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and convergence of the numerical solution, while improving the stability and efficiency. We prove
the existence and uniqueness of the numerical solution for specific differential operators, such as the
Laplacian operator, and for positive definite RBFs. Additionally, we introduce a perturbation into the
main matrix, thereby developing the perturbed LRBF method (PLRBF); this allows for the application
of Cholesky decomposition, which significantly reduces the condition number of the matrix to its
square root, resulting in the CPLRBF method. In return, this enables us to choose a large value for
the shape parameter without compromising stability and accuracy, provided that the perturbation is
carefully selected. By doing so, highly accurate solutions can be achieved at an early level, significantly
reducing central processing unit (CPU) time. Furthermore, to overcome stagnation issues in the
RBF collocation method, we combine LRBF and CPLRBF with multilevel techniques and obtain the
Multilevel PLRBF (MuCPLRBF) technique. We illustrate the stability, accuracy, convergence, and
efficiency of the presented methods in numerical experiments with a 1D Poisson equation. Although
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1. Introduction

Partial differential equations (PDEs) arise in various fields of science and engineering as
mathematical models to describe complex physical phenomena. In many applications, an accurate
and efficient numerical solution to PDEs is crucial. Among the numerous numerical techniques
available for solving PDEs, radial basis function (RBF) methods, particularly collocation methods,
have received significant attention in recent years [1–3].

RBF methods were first introduced by Hardy in the 1970s as a tool for spatial interpolation [4–6].
However, it wasn’t until the late 1980s and early 1990s that RBFs began to gain traction as a numerical
technique for solving PDEs, see; [7–9]. Pioneering work by Kansa, Micchelli, Madych, and Nelson
in the early 1990s laid the foundations for the RBF collocation method, which has since become a
popular approach to solving PDEs. After that, in the 2000s, many papers had been published to show
the effectiveness of the RBF collocation method when applied to a wide range of applications [10–12].
An interesting modification of the RBF collocation method was introduced in [13], in which the authors
numerically solve a Poisson equation with Dirichlet conditions through multinode Shepard interpolants
by collocation. Furthermore, in [14], the Shepard multinode method was used to numerically estimate
electric scalar potentials via collocation. RBF-based collocation methods still attract significant interest
due to their various advantages, such as high accuracy, flexibility in handling complex geometries as a
meshless method, and ease of implementation. One of the well-known element-free Galerkin methods
was introduced in [15]. However, despite their potential benefits, these methods also come with a
set of challenges, one of the main ones being the so-called “trade-off principle”, which implies that
an increase in the accuracy of the approximation is typically accompanied by a decrease in stability.
This trade-off arises due to the ill-conditioning and high condition numbers of the matrix, which can
impact the stability and accuracy of the numerical solution. Moreover, stagnation issues in the standard
collocation RBF method where ill-conditioning of the problem and the stability issue are managed by
adapting the shape parameter to the corresponding level, but where the error stagnates and does not
improve-can further limit the effectiveness of these methods.

Several attempts have been made to tackle the trade-off principle in RBF collocation methods, such
as using preconditioning techniques [16], employing different types of RBFs [17], or optimizing the
shape parameter [18]. Despite these efforts, the trade-off principle remains a fundamental challenge in
RBF collocation methods.

This paper introduces a novel numerical method, the Lagrange collocation method with radial
basis functions (LRBF), for solving one-dimensional PDEs. Our method is designed to address the
primary challenges associated with standard RBF-based collocation methods, especially the trade-off
principle, while maintaining the accuracy and convergence properties of the solution. To accomplish
this, we focus on specific differential operators such as the Laplacian operator and positive definite
RBF functions. Then, we introduce a perturbation to the main matrix, leading to the development of
the perturbed LRBF method (PLRBF). This perturbation allows us to apply Cholesky decomposition,
significantly reducing the matrix’s condition number to its square root. As a result, we can select a
large value for the shape parameter without sacrificing either stability or accuracy, as long as the
perturbation is chosen carefully. This approach enables us to obtain highly accurate solutions at early
levels, thus greatly reducing the computational time and improving the overall efficiency of the
method. Furthermore, we establish the existence and uniqueness of the numerical solution to our
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model.

To tackle the stagnation issues commonly observed in standard RBF collocation methods, we
integrate the LRBF and PLRBF approaches with multilevel techniques, culminating in the Multilevel
PLRBF method (MuPLRBF). Then, we demonstrate our main findings through numerical
experiments in 1D. Although we initially focus on 1D problems, we anticipate that our approach can
be extended to higher dimensions, which will be explored in future work.

The remainder of this paper is organized as follows. Section 2 presents the LRBF method,
providing an overview of its key concepts and motivation. Section 3 delves deeper into the theoretical
foundation and main characteristics of the method, including the existence and uniqueness of the
numerical solution for positive definite RBFs. In Section 4, we demonstrate how applying the
Cholesky decomposition to the LRBF method significantly improves stability by reducing the
condition number of the matrix.

Section 5 introduces the PLRBF method, a novel approach that incorporates a perturbation into the
main matrix, thereby further enhancing stability and enabling the use of Cholesky decomposition.
Section 6 details the development of the MuLRBF and MuPLRBF methods, which combine the
LRBF and PLRBF methods with multilevel techniques to address the stagnation issues commonly
encountered in standard RBF collocation methods.

In Section 7, we describe a series of numerical experiments performed to validate our methods and
discuss the findings related to accuracy, stability, and convergence. We compare the performance of
our proposed methods with that of traditional RBF collocation methods and provide insights into their
respective strengths and weaknesses. Finally, in Section 8, we conclude the paper by summarizing our
key contributions and offering suggestions for future research directions, including potential extensions
to higher-dimensional problems.

2. Lagrange RBF collocation method in 1D

Consider the following boundary value problem (BVP) for the target function U(x), in the one-
dimensional space Ω =]0, 1[. {

LU(x) = f (x), x ∈ Ω,
U(0) = u0, U(1) = u1,

(2.1)

where L is a linear differential operator and f (x) is a given function. To obtain a general domain [a, b]
from the considered one, we use the transformation y = (b−a)x+a. Therefore, for the rest of this paper,
without a loss of generality, we consider Ω =]0, 1[, and we define the nodes xi ∈ [0, 1] as follows:

xi =
i − 1
n − 1

, i = 1, 2, · · · , n,

where n is the number of nodes distributed on [0, 1]. Note that x1 = 0 and xn = 1.

Summarizing the Lagrange RBF collocation method, we define the numerical solution Û to the
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problem (2.1) as follows: 

Û(x) =
n∑

i=1

βiℓi(x),

ℓi(x) =
n∑

j=1

αi, jϕ(x − x j), x ∈ [0, 1],

Lℓi(xk) = δik, i, k = 1, 2, ..., n,

(2.2)

where βi, i = 1, 2, . . . , n are unknown constant coefficients to be determined, ℓi, i = 1, 2, · · · , n are
linear combinations of RBFs ϕ(x− x j), named L-Lagrange, such that Lℓi are Lagrange functions, δik is
the usual Kronecker delta symbol, and αi, j, i, j = 1, 2, . . . , n are constant coefficients to be determined.
In addition, the numerical solution Û must satisfy the BVP system (2.1) at the nodes (xi)1≤i≤n. Hence,
we get the following discrete system:

n∑
i=1

βiLℓi(xk) = f (xk), k = 2, · · · , n − 1,

n∑
i=1

βiℓi(0) = u0,

n∑
i=1

βiℓi(1) = u1.

(2.3)

We write fk := f (xk).

2.1. Determine the L-Lagrange functions

We note that the L-Lagrange functions (ℓi)1≤i≤n depend on the differential operator L and the
chosen grid (xi)1≤i≤n, but not on the numerical solution, and each Lagrange function (Lℓi)1≤i≤n satisfies
the Lagrange conditions Lℓi(xk) = δik, i, k = 1, 2, ..., n. The term Lagrange is usually applied to
polynomials, but is also commonly used in the RBF literature; see [12].

Thus, the construction of the L-Lagrange functions can be treated completely independently from
the above. In order to determine the unknown constant coefficients αi, j, i, j = 1, 2, . . . , n, we make use
of the second equation in the system (2.2) by applying the linear operator L on both sides. We then
have the following:

Lℓi(x) =
n∑

j=1

αi, jLϕ(x − x j), x ∈ [0, 1], i = 1, 2, . . . , n. (2.4)

Using the Eq (2.4) at the set of nodes xk, and the third equation in the system (2.2), we obtain the
following:

Lℓi(xk) =
n∑

j=1

αi, jLϕ(xk − x j) = δik, i, k = 1, 2, . . . , n. (2.5)

The relations (2.5) form the main linear systems for the coefficients αi, j. These systems can be rewritten
as follows:

Aαi = δi, i = 1, 2, . . . , n, (2.6)
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where the components are given by the following:

A =


Lϕ(x1 − x1) Lϕ(x1 − x2) . . Lϕ(x1 − xn)
Lϕ(x2 − x1) Lϕ(x2 − x2) . . Lϕ(x2 − xn)

. . . . .

