0.1034)
3 0.3308 (0.2139) 0.7706 (0.1645) 1.2119 (0.1817) 0.4719 (0.196) 0.4192 (0.0833) 0.6055 (0.1066)
4 0.4375 (0.19701) 0.8469 (0.1648) 1.2742 (0.19102) 0.4934 (0.1147) 0.4861 (0.0872) 0.6637 (0.1117)
5 0.5387 (0.1786) 0.8936 (0.1623) 1.2949 (0.1976) 0.6106 (0.0992) 0.5563 (0.0874) 0.7081 (0.1131)
6 0.6698 (0.1687) 0.9495 (0.1646) 1.3186 (0.20614) 0.8034 (0.0892) 0.6525 (0.0894) 0.7663 (0.1163)
7 0.8267 (0.1477) 1.0087 (0.1539) 1.3352 (0.1986) 1.0962 (0.1396) 0.7793 (0.0947) 0.8368 (0.1137)
8 1.034 (0.1527) 1.0915 (0.1605) 1.3668 (0.2085) 1.5439 (0.2671) 0.9617 (0.1274) 0.9395 (0.1274)
9 1.3099 (0.1788) 1.2096 (0.1686) 1.4243 (0.21206) 2.226 (0.4766) 1.228 (0.1902) 1.0915 (0.1525)

30 2 0.2245 (0.2195) 0.6526 (0.1354) 1.1158 (0.1281) 0.801 (0.5608) 0.3793 (0.1004) 0.5396 (0.0728)
3 0.32309 (0.1707) 0.8451 (0.1266) 1.3402 (0.1376) 0.4691 (0.2379) 0.442 (0.0677) 0.6586 (0.08)
4 0.4102 (0.1509) 0.9155 (0.1268) 1.4077 (0.1478) 0.4096 (0.0951) 0.4863 (0.0697) 0.7071 (0.0873)
5 0.4735 (0.1517) 0.9486 (0.1335) 1.4294 (0.1601) 0.4515 (0.079) 0.5229 (0.0741) 0.7344 (0.0934)
6 0.5347 (0.1425) 0.97108 (0.134) 1.43307 (0.1649) 0.5066 (0.0454) 0.5592 (0.0754) 0.7554 (0.0954)
7 0.6008 (0.1368) 0.9926 (0.1354) 1.4334 (0.1707) 0.5929 (0.0413) 0.6023 (0.0756) 0.7785 (0.0971)
8 0.6714 (0.1279) 1.0129 (0.1308) 1.4294 (0.1677) 0.7097 (0.0477) 0.6532 (0.0726) 0.8038 (0.0942)
9 0.7569 (0.1253) 1.0389 (0.1318) 1.4275 (0.1707) 0.8596 (0.0625) 0.717 (0.0727) 0.8363 (0.095)
10 0.8616 (0.1188) 1.0777 (0.1297) 1.4381 (0.1703) 1.0532 (0.0909) 0.8003 (0.0758) 0.8827 (0.0953)
11 0.9838 (0.1175) 1.1243 (0.1326) 1.4529 (0.1763) 1.3073 (0.1419) 0.9047 (0.0871) 0.9406 (0.1007)
12 1.1292 (0.1187) 1.1785 (0.1278) 1.4685 (0.16801) 1.6314 (0.2051) 1.034 (0.1006) 1.0111 (0.1016)
13 1.3103 (0.1326) 1.2578 (0.1373) 1.5091 (0.1789) 2.0697 (0.3103) 1.2073 (0.1329) 1.1114 (0.1175)
14 1.5193 (0.15704) 1.3459 (0.1485) 1.5501 (0.1877) 2.6384 (0.4579) 1.4218 (0.1805) 1.2317 (0.1405)