. . . . .

Lϕ(xn − x1) Lϕ(xn − x2) . . Lϕ(xn − xn)


,

αi =


αi,1

αi,2

.

.

αi,n


and δi =


δi1

δi2

.

.

δin


. (2.7)

As shown in Theorem 3.2, the matrix A is symmetric and a negative definite for positive definite RBF
functions and for a certain differential operator L = γD2

x with γ > 0. Thus, we have a unique solution
to the main linear system (2.6), and which can be formally written as follows:

αi = A−1δi, i = 1, 2, . . . , n. (2.8)

The solutions to Eq (2.6) provide the coefficients αi, j, as described in (2.8), which determine the L-
Lagrange functions ℓi.

We recall that since the matrix A is independent of the numerical solution, and the right-hand side
is the unit vector, we can solve the above linear system once and for all ℓi outside the main program,
thus improving the efficiency.

2.2. The numerical solution

Applying the Kronecker delta condition from (2.2) to the first equation in (2.3), we obtain the
following:

n∑
i=1

βiδik = fk, k = 2, . . . , n − 1,

This results in the following:
βk = fk, k = 2, . . . , n − 1. (2.9)

Therefore the numerical solution Û(x) in (2.2) can be expressed as follows:

Û(x) = β1ℓ1(x) + βnℓn(x) +
n−1∑
i=2

fiℓi(x).

Hence, to determine the approximate solution Û(x), we need to determinate the coefficients β1, βn.
Insertion of L-Lagrange functions ℓi into the boundary conditions of the system (2.3) leads to the

following two equations in β1 and βn:

β1ℓ1(0) + βnℓn(0) = u0 −

n−1∑
i=2

fiℓi(0),
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β1ℓ1(1) + βnℓn(1) = u1 −

n−1∑
i=2

fiℓi(1),

which can be presented in matrix form as follows:

(
ℓ1(0) ℓn(0)
ℓ1(1) ℓn(1)

) (
β1

βn

)
=


u0 −

n−1∑
i=2

fiℓi(0)

u1 −

n−1∑
i=2

fiℓi(1)

 . (2.10)

Thus, we have a system with a 2 × 2 matrix, which can be easily solved to determine the
coefficients β1, βn.

This, combined with (2.9), gives all β. The fact that the L-Lagrange functions were determined
separately in section 2.1 means that the desired numerical solution Û(x) in (2.2) has been established.

3. Well-posedness & main characteristics

So far, we have introduced the LRBF method in 1D for general radial basis functions and general
differential operators. In this section, we focus on positive definite RBF functions and the second-order
linear differential operator of the form L = γD2

x, with γ > 0 and D2
x representing the second derivative.

For this class, we demonstrate the existence and uniqueness of our solution and show how to improve
stability and efficiency without losing accuracy.

To prove the existence and uniqueness of the solution to the system (2.6), it is sufficient to prove
that the matrix A is symmetric and either positive definite or negative definite. In fact, if the matrix is
symmetric and either positive or negative definite, then it is invertible, which implies the existence and
uniqueness of the solution.

Definition 3.1. (Positive definite matrix) An N · N symmetric real matrix A is said to be positive
semi-definite if its associated quadratic form is non-negative, i.e.,

N∑
j=1

N∑
k=1

λ jλkA jk ≥ 0,

for all vectors λ = (λ1, . . . , λN)T
∈ RN . If the only vector λ that turns the above quadratic form into an

equality is the zero vector, then A is called positive definite.

Definition 3.2. (Positive definite function) A real valued continuous function ϕ : Rd → R is said to
be positive semi-definite on Rd if, and only if, it is even and

N∑
j=1

N∑
k=1

λ jλkϕ
(
x j − xk

)
≥ 0,

for any N pairwise different points X = {x1, . . . , xN} ⊆ R
d, and λ = (λ1, . . . , λN)T

∈ RN . The function ϕ
is strictly positive definite on Rd if the only vector λ that turns the above into an equality is the zero
vector.
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Note: It is worth noting the two well-known classes of positive definite RBFs, namely the Gaussian
RBF ϕ(r) = exp(− r2

c2 ) and the family of Inverse multi-quadric ϕ(r) = (r2+ c2)−β, where β ≥ 0, and c is a
positive constant. In this paper, we focus on studying the Gaussian RBF and the Inverse multi-quadric,
where β = 1/2, i.e., ϕ(r) = 1

√
r2+c2

.
To prove our main theorem on the well-posedness of our solution, we introduce the concept of

Fourier transformation and make use of the Bochner Theorem 3.1.

Definition 3.3. Let f ∈ L2(Rd), where the Fourier transform F is defined as follows:

F ( f )(ξ) =
∫
Rd

f (x)e−2πix·ξdx, (x ∈ Rd)

and the inverse Fourier transform is defined by the following:

F −1( f )(x) =
∫
Rd

f (ξ)e2πix·ξdξ, (ξ ∈ Rd).

Theorem 3.1. (Bochner, ( [19], p70)) ϕ : Rd → R is positive definite if, and only if, ϕ is bounded and
its Fourier transform F (ϕ), which is nonnegative and nonvanishing.

Now, we are in a position to prove our theorem.

Theorem 3.2. (Existence & uniqueness) For a positive definite radial basis function ϕ : Rd → R and

a differential operator L =
d∑

i, j=1

γi j∂xi∂x j with Γ = (γi j)1≤i, j≤d a symmetric and positive definite matrix,

we define the matrix A ∈ Rn·n as follows:

A =


Lϕ(x1 − x1) Lϕ(x1 − x2) . . Lϕ(x1 − xn)
Lϕ(x2 − x1) Lϕ(x2 − x2) . . Lϕ(x2 − xn)

. . . . .

. . . . .

Lϕ(xn − x1) Lϕ(xn − x2) . . Lϕ(xn − xn)


,

where (xk)n
k=1 are distinct points with xk ∈ R

d. The matrix A is symmetric and negative definite. If Γ is
a negative definite matrix, then the matrix A is positive definite.

Proof. First, using the fact that ϕ is an RBF and L is a symmetric differential operator with a direct
calculation, we conclude that Lϕ(xi − x j) = Lϕ(x j − xi), proving the symmetry of the matrix A.

Now, we prove that the matrix A is negative definite, i.e.,

λT Aλ =
n∑

i, j=1

λiλ jLϕ(xi − x j) < 0,

for all nonzero vectors λ ∈ Rn.
Using the Fourier transform F and a straightforward calculation, it can be shown that

F (Lϕ)(ξ) = −4π2ξTΓξF (ϕ)(ξ).
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Applying the Bochner Theorem 3.1 to the positive definite RBF ϕ, we have F (ϕ)(ξ) ≥ 0. Additionally,
Γ is a positive definite matrix, i.e., ξTΓξ > 0.

Combining the last two facts, we clearly see that

F (Lϕ)(ξ) ≤ 0.

Now, applying the Bochner theorem from the other side (i.e., using the fact that the Fourier transform
of (Lϕ) is nonpositive and nonvanishing), it follows that the function (Lϕ) is negative definite. This
gives us the following:

n∑
i, j=1

λiλ jLϕ(xi − x j) < 0,

which proves that A is negative definite. Similarly, if Γ is a negative definite matrix, then the matrix A
is positive definite.

In particular, in the one-dimensional case, the differential operator takes the form L = γD2
x with

γ > 0.
The above theorem proves the existence and uniqueness of the L-Lagrange functions, and thus, the

existence and uniqueness of our numerical solution.

3.1. Main characteristics of the LRBF method

We summarize several noteworthy characteristics of the linear system (2.6) that play a crucial role
in enhancing the efficiency and stability of our novel LRBF method. In our numerical experiments
in Section 7, we analyse the stability, accuracy, and efficiency of several methods, including RBF,
confirming our findings below.

(1) Stability: The matrix A is symmetric and negative/positive definite (depending on the sign of γ)
which allows for the use of different linear solvers such as LDLT decomposition, in particular
Cholesky decomposition. Using Cholesky decomposition, we show in Section 4 that the
condition number of the main problem reduces to its square root (i.e., the condition numbers stay
almost all the time under 1010). However, numerical experiments show that this matrix is
numerically unstable and often prevents the use of Cholesky decomposition. Thus, further
thoughts and techniques are required to deal with this stability problem. To address this issue,
we explore additional techniques and present a solution in Section 5.

(2) Efficiency: The fact that the L-Lagrange functions are independent of the numerical solution
allows for a calculation of the coefficients outside of the main program once and for all, saving
valuable time during the calculations. In addition, the structure of the matrix A and the right-hand
side δi significantly improve the calculation speed in the following ways:

a) The matrix A is symmetric negative/positive definite, thus allowing for the use of a faster
linear solver.

b) The right-hand side is the most trivial to calculate as it is the unit vector with 1 at element i
and 0 elsewhere.
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4. Improved stability of the LRBF method by applying Cholesky decomposition

In this section, the focus is on improving the condition number of the matrix A given in (2.6),
which is negative/positive definite (depending on the sign of γ), as shown in Theorem 3.2. First, we
briefly introduce the well-known Cholesky decomposition [20] and highlight its ability to significantly
improve our problem’s condition number. Next, we show that despite promising theoretical results,
our system cannot confirm them numerically, as we encounter a numerically unstable matrix.

4.1. Recap: Cholesky decomposition

For a given symmetric and positive definite matrix A, the Cholesky decomposition can be
represented as follows:

A = LLT ,

where L is a lower triangular matrix with positive diagonal elements.
Now, recalling the form of our main problem with a symmetric positive definite matrix A,

Aα = b. (4.1)

Applying the Cholesky decomposition of A = LLT , we obtain the following:

LLTα = b, (4.2)

which is equivalent to the linear system Ly = b,

LTα = y.
(4.3)

The formal expression for α can be written as follows:

α = (LT )−1y = (LT )−1L−1b.

In case A is negative definitive (i.e., the Cholesky decomposition becomes A = −LLT ), we have the
above system (4.3) with a minus on the first equation.

Additionally, we will make use of the following proposition, which can be proven through a direct
calculation.

Proposition 4.1. (Improved stability) For a symmetric positive definite matrix A with a Cholesky
decomposition A = LLT , or in case A is negative definite, (A = −LLT ), we have

Cond(A) = Cond(L)2, (4.4)

where Cond(A) = ∥A∥2∥A−1∥2.

Proof. First, let us remark that, ∥A∥2 = ∥L∥22. Indeed,

∥A∥2 =
√
λmax (AT A) =

√
λ2

max (LLT ) = λmax

(
LLT

)
= ∥L∥22.

Similarly,
∥A−1∥2 = ∥(L−1)T ∥22 = ∥(L

−1)∥22.
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Thus,
Cond(A) = ∥A∥2∥A−1∥2 =

(
∥L∥2∥L−1∥2

)2
= Cond(L)2.

Remark: The benefit of the Cholesky decomposition method lies in its ability to transform the main
problem (4.1), which involves a matrix with a large condition number, into two linear systems given
by (4.3). The matrices in these systems have much smaller condition numbers (the square root of the
original, as shown above), which is expected to yield a more stable solution to our numerical problem.
However, as demonstrated in the following section, the original matrix becomes numerically unstable
beyond a certain level or for a large shape parameter, and does not even permit the application of
Cholesky decomposition.

4.2. Numerical studies-Part I

In this section, we present our initial numerical studies, focusing on the stability and condition
number of the matrix A for the Laplacian operator (L = ∆). We define equidistant nodes on the
interval [0, 1] and utilize two well-known positive definite RBF functions – the Gaussian
function ϕ(r) = e(r/c)2

and the inverse multi-quadric ϕ(r) = 1
√

r2+c2
, where c > 0 – is the shape

parameter. In our experiments, we systematically explore various levels i and shape parameters C by
setting hi = 2−i and ci = C · hi, where C > 0. We consider a comprehensive range of values, with i
ranging from 1 to 9 and C given by 2 j for −3 ≤ j ≤ 8. To maintain the clarity and conciseness of our
presentation, we have elected to display a subset of our results, specifically for levels up to 6 and C
values of 1, 8 and 32. This allows us to effectively illustrate the key findings of our study without
overwhelming the reader with excessive data. Based on Theorem 3.2, we expect that the matrix A is
negative definite, with all eigenvalues being strictly negative, thereby allowing for the Cholesky
decomposition of −A at all costs. However, our experiments reveal that this property only holds for
either small shape parameters, c, or at the first two levels. The primary observations from our
experiments and Tables 1–3 can be summarized as follows:

• In line with expectations, the condition number of the original problem experiences a significant
increase up to level 6.
• Beyond a specific level (e.g., level 4 and C = 8 for Gaussian), our matrix becomes numerically

unstable and no longer permits the use of Cholesky decomposition. This instability is dependent
on both the level and the shape parameter, C.
• A detailed analysis of our data indicates that the main issue lies in the rapid convergence of matrix

entries to their diagonal counterparts, resulting in an almost singular matrix. This phenomenon is
demonstrated in the Max EV column, where the maximum eigenvalue of the matrix approaches
0, signifying a numerically singular matrix.
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Table 1. The condition number of the matrix A and the minimum/maximum eigenvalue of
the matrix A using Gaussian RBF and IMQ RBF with C = 1.

Gaussian IMQ

Level Cond(A) Max EV Min EV
Cholesky

Y/N?
Cond(A) Max EV Min EV

Cholesky
Y/N?

1 3.55E+00 -3.3E+00 -1.2E+01 Y 1.76E+00 -5.4E+00 -9.6E+00 Y
2 7.13E+00 -6.7E+00 -4.8E+01 Y 2.41E+00 -3.2E+01 -7.7E+01 Y
3 1.78E+01 -1.1E+01 -1.9E+02 Y 3.59E+00 -1.7E+02 -6.2E+02 Y
4 5.09E+01 -1.5E+01 -7.7E+02 Y 5.26E+00 -9.5E+02 -5.0E+03 Y
5 1.36E+02 -2.3E+01 -3.1E+03 Y 6.84E+00 -5.9E+03 -4.0E+04 Y
6 2.69E+02 -4.6E+01 -1.2E+04 Y 7.81E+00 -4.1E+04 -3.2E+05 Y

Table 2. The condition number of the matrix A and the minimum/maximum eigenvalue of
the matrix A using Gaussian RBF and IMQ RBF with C = 8.

Gaussian IMQ

Level Cond(A) Max EV Min EV
Cholesky

Y/N?
Cond(A) Max EV Min EV

Cholesky
Y/N?

1 2.86E+03 -1.2E-04 -3.5E-01 Y 5.03E+02 -8.5E-05 -4.3E-02 Y
2 2.54E+06 -8.3E-07 -2.1E+00 Y 2.29E+04 -2.2E-05 -4.9E-01 Y
3 2.10E+11 -5.2E-11 -1.1E+01 Y 1.33E+06 -3.8E-06 -5.0E+00 Y
4 5.51E+17 5.0E-16 -5.9E+01 N 2.33E+07 -2.0E-06 -4.7E+01 Y
5 9.53E+16 1.6E-14 -2.9E+02 N 7.95E+07 -5.5E-06 -4.4E+02 Y
6 1.17E+18 1.8E-13 -1.3E+03 N 1.12E+08 -3.4E-05 -3.8E+03 Y

Table 3. The condition number of the matrix A and the minimum/maximum eigenvalue of
the matrix A using Gaussian RBF and IMQ RBF with C = 32.

Gaussian IMQ

Level Cond(A) Max EV Min EV
Cholesky

Y/N?
Cond(A) Max EV Min EV

Cholesky
Y/N?

1 7.83E+05 -3.0E-08 -2.3E-02 Y 1.31E+05 -5.6E-09 -7.3E-04 Y
2 1.98E+11 -7.8E-13 -1.5E-01 Y 1.38E+09 -7.0E-12 -9.6E-03 Y
3 1.01E+17 6.3E-17 -1.1E+00 N 2.01E+15 -6.4E-17 -1.3E-01 Y
4 1.47E+18 3.9E-16 -7.4E+00 N 5.13E+17 1.9E-17 -1.8E+00 N
5 3.31E+17 4.3E-15 -4.3E+01 N 6.10E+17 5.9E-16 -2.0E+01 N
6 2.56E+19 2.1E-14 -2.3E+02 N 1.72E+18 1.2E-14 -1.8E+02 N

Our numerical results highlight the challenges associated with the original matrix, despite its
symmetric and positive definite nature. In certain cases, its numerical instability and near-singularity
prevent the effective use of Cholesky decomposition, necessitating the exploration of alternative
approaches to address these issues.
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5. Perturbed L-Lagrange functions and Perturbed LRBF method

In the standard LRBF method, we observed stability issues primarily arising due to matrix entries
converging to their diagonal when the shape parameter is sufficiently large, and the distance between
the points decreases. We introduce a perturbation technique and develop the perturbed LRBF
method (PLRBF) to overcome this challenge. Our numerical experiments confirm that the new
PLRBF method is more stable and, surprisingly, exhibits superior accuracy, especially when applying
the multilevel technique.