50 2 0.1903 (0.1668) 0.719 (0.0997) 1.2183 (0.0912) 1.1642 (0.9907) 0.4633 (0.2167) 0.5997 (0.0953)
3 0.3328 (0.1201) 0.9231 (0.0871) 1.4644 (0.0939) 0.4082 (0.1315) 0.4697 (0.0449) 0.7143 (0.0555)
4 0.4139 (0.1083) 0.9957 (0.08608) 1.5447 (0.0982) 0.3755 (0.0708) 0.5082 (0.0468) 0.7632 (0.0584)
5 0.4658 (0.1031) 1.0309 (0.0896) 1.57703 (0.1069) 0.3774 (0.0449) 0.5331 (0.0511) 0.7881 (0.0632)
6 0.5021 (0.1021) 1.0471 (0.0937) 1.5851 (0.1146) 0.3953 (0.0353) 0.5512 (0.0544) 0.8009 (0.0672)
7 0.5312 (0.0988) 1.0549 (0.09269) 1.5824 (0.1147) 0.4214 (0.0326) 0.566 (0.054) 0.8085 (0.0668)
8 0.5613 (0.09803) 1.0617 (0.0953) 1.5773 (0.1195) 0.4532 (0.0286) 0.583 (0.0554) 0.8159 (0.069)
9 0.5913 (0.0988) 1.0667 (0.0978) 1.5694 (0.1238) 0.49201 (0.0276) 0.601 (0.0567) 0.8229 (0.071)
10 0.6213 (0.0986) 1.0716 (0.0995) 1.5612 (0.1268) 0.53902 (0.0262) 0.6207 (0.0571) 0.8306 (0.0723)
11 0.6562 (0.0979) 1.0785 (0.10019) 1.5539 (0.1284) 0.5931 (0.02604) 0.6438 (0.057) 0.8404 (0.0727)
12 0.6933 (0.098) 1.0842 (0.10109) 1.5432 (0.13007) 0.6563 (0.0281) 0.6691 (0.0568) 0.8502 (0.0732)
13 0.7358 (0.09798) 1.0964 (0.1034) 1.5411 (0.1344) 0.7313 (0.0325) 0.7008 (0.0575) 0.8659 (0.075)
14 0.782 (0.091301) 1.107 (0.1008) 1.534 (0.1332) 0.8161 (0.0382) 0.7353 (0.0563) 0.8815 (0.0736)
15 0.8353 (0.09132) 1.1226 (0.10102) 1.5322 (0.1332) 0.9158 (0.0461) 0.7764 (0.0569) 0.9021 (0.0739)
16 0.8937 (0.09125) 1.1394 (0.1029) 1.5296 (0.1366) 1.0314 (0.0616) 0.823 (0.0593) 0.9252 (0.0758)
17 0.9607 (0.08766) 1.1631 (0.1026) 1.5344 (0.1378) 1.1669 (0.08305) 0.8787 (0.0627) 0.9552 (0.0771)
18 1.0361 (0.08854) 1.1906 (0.103) 1.5415 (0.1381) 1.3228 (0.1009) 0.9425 (0.0658) 0.99 (0.0779)
19 1.118 (0.09106) 1.2202 (0.1063) 1.5485 (0.1429) 1.5074 (0.1331) 1.0155 (0.0749) 1.0293 (0.0827)
20 1.2109 (0.09113) 1.2561 (0.1034) 1.5609 (0.1387) 1.7206 (0.1677) 1.099 (0.0809) 1.076 (0.0823)
21 1.3155 (0.1008) 1.2992 (0.1084) 1.5794 (0.1431) 1.9763 (0.2201) 1.199 (0.0991) 1.1323 (0.0913)
22 1.4295 (0.1075) 1.346 (0.1115) 1.5994 (0.1459) 2.2662 (0.2696) 1.3116 (0.1145) 1.1949 (0.0984)
23 1.559 (0.11906) 1.4014 (0.1157) 1.6258 (0.14801) 2.6181 (0.3391) 1.4449 (0.1366) 1.27 (0.1087)
24 1.7022 (0.13414) 1.4636 (0.1228) 1.6571 (0.1533) 3.0253 (0.4178) 1.5971 (0.1629) 1.3559 (0.1224)
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4.2. Real data application

In this subsection, we utilized the breast cancer Wisconsin (diagnostic) dataset [31], which
comprises 569 diagnoses, focusing on presenting real-valued attributes calculated for individual cell
nuclei. These features encompass the following: 1) smoothness (reflecting local variations in radius
length); 2) compactness (calculated as perimeter2/area -1); 3) concavity (expressing the degree of
concavity in contour segments); 4) concave points (tallying the quantity of concave segments within
the contour); 5) symmetry, and 6) fractal dimension (measured via “coastline approximation” -1).
Furthermore, the “worst” or most considerable value (mean of the three most significant values) of
these attributes was computed for each image. Figures 5 and 6 display the correlation between each
variable of the Wisconsin worst breast cancer dataset and their respective histograms. Tables 2 and 3
show the Tsallis extropy estimator results for 569 diagnoses of breast cancer Wisconsin data when
β = 2, 3, neglecting any zero or missing values. Furthermore, Figure 7 shows the Tsallis extropy
estimator results for 569 diagnoses of breast cancer Wisconsin data when β = 2, 3 and m = 2, 3, ..., 200.
Moreover, we can conclude that the Tsallis extropy estimator increases by increasing m and β.