First, we introduce a general perturbation to the diagonal entries of the matrix and then
demonstrate simple yet very useful properties for the perturbed matrix when the original matrix is
either positive or negative definite. We recall the key aspect of our approach is the application of
Cholesky decomposition, which, together with the perturbation techniques, significantly improves the
numerical stability of the method.

Definition 5.1. (Perturbed matrix) For a small ε ≥ 0 and a matrix A ∈ Rn·n, we define a sequence of
matrices of diagonal perturbation as follows:

Aε = sgn(λmax)A + εIn,

where In = diag(1, 1, . . . , 1) is the identity matrix and λmax is the largest eigenvalue of the matrix A.

Proposition 5.1. (Properties of the perturbed matrix) For either a symmetric positive or negative
definite matrix A, the perturbed matrix Aε as defined above satisfies the following:

(1) For ε→ 0 the matrix Aε converges uniformly to sgn(λ)A.
(2) Aε is symmetric and positive definite.
(3) When A is positive definite, we have the following:

cond(Aε) =
λmax + ε

λmin + ε
.

(4) When A is negative definite, we have the following:

cond(Aε) =
|λmin| + ε

|λmax| + ε
.

(5) Aε is always as good or better conditioned than A, i.e.,

cond(Aε) ≤ cond(A).

Proof. A direct calculation.

5.1. Perturbed LRBF method

Based on the perturbed matrix Aε, we define our perturbed L-Lagrange functions as follows:

ℓεi (x) =
n∑

j=1

αεi, jϕ(x − x j), x ∈ [0, 1], (5.1)
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where αεi, j are the solution of the following perturbed system:

Aεαεi = δi, i = 1, 2, ..., n, (5.2)

where αi
ε =

(
αεi,1, . . . , α

ε
i,n

)T
, and Aε is the followingperturbation of the original matrix A as defined

in (2.6).
This allows us to define our Perturbed LRBF (PLRBF) solution as follows:

Uε(x) =
n∑

i=1

βiℓ
ε
i (x). (5.3)

Remark: By applying the Cholesky decomposition to the system (5.1), we determine the
coefficients αεi and, thus, the perturbed L-Lagrange functions ℓεi and the Cholesky PLRBF (CPLRBF)
solution Uε. A detailed implementation of the (perturbed) L-Lagrange functions and the CPLRBF
method is captured in Algorithms 1 and 2. Additionally, we note that Uε converges uniformly to U
when ε→ 0.

Algorithm 1: Algorithm of Perturbed L-Lagrange functions
Input:
• Choose the max level n, ε, and C.
• Choose the RBFs ϕ(x).
• Choose discrete nk = 2k + 1, k = 1, · · · , n points in the interval [0, 1].

Step 1:
• for k = 1, · · · , n

– Generate the grids Xk = (xk
i )1≤i≤nk , with hk =

1
2k ,

– Set the shape parameters ck = C · hk,
• end for

Step 2:
• for k = 1, . . . , n do

– Calculate matrix Aε,k, and the unit vectors (δk
i )1≤i≤nk , as described in equation (2.7).

– for i = 1, . . . , nk do

* If Aε,k is positive definite,
use Cholesky decomposition; solve the linear system Aε,kαε,ki = δk

i ;
CPLRBF is ready;

* else
solve the linear system Aε,kαε,ki = δk

i ;
PLRBF is ready

– end for
• end for

Output: Save and store all coefficients (αε,ki )1≤i≤nk for the expansions of the L-Lagrange functions
ℓε,ki in an Excel file for k = 1, · · · , n.
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Algorithm 2: Algorithm for the PLRBF collocation method
Input:
• Choose the level k, and C.
• Choose the RBFs ϕ(x).
• Choose discrete n points in the interval [0, 1].

Step 1: Generate the grid X = {x1, x2, . . . , xn}, with h = 1
2k , and the shape parameters c = C · h.

Step 2: Call the corresponding coefficients (αεi )1≤i≤n for the L-Lagrange functions ℓεi , i = 1, · · · , n,
already calculated in Algorithm 1. Either for PLRBF or CPLRBF
Step 3: Compute the coefficients

(
βi
)

2≤i≤n−1
• for i = 2, . . . , n − 1 do

– βi = f (xi);
• end for

Step 4: Compute the left- and the right-hand sides of the linear system given in (2.10).

(LHS )i, j = ℓ
ε
i (x j), i, j = 1, n.

(RHS ) j = g(x j) −
n−1∑
i=2

βiℓ
ε
i (x j), j = 1, n.

Step 5: Solve the linear system (2.10) to determinate β1, βn.
Output: Compute the solution Ûε.

Ûε(x) =
n∑

i=1

βiℓ
ε
i (x); (C)PLRBF-approximation solution.

5.2. Numerical studies-Part II

In this section, we investigate the condition number of the matrix Aε for the Laplacian operator. To
do so, we perform a series of experiments analogous to those in Part I, with ε = 10−i for 6 ≤ i ≤ 15.
From Theorem 3.2, we expect that the matrix Aε will exhibit positive definiteness, resulting in strictly
positive eigenvalues and enabling the Cholesky decomposition of Aε at all ·. Our experiments validate
this hypothesis in most cases, with the choice of ε proving to be a primary determinant of stability,
while the influence of the level and shape parameter, c, is less pronounced than with the original
matrix A.

As in Part I, to maintain clarity and conciseness in our presentation, we have elected to display a
subset of our results, specifically for levels up to 6, C values of 1, 8 and 32, and ε = 10−6, 10−15. This
enables us to effectively convey the key findings of our study without overwhelming the reader with
excessive data.

Upon analysing our data, we arrived at the following conclusions, confirmed with Tables 4–9:

• As shown in Proposition 5.1, the condition number of the perturbed matrix Aε is either equal
or smaller to the condition number of the original matrix A (i.e., the problem with Aε is better
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conditioned).
• Our approach successfully mitigates the instability issues associated with the LRBF matrix, as

the matrix Aε demonstrates numerical stability, thereby allowing for Cholesky decomposition in
the majority of cases.
• The choice of ε plays a key role in the system’s stability. However, remarkably, in this regard,

our experiments encountered only minimal limitations in this regard. For all ε = 10−12 to 10−6,
no stability issues were observed for all levels up to 9 and all C values as defined in Part I.

Table 4. The condition number of the matrix Aε and the minimum/maximum eigenvalue of
the matrix Aε using Gaussian RBF and IMQ RBF with C = 1 and ε = 10−6.

Gaussian IMQ

Level Cond(Aε) Max EV Min EV
Cholesky

Y/N?
Cond(Aε) Max EV Min EV

Cholesky
Y/N?

1 3.55E+00 1.2E+01 3.3E+00 Y 1.76E+00 9.6E+00 5.4E+00 Y
2 7.13E+00 4.8E+01 6.7E+00 Y 2.41E+00 7.7E+01 3.2E+01 Y
3 1.78E+01 1.9E+02 1.1E+01 Y 3.59E+00 6.2E+02 1.7E+02 Y
4 5.09E+01 7.7E+02 1.5E+01 Y 5.26E+00 5.0E+03 9.5E+02 Y
5 1.36E+02 3.1E+03 2.3E+01 Y 6.84E+00 4.0E+04 5.9E+03 Y
6 2.69E+02 1.2E+04 4.6E+01 Y 7.81E+00 3.2E+05 4.1E+04 Y

Table 5. The condition number of the matrix Aε and the minimum/maximum eigenvalue of
the matrix Aε using Gaussian RBF and IMQ RBF with C = 8 and ε = 10−6.

Gaussian IMQ

Level Cond(Aε) Max EV Min EV
Cholesky

Y/N?
Cond(Aε) Max EV Min EV

Cholesky
Y/N?

1 2.84E+03 3.5E-01 1.2E-04 Y 4.97E+02 4.3E-02 8.6E-05 Y
2 1.15E+06 2.1E+00 1.8E-06 Y 2.18E+04 4.9E-01 2.3E-05 Y
3 1.09E+07 1.1E+01 1.0E-06 Y 1.05E+06 5.0E+00 4.8E-06 Y
4 5.90E+07 5.9E+01 1.0E-06 Y 1.56E+07 4.7E+01 3.0E-06 Y
5 2.89E+08 2.9E+02 1.0E-06 Y 6.74E+07 4.4E+02 6.5E-06 Y
6 1.26E+09 1.3E+03 1.0E-06 Y 1.09E+08 3.8E+03 3.5E-05 Y
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Table 6. The condition number of the matrix Aε and the minimum/maximum eigenvalue of
the matrix Aε using Gaussian RBF and IMQ RBF with C = 32 and ε = 10−6.

Gaussian IMQ

Level Cond(Aε) Max EV Min EV
Cholesky

Y/N?
Cond(Aε) Max EV Min EV

Cholesky
Y/N?

1 2.27E+04 2.3E-02 1.0E-06 Y 7.25E+02 7.3E-04 1.0E-06 Y
2 1.54E+05 1.5E-01 1.0E-06 Y 9.60E+03 9.6E-03 1.0E-06 Y
3 1.08E+06 1.1E+00 1.0E-06 Y 1.33E+05 1.3E-01 1.0E-06 Y
4 7.44E+06 7.4E+00 1.0E-06 Y 1.77E+06 1.8E+00 1.0E-06 Y
5 4.25E+07 4.3E+01 1.0E-06 Y 1.97E+07 2.0E+01 1.0E-06 Y
6 2.29E+08 2.3E+02 1.0E-06 Y 1.82E+08 1.8E+02 1.0E-06 Y

Table 7. The condition number of the matrix Aε and the minimum/maximum eigenvalue of
the matrix Aε using Gaussian RBF and IMQ RBF with C = 1 and ε = 10−15.

Gaussian IMQ

Level Cond(Aε) Max EV Min EV
Cholesky

Y/N?
Cond(Aε) Max EV Min EV

Cholesky
Y/N?

1 3.55E+00 1.2E+01 3.3E+00 Y 1.76E+00 9.6E+00 5.4E+00 Y
2 7.13E+00 4.8E+01 6.7E+00 Y 2.41E+00 7.7E+01 3.2E+01 Y
3 1.78E+01 1.9E+02 1.1E+01 Y 3.59E+00 6.2E+02 1.7E+02 Y
4 5.09E+01 7.7E+02 1.5E+01 Y 5.26E+00 5.0E+03 9.5E+02 Y
5 1.36E+02 3.1E+03 2.3E+01 Y 6.84E+00 4.0E+04 5.9E+03 Y
6 2.69E+02 1.2E+04 4.6E+01 Y 7.81E+00 3.2E+05 4.1E+04 Y

Table 8. The condition number of the matrix Aε and the minimum/maximum eigenvalue of
the matrix Aε using Gaussian RBF and IMQ RBF with C = 8 and ε = 10−15.

Gaussian IMQ

Level Cond(Aε) Max EV Min EV
Cholesky

Y/N?
Cond(Aε) Max EV Min EV

Cholesky
Y/N?

1 2.86E+03 3.5E-01 1.2E-04 Y 5.03E+02 4.3E-02 8.5E-05 Y
2 2.54E+06 2.1E+00 8.3E-07 Y 2.29E+04 4.9E-01 2.2E-05 Y
3 2.10E+11 1.1E+01 5.2E-11 Y 1.33E+06 5.0E+00 3.8E-06 Y
4 3.52E+16 5.9E+01 1.2E-15 Y 2.33E+07 4.7E+01 2.0E-06 Y
5 9.53E+16 2.9E+02 -1.6E-14 N 7.95E+07 4.4E+02 5.5E-06 Y
6 1.17E+18 1.3E+03 -1.8E-13 N 1.12E+08 3.8E+03 3.4E-05 Y
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Table 9. The condition number of the matrix Aε and the minimum/maximum eigenvalue of
the matrix Aε using Gaussian RBF and IMQ RBF with C = 32 and ε = 10−15.

Gaussian IMQ

Level Cond(Aε) Max EV Min EV
Cholesky

Y/N?
Cond(Aε) Max EV Min EV

Cholesky
Y/N?

1 7.83E+05 2.3E-02 3.0E-08 Y 1.31E+05 7.3E-04 5.6E-09 Y
2 1.98E+11 1.5E-01 7.8E-13 Y 1.38E+09 9.6E-03 7.0E-12 Y
3 1.10E+15 1.1E+00 1.0E-15 Y 1.25E+14 1.3E-01 1.1E-15 Y
4 8.41E+15 7.4E+00 8.1E-17 Y 1.82E+15 1.8E+00 9.8E-16 Y
5 1.13E+18 4.3E+01 -9.6E-16 N 1.25E+19 2.0E+01 5.0E-16 Y
6 4.37E+18 2.3E+02 -2.2E-14 N 7.65E+17 1.8E+02 -1.2E-14 N

Our numerical experiments demonstrate the effectiveness of introducing a perturbed matrix Aε in
addressing the stability issues associated with the LRBF matrix. By carefully selecting the value
of ε (e.g., 10−13 ≤ ε ≤ 10−6), we could consistently obtain numerically stable solutions and improved
condition numbers compared to the original matrix A.

6. The multilevel full grid PLRBF collocation method in one dimension

This section combines the well-established multilevel approach with our LRBF and PLRBF
methods, resulting in the Multilevel LRBF (MuLRBF) and Multilevel PLRBF (MuPLRBF) methods.
Our primary objective is to tackle the known stagnation issues in the standard collocation RBF
method. By capitalizing on the perturbed matrix’s robustness and utilizing the L-Lagrange
functions’s precalculable nature, we anticipate that our MuPLRBF method will be more stable,
efficient, and accurate.

Initially, we will develop the MuLRBF method for the BVP (2.1), followed by a comprehensive
presentation of its associated algorithm, which is also valid for MuPLRBF-ensuring a solid
foundation for implementing and analysing the MuLRBF/MuPLRBF/MuCPLRBF methods in the
following section.

Let {Xk}1≤k≤m be a strictly increasing sequence of nested full grids in the interval [0, 1], each with
2k + 1 equally spaced nodes.

The approximation ∆Û1 on the first grid X1 is constructed in such a way that satisfies the system{
L(∆Û1)(x) = f (x), x ∈]0, 1[, ,
∆Û1(0) = u0, ∆Û1(1) = u1.

(6.1)

We define the approximation Û1(x) := ∆Û1(x). Now, for the grids Xk, k = 2, . . . ,m, the
approximations ∆Ûk(x) satisfy the residual system, which takes the following form:{

L(∆Ûk)(x) = f (x) − LÛk−1(x), x ∈]0, 1[,
∆Ûk(0) = U0 − Ûk−1(0), ∆Ûk(1) = U1 − Ûk−1(1),

(6.2)

where Ûk(x) = Ûk−1(x) + ∆Ûk(x). The final approximate solution Ûm is the sum of the numerical
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solution Û1 and the defect terms ∆Ûk, k = 2, . . . ,m,, i.e.,

Ûm(x) = Ûm−1(x) + ∆Ûm(x) = ... = Û1(x) +
m∑

k=2

∆Ûk(x).

Since Û1(x) := ∆Û1(x), then

Ûm(x) =
m∑

k=1

∆Ûk(x). (6.3)

The residual system at level k is written at the nodes (xk
i )1≤i≤nk as{

L(∆Ûk)(xk
i ) = f (xk

i ) − LÛk−1(xk
i ), xk

i ∈ Xk∩]0, 1[,
∆Ûk(0) = u0 − Ûk−1(0), ∆Ûk(1) = u1 − Ûk−1(1).

(6.4)

The approximation ∆Ûk is expressed as follows:

∆Ûk(x) =
nk∑

i=1

βk
i ℓ

k
i (x), x ∈ [0, 1], (6.5)

where nk is the number of nodes in the kth grid and βk
i are unknown coefficients. In the kth level, the

Lagrange’s functions ℓki (x) are precalculated as described in Section 2, and can be given as follows:

ℓki (x) =
nk∑
j=1

αk
i, jϕ(x − xk

j), x ∈ [0, 1], (6.6)

where αk
i, j are the constant coefficients calculated in Section 2.