Figure 5. Correlation between each variable for data on the worst breast cancer Wisconsin.
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Figure 6. Histograms of worst breast cancer Wisconsin functions.

Table 2. Tsallis extropy estimator results for the 569 diagnosis breast cancer Wisconsin data,
with β = 2.

m Smoothness Compactness Concavity Concave points Symmetry Fractal dimension
2 -16.072 -1.38291 -0.606017 -5.59625 -5.92697 -26.3413
5 -12.9753 -0.817777 -0.0124867 -4.23306 -4.77741 -21.4673

10 -12.1106 -0.634671 0.171713 -3.86458 -4.39443 -19.6003
30 -11.2559 -0.422343 0.389655 -3.40821 -4.03067 -18.1719
50 -10.5923 -0.253445 0.51764 -3.10719 -3.70565 -16.9701

100 -8.49788 0.192588 0.866023 -2.22443 -2.70257 -13.4282
200 -2.84619 1.22606 1.60576 0.0199367 -0.264414 -4.68175

Table 3. Tsallis extropy estimator results for the 569 diagnosis breast cancer Wisconsin data,
with β = 3.

m Smoothness Compactness Concavity Concave points Symmetry Fractal dimension
2 228.075 3.39238 2.19059 34.6507 31.7404 659.563
5 110.648 1.61416 0.794512 14.4676 16.4353 336.679

10 89.3667 1.30072 0.664333 10.7478 13.0594 252.118
30 77.0099 1.25187 0.681 7.7352 11.5776 216.794
50 72.328 1.25625 0.737789 6.93683 10.9402 199.884

100 60.125 1.25529 0.884281 5.50338 9.03925 157.538
200 35.7649 1.3679 1.34623 5.8625 4.57925 58.4933
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Figure 7. Tsallis extropy estimator results for the 569 diagnosis breast cancer Wisconsin
data with β = 2, 3 and m = 2, 3, ..., 200.

Comparative analysis with extropy

In this part, using the breast cancer Wisconsin (diagnostic) dataset, we will compare the Tsallis
extropy estimator given by Eq (4.1) with the original extropy estimator proposed in [21] as follows

Exβ,nm(X) =
−1
2n

n∑
j=1

G jm
n(X j+m − X j−m)

, (4.3)

where G j is defined in Eq (4.2). Figure 8 shows the extropy estimator, and in comparison with Figure 7,
we can conclude that the Tsallis extropy estimator gives negative and positive values, unlike the extropy
estimator, which is known for negative values. Thus, a comparison of Figures 7 and 8 shows that the
Tsallis extropy, a complementary dual of the Tsallis entropy, as a new measure of uncertainty, takes
more versatile values. This opens the door to a more effective analysis of many disciplines whereby
knowledge is evaluated by utilizing probabilistic notions.

Figure 8. Extropy estimator results for the breast cancer Wisconsin (diagnostic) dataset.
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5. Conclusions

We have examined further properties of Tsallis extropy and its related measures under the condition
of continuity. The residual and past Tsallis extropy functions were presented and the conditions of
negativity and non-negativity were discussed for those models. Examples of different distributions
applied to our measures were given. Moreover, bounded and monotonically increasing and decreasing
measures were obtained. Besides, the characterization results for those measures were studied.
Furthermore, the properties of the corresponding O.S. were discussed. On the other hand, an alternative
representation of the continuous Tsallis extropy with connection to stochastic orders was revealed.
These discoveries prompted our investigation into Tsalli’s extropy for mixed systems and coherent
structures within the context of the iid scenario. Besides, we formulated certain limitations on the
systems’ Tsallis extropy and demonstrated the practicality of the provided constraints. Finally, the
Tsallis extropy estimator, as determined by using the Vasicek’s difference operator, was applied to
simulated data and real data for breast cancer in Wisconsin. The estimators exhibited increases and
decreases according to the n, m and β values.
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