By making use of (6.5) and (6.3), we rewrite the first equation in the system(6.4) as follows:

L(∆Ûk)(xk
j) =

nk∑
i=1

βk
iLℓ

k
i (xk

j) = f (xk
j) −

k−1∑
r=1

L(∆Ûr)(xk
j), j = 2, . . . , nk − 1. (6.7)

Using the fact that Lℓki (xk
j) = δi j, we obtain the following:

βk
i = f (xk

i ) −
k−1∑
r=1

L(∆Ûr)(xk
i ), i = 2, . . . , nk − 1. (6.8)

Now, it remains to determine the coefficients βk
1 and βk

nk
to obtain the expression of the approximate

solution, as given in (6.5). Using the boundary conditions expressed in the system (6.2), we obtain the
following:

∆Ûk(0) =
nk∑

i=1

βk
i ℓ

k
i (0) = U0 − Ûk−1(0) := vk

1,

∆Ûk(1) =
nk∑

i=1

βk
i ℓ

k
i (1) = U1 − Ûk−1(1) := vk

2,
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Then,

βk
1ℓ

k
1(0) + βk

nk
ℓknk

(0) = vk
1 −

nk−1∑
i=2

βk
i ℓ

k
i (0),

βk
1ℓ

k
1(1) + βk

nk
ℓknk

(1) = vk
2 −

nk−1∑
i=2

βk
i ℓ

k
i (1),

which can be written in the following matrix form

(
ℓk1(0) ℓknk

(0)
ℓk1(1) ℓknk

(1)

) (
βk

0
βk

nk

)
=


vk

1 −

nk−1∑
i=2

βk
i ℓ

k
i (0)

vk
2 −

nk−1∑
i=2

βk
i ℓ

k
i (1)

 .

The solution to this system and (6.8) give the coefficients βk
i , i = 1, 2, · · · , nk, which determine the

approximation ∆Ûk(x) in the kth level. Similarly, we calculate the Multilevel PLRBF (MuPLRBF)
solution and the Multilevel CPLRBF (MuCPLRBF) solution, as described in Algorithm 3.
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Algorithm 3: Multilevel PLRBF (MuPLRBF) method
Input:
• Choose Tol, r = start level, n = end level,C, Ûr−1 = 0, Error0 = 1.
• Choose the RBFs ϕ(x).
• Choose discrete nk = 2k + 1, k = r, · · · , n points in the interval [0, 1].

Step 1:
• for k = r, · · · , n

– Generate the grids Xk = (xk
i )1≤i≤nk , with hk =

1
2k .

– Set the shape parameters ck = C · hk.
• end for

Step 2: Compute a reference solution Ûεref (e.g.: The exact solution if it is known, or a numerical
solution on a very fine grid).
Step 3: Call and store the corresponding coefficients (αε,ki )1≤i≤nk for L-Lagrange functions
ℓε,ki , i = 1, · · · , nk; k,= r, · · · , n, already calculated in Algorithm 1.
Step 4:
• Set j = 1, k = r.
• While Errorεj−1 ≥ Tol, and k ≤ n

– Using the PLRBF collocation method, we solve{
L∆Ûεk (x) = f (x) − LÛεk−1(x), x ∈ Xk ∩Ω,

∆Ûεk (x) = g(x) − Ûεk−1(x), x ∈ Xk ∩ ∂Ω,

– Set Ûεk (x) = Ûεk−1(x) + ∆Ûεk (x), Errorεj = max
x∈Xk
|Ûεk (x) − Ûεref(x)|.

– If Errorεj < Tol,
write (The level at which the Tol was reached is k); m = k;

– end if
– If k = n,

write (max level reached with a numerical error of Errorεj ); m = k; break;
– end if

k = k + 1; j = j + 1;
• end while

Output: Ûεk (x) =
m∑

k=1

∆Ûεk (x)

7. Numerical experiments

In this section, we discuss the numerical experiments conducted to evaluate the performance of our
new methods. Our analysis encompasses seven distinct examples to comprehensively assess the
methods’ accuracy, convergence, and stability. While considering numerous scenarios in our
experiments, we have carefully selected a representative subset to include in this paper to maintain
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clarity and conciseness. First, we will provide a brief overview of the experiments and the parameters
under investigation. Following this, we delve into the results of one example in detail, focusing on the
aspects of accuracy, convergence, and stability. Finally, we summarize our findings and highlight the
key takeaways from these numerical experiments.

7.1. Overview of the experiments

These are the parameters we considered for our experiments:

• Example: BVP in 1D with known exact solution, including trigonometric functions.
• Methods: Six methods, namely RBF, MuRBF, LRBF, MuLRBF, CPLRBF, and MuCPLRBF.

In the CPLRBF and MuCPLRBF methods, we consider different values for ε; ε = 10−i for
6 ≤ i ≤ 13, resulting in a total of 20 methods.
• Levels: Nine levels with hi = 2−i, with 1 ≤ i ≤ 9.
• Shape parameters: The constant C takes the values C j = 2 j with −3 ≤ j ≤ 8, and the adaptive

shape parameter for each level i is ci, j = C j · hi.
• RBF functions: Gaussian RBF ϕ(r) = exp(− r2

c2 ).

• Norms: Max & RMS Norm defined as Max u = maxi |u(xi)| and RMS u =
√∑N

i u(xi)2/N, with xi

being the nodes on the interval [0, 1].
• Tools: Matlab and Excel for data analysis (per example, we had 8424 data points).
• Notation: CPLRF & MuCPLRBF will be written as CPL & MuCPL in this section.
• A set of points (t), presenting 64,000 equally spaced points on [0, 1].

7.2. Presentation of results for a representative example:

Now, we select the particular example below to illustrate the key performance attributes of our
methods, allowing us to discuss the aspects of accuracy, convergence, and stability.

Let the target function U satisfy the following BVP:

∇2U(x) = −
sinh(x)

(1 + cosh x)2 , x ∈]0, 1[ ,

U(0) = 0, U(1) = 0.

The exact solution to this problem as follows:

U(x) =
sinh(x)

1 + cosh x
.

We solved this BVP using the parameters described in Subsection 7.1.
Our analysis revealed that the results strongly depend on the shape parameter. To make this clear,

we present the analysis across three regions, defined by the C, and provide key takeaways for each
region in terms of convergence, stability and accuracy. Parallel to these observations, we delve into the
realm of computational efficiency, which is an oft-neglected, yet crucial aspect of numerical methods.
Here, a salient finding is the CPLRBF method’s pronounced efficiency from the third level onwards,
where it consistently demanded nearly half the computation time of its standard RBF counterpart. This
trend, as expected, also finds a reflection in the multilevel variants: the MuCPLRBF, in a race against
time, invariably outpaces the MuRBF.
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(1) Convergence, Stability and Accuracy
In the following, we show how the shape parameter, C, influences convergence, stability, and
accuracy. We’ve categorised our analysis into three regions based on the value of C.

(a) Non-convergence region C ≤ c0:
In this region, there is neither convergence nor accuracy, as observed in Figure 1. In our
representative example, co was equal to 1 (i.e., for C ≤ 1 the methods were not able to
deliver any meaningful solution). Although the condition number appears nearly ideal, as
observed in Figure 2, this is primarily because the matrix converges to the identity matrix,
which does not yield any meaningful insights into the PDE solution.
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Figure 1. The Max Norm errors evaluated at the set of points t using the RBF, LRBF,
CPLRBF, MuRBF, MuLRBF, and MuCPLRBF methods for different values of ε, C, and
levels.
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Figure 2. The condition number of the RBF, LRBF, and CPLRBFI methods for different
values of ε, C, and levels.

(b) Convergence region c0 < C < c1:
This region represents the optimal performance for the multilevel methods. As demonstrated
in Figure 1, for C = 2 and Table 10, the multilevel method effectively overcomes stagnation
issues, thereby achieving higher accuracy levels. As we have convergence in this region and
the fact that all the multilevel methods achieve the same accuracy level, we observe that the
choice of ε does not significantly impact the accuracy and stability of the CPLRBF and the
MuCPLRBF methods, as confirmed in Table 11.
In terms of convergence, our analysis and Tables 12 and 13 strongly suggest that the
experimental order of convergence (EOC) for the multilevel methods is equal to the
constant C chosen to define the shape parameter at each level for both the maximum and the
RMS norm. This finding highlights the relationship between the shape parameter and the
convergence behaviour of the multilevel methods, further emphasizing the importance of
selecting an appropriate constant C to achieve optimal convergence rates, i.e., we assume

IThe CPLRBF method is treated as the standard PLRBF method as soon as Cholesky is not possible, i.e., when the matrix for the
PLRBF system shows numerical instability, the linear system is solved directly and not through a Cholesky decomposition, resulting in
showing a higher condition number for the CPLRBF method as observed in Figure 2 in case ε = 10−13 and for C = 10 & C = 128.
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that
ErrorMu = O(hEOC). (7.1)

To show this, we calculated the EOC for our presented multilevel methods as follows:

EOC =
log

(
Errorn

Errorn+1

)
log(2)

.

In terms of stability, the LRBF method displays stability behaviour similar to that of the
standard RBF collocation method, with dependencies on both the shape parameter and the
level. Perturbing the LRBF method slightly improves the stability, but dependencies still
persist. In comparison, the CPLRBF method greatly surpasses the other methods in terms of
stability and condition number. Our experiments reveal that the perturbed matrix is
numerically stable, and the Cholesky decomposition’s condition number supports our
theoretical outcome of reducing the original condition number to its square root, as
confirmed in Table 14.

Table 10. The smallest achieved errors for all considered methods using Gaussian RBF
presented in ascending order based on the max norm evaluated at the set of points t, incl. their
corresponding RMS norm, the condition number, CPU time, the level, and the constant C for
the shape parameter.

Min Max Norm RMSN Cond Time Level C Method
1 3.58E-13 9.24E-14 2.92E05 1.39E-01 9 8 MuCPLRBF, ε = 10−6

2 5.07E-13 2.74E-13 6.53E14 5.32E-01 9 4 MuRBF
3 6.03E-13 3.01E-13 2.15E07 1.41E-01 9 4 MuCPLRBF, ε = 10−10

4 6.15E-13 3.13E-13 1.16E07 1.40E-01 9 4 MuCPLRBF, ε = 10−9

5 6.76E-13 2.97E-13 2.51E07 1.39E-01 9 4 MuCPLRBF, ε = 10−11

6 6.84E-13 2.95E-13 6.44E14 1.43E-01 9 4 MuLRBF
7 7.34E-13 3.89E-13 4.08E06 1.41E-01 9 4 MuCPLRBF, ε = 10−8

8 7.51E-13 2.94E-13 2.54E07 1.39E-01 9 4 MuCPLRBF, ε = 10−13

9 7.64E-13 3.06E-13 2.54E07 1.41E-01 9 4 MuCPLRBF, ε = 10−12

10 8.08E-13 1.94E-13 2.29E05 2.46E-02 7 8 MuCPLRBF, ε = 10−7

11 6.16E-09 2.92E-09 5.05E14 9.63E-03 3 16 RBF
12 2.45E-08 8.96E-09 2.06E06 4.54E-02 9 16 CPLRBF, ε = 10−8

13 2.65E-08 5.46E-09 4.59E05 4.91E-02 9 32 CPLRBF, ε = 10−7

14 7.67E-08 1.52E-08 1.45E05 4.63E-02 9 32 CPLRBF, ε = 10−6

15 1.02E-07 2.19E-08 7.59E05 2.26E-02 6 16 CPLRBF, ε = 10−9

16 4.39E-07 1.05E-07 7.26E06 1.74E-02 7 8 CPLRBF, ε = 10−10

17 1.92E-06 4.73E-07 6.23E05 9.62E-03 3 16 CPLRBF, ε = 10−11

18 1.95E-06 1.04E-06 2.10E11 9.61E-03 3 8 LRBF
19 1.96E-06 1.07E-06 4.58E05 9.20E-03 3 8 CPLRBF, ε = 10−13

20 2.05E-06 1.06E-06 4.54E05 9.47E-03 3 8 CPLRBF, ε = 10−12
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Table 11. The max norm errors evaluated at the set points t for the CPLRBF and MuCPLRBF
methods using Gaussian RBF, ε = 10−i, 6 ≤ i ≤ 13 with C = 4 for different values of level.

Maximum Norm

Level
CPL
ε = 10−6

CPL
ε = 10−7

CPL
ε = 10−8

CPL
ε = 10−9

CPL
ε = 10−10

CPL
ε = 10−11

CPL
ε = 10−12

CPL
ε = 10−13

1 4.03E-03 4.03E-03 4.03E-03 4.03E-03 4.03E-03 4.03E-03 4.03E-03 4.03E-03
2 1.28E-03 1.28E-03 1.28E-03 1.28E-03 1.28E-03 1.28E-03 1.28E-03 1.28E-03
3 3.34E-04 3.29E-04 3.29E-04 3.29E-04 3.29E-04 3.29E-04 3.29E-04 3.29E-04
4 1.68E-04 1.30E-04 1.10E-04 1.06E-04 1.06E-04 1.06E-04 1.06E-04 1.06E-04
5 1.30E-04 1.02E-04 8.35E-05 7.13E-05 6.42E-05 6.17E-05 6.13E-05 6.13E-05
6 1.05E-04 8.48E-05 7.13E-05 6.27E-05 5.75E-05 5.49E-05 5.42E-05 5.40E-05
7 8.91E-05 7.36E-05 6.36E-05 5.74E-05 5.39E-05 5.25E-05 5.23E-05 5.22E-05
8 7.77E-05 6.59E-05 5.85E-05 5.41E-05 5.20E-05 5.14E-05 5.13E-05 5.13E-05
9 6.94E-05 6.05E-05 5.50E-05 5.21E-05 5.11E-05 5.09E-05 5.09E-05 5.09E-05

Level
MuCPL
ε = 10−6

MuCPL
ε = 10−7

MuCPL
ε = 10−8

MuCPL
ε = 10−9

MuCPL
ε = 10−10

MuCPL
ε = 10−11

MuCPL
ε = 10−12

MuCPL
ε = 10−13

1 4.03E-03 4.03E-03 4.03E-03 4.03E-03 4.03E-03 4.03E-03 4.03E-03 4.03E-03
2 4.27E-04 4.26E-04 4.26E-04 4.26E-04 4.26E-04 4.26E-04 4.26E-04 4.26E-04
3 2.78E-05 2.78E-05 2.78E-05 2.78E-05 2.78E-05 2.78E-05 2.78E-05 2.78E-05
4 1.62E-06 1.37E-06 1.33E-06 1.33E-06 1.33E-06 1.33E-06 1.33E-06 1.33E-06
5 1.09E-07 8.46E-08 7.46E-08 6.62E-08 6.33E-08 6.29E-08 6.29E-08 6.29E-08
6 6.95E-09 5.10E-09 4.25E-09 3.66E-09 3.39E-09 3.28E-09 3.27E-09 3.26E-09
7 4.25E-10 2.97E-10 2.38E-10 2.00E-10 1.83E-10 1.76E-10 1.76E-10 1.75E-10
8 2.51E-11 1.68E-11 1.31E-11 1.08E-11 9.85E-12 9.52E-12 9.52E-12 9.43E-12
9 1.46E-12 9.42E-13 7.34E-13 6.15E-13 6.03E-13 6.76E-13 7.64E-13 7.51E-13

Table 12. The max norm EOC for the multilevel methods evaluated at the set of points t
using Gaussian RBF with ε = 10−13 for different C values and levels.

Maximum Norm
C −→ C = 1 C = 2 C = 4 C = 8
Level ↓ MuCPL EOC MuCPL EOC MuCPL EOC MuCPL EOC
1 6.67E-02 - 2.12E-02 - 4.03E-03 - 4.41E-04 -
2 2.83E-02 1.24 5.45E-03 1.96 4.27E-04 3.24 1.24E-05 5.16
3 1.11E-02 1.35 1.38E-03 1.98 2.78E-05 3.94 4.85E-07 4.67
4 4.29E-03 1.37 3.50E-04 1.98 1.62E-06 4.10 1.75E-08 4.79
5 1.65E-03 1.38 8.80E-05 1.99 1.09E-07 3.90 5.38E-10 5.02
6 7.31E-04 1.18 2.20E-05 2.00 6.95E-09 3.97 1.46E-11 5.20
7 6.08E-04 0.27 5.46E-06 2.01 4.25E-10 4.03 6.08E-13 4.59
8 5.79E-04 0.07 1.35E-06 2.01 2.51E-11 4.08 3.59E-13 0.76
9 5.72E-04 0.02 3.35E-07 2.01 1.46E-12 4.11 3.58E-13 0.00
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Table 13. The RMS norm EOC for the multilevel methods evaluated at the set of points t
using Gaussian RBF with ε = 10−13 for different C values and levels.

RMS Norm
C −→ C = 1 C = 2 C = 4 C = 8
Level ↓ MuCPL EOC MuCPL EOC MuCPL EOC MuCPL EOC
1 3.78E-02 - 1.35E-02 - 2.82E-03 - 2.96E-04 -
2 1.40E-02 1.43 2.94E-03 2.20 2.58E-04 3.45 6.52E-06 5.50
3 5.00E-03 1.49 6.87E-04 2.10 1.59E-05 4.02 2.26E-07 4.85
4 1.90E-03 1.39 1.66E-04 2.05 8.98E-07 4.15 8.26E-09 4.78
5 8.38E-04 1.18 4.08E-05 2.03 5.91E-08 3.93 2.51E-10 5.04
6 4.99E-04 0.75 1.00E-05 2.02 3.74E-09 3.98 6.78E-12 5.21
7 4.07E-04 0.30 2.48E-06 2.02 2.28E-10 4.04 1.82E-13 5.22
8 3.83E-04 0.08 6.13E-07 2.02 1.35E-11 4.08 9.23E-14 0.98
9 3.78E-04 0.02 1.51E-07 2.02 7.75E-13 4.12 9.24E-14 0.00

Table 14. The condition numbers for the RBF, LRBF, PLRBF, and CPLRBF methods using
Gaussian RBF with C = 256, and ε = 10−10 for nine levels.

Cond(A) and Cond(Aε) Cond number Cholesky

Level RBF LRBF
PLRBF
ε = 10−10

(CPLRBF)2

ε = 10−10
CPLRBF
ε = 10−10

1 8.05E08 3.22E09 3.66E06 3.66E06 1.91E03
2 1.95E17 1.83E17 2.44E07 2.44E07 4.94E03
3 6.50E20 7.57E17 1.76E08 1.76E08 1.33E04
4 1.36E19 5.96E17 1.33E09 1.33E09 3.64E04
5 8.04E18 5.11E18 1.02E10 1.02E10 1.01E05
6 6.10E18 1.30E19 7.87E10 7.87E10 2.81E05
7 1.06E19 1.38E19 5.71E11 5.71E11 7.56E05
8 4.37E20 2.91E19 3.38E12 3.37E12 1.84E06
9 1.06E20 1.67E20 1.82E13 1.81E13 4.26E06

(c) Partial convergence region C > c1: Here, standard methods do not demonstrate
convergence, accuracy, or stability. As observed in Figure 1 for C = 16 and C = 128, the
errors for the standard methods either dramatically increase after a certain level or achieve a
significantly lower accuracy level, as seen with the RBF method. Moreover, for C = 16 and
C = 128, Figure 2 clearly shows that the condition number becomes excessively high after
level 3, highlighting the ill-conditioning of the system. In contrast, as observed in Figure 2,
our MuCPLRBF method maintains stability and achieves a good level of accuracy, as
illustrated in Figure 1, albeit with some stagnation. In Table 15, we list the condition
number for CPLRBF, respectively, noting the interesting fact that the condition number
increases with the same factor as the ε decreases. Overall, this suggests that the
MuCPLRBF method can deliver stable and accurate solutions at an early level, significantly
reducing the computational time when ε is chosen carefully. Larger ε values lead to more
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stable and more accurate solutions, provided that ε remains sufficiently small (e.g., for
C > 16, ε = 10−6 delivers the most stable and accurate solution). It appears that the trade-off
principle becomes more of a balance between the shape parameter and ε, that is, there is no
stability issue for the perturbed methods, and the accuracy, even though not as strong as the
standard methods, still depends on the shape parameter, C.

Table 15. The condition number for the CPLRBF method using Gaussian RBF, ε = 10−i, 6 ≤
i ≤ 13 with C = 128 for different values of level.

Condition number for CPLRBF

Level
CPL
ε = 10−6

CPL
ε = 10−7

CPL
ε = 10−8

CPL
ε = 10−9

CPL
ε = 10−10

CPL
ε = 10−11

CPL
ε = 10−12

CPL
ε = 10−13

1 3.83E01 1.21E02 3.83E02 1.21E03 3.69E03 9.21E03 1.33E+04 1.41E+04
2 9.88E01 3.12E02 9.88E02 3.12E03 9.88E03 3.12E04 9.88E+04 3.12E+05
3 2.65E02 8.38E02 2.65E03 8.38E03 2.65E04 8.38E04 2.65E+05 8.38E+05
4 7.26E02 2.29E03 7.26E03 2.29E04 7.26E04 2.29E05 7.26E+05 2.29E+06
5 2.00E03 6.32E03 2.00E04 6.32E04 2.00E05 6.32E05 2.00E+06 6.32E+06
6 5.36E03 1.70E04 5.36E04 1.70E05 5.36E05 1.70E06 5.36E+06 1.70E+07
7 1.30E04 4.11E04 1.30E05 4.11E05 1.30E06 4.11E06 1.31E+07 4.31E+07
8 3.01E04 9.52E04 3.01E05 9.52E05 3.01E06 9.55E06 3.09E+07 3.36E+17
9 6.78E04 2.14E05 6.78E05 2.14E06 6.79E06 2.17E07 7.61E+07 4.54E+18

(2) Efficiency: Our detailed efficiency analysis shows that the CPLRBF method had a pronounced
computational advantage over the standard RBF method, particularly from the third level
onward. One of the primary reasons for this efficiency is the pre-calculation of the Lagrange
functions outside of the main program once and for all, which greatly conserves computational
time. As illustrated in Table 16, the CPLRBF method consistently operates in nearly half the
time as the standard RBF. This same efficiency pattern was mirrored in their multilevel variants:
MuCPLRBF consistently outperformed MuRBF, as confirmed in Table 17. As expected, this
efficiency trend was observed to be consistent, regardless of the shape parameter choice,
underscoring our proposed method’s robustness. Such consistent time savings, when combined
with the ability of the MuCPLRBF method to function optimally even at high C values,
underpins a significant advantage of our proposed method. It implies that the MuCPLRBF
method can deliver high-level accuracy at a fraction of the computational time, making it a
formidable solution for time-intensive problems. Additionally, this can be seen in Table 10,
where the MuCPLRBF with ε = 10−7 achieved the best possible accuracy for C = 8 and level =
7 at a record time (i.e., 25 times faster than the standard MuRBF for the same accuracy level).

AIMS Mathematics Volume 8, Issue 11, 27542–27572.



27569

Table 16. The CPU time for RBF, LRBF, and CPLRBF methods using Gaussian RBF
with ε = 10−6, and C = 8 for different levels.

CPU time
Method −→ RBF LRBF CPLRBF
Level ↓ Max-error Time Max-error Time Max-error Time
1 4.43E-04 9.91E-03 4.43E-04 9.16E-03 4.41E-04 9.47E-03
2 6.25E-05 9.85E-03 6.25E-05 9.03E-03 6.46E-05 9.94E-03
3 1.87E-06 1.11E-02 1.95E-06 9.61E-03 2.90E-05 1.09E-02
4 6.88E-08 1.41E-02 2.77E-02 1.03E-02 1.15E-05 1.01E-02
5 4.07E-08 1.73E-02 4.45E-02 1.09E-02 6.30E-06 1.08E-02
6 5.19E-07 2.51E-02 1.64E-01 1.30E-02 3.52E-06 1.29E-02
7 2.82E-07 4.40E-02 4.14E-03 1.84E-02 2.11E-06 1.73E-02
8 4.17E-06 1.02E-01 1.95E-01 5.53E-02 1.31E-06 4.70E-02
9 1.26E-05 2.39E-01 7.09E-02 4.91E-02 8.40E-07 4.68E-02

Table 17. The CPU time for RBF, LRBF, and CPLRBF methods using Gaussian RBF
with ε = 10−6, and C = 8 for different levels.

CPU time
Method −→ MuRBF MuLRBF MuCPLRBF
Level ↓ Max-error Time Max-error Time Max-error Time
1 4.43E-04 9.15E-03 4.43E-04 9.36E-03 4.41E-04 9.15E-03
2 7.28E-06 9.70E-03 7.28E-06 9.35E-03 1.24E-05 9.65E-03
3 5.20E-08 1.07E-02 5.22E-08 9.91E-03 4.85E-07 9.82E-03
4 1.41E-10 1.24E-02 3.37E-08 1.09E-02 1.75E-08 1.07E-02
5 6.92E-11 1.47E-02 9.03E-08 1.17E-02 5.38E-10 1.16E-02
6 1.27E-10 2.33E-02 4.56E-07 1.53E-02 1.46E-11 1.49E-02
7 1.23E-10 5.01E-02 5.22E-07 2.48E-02 6.08E-13 2.44E-02
8 1.41E-09 1.54E-01 3.02E-05 5.49E-02 3.59E-13 5.32E-02
9 8.87E-08 5.41E-01 1.60E-03 1.41E-01 3.58E-13 1.39E-01

Remark: In our study, we also looked at and analysed four other examples including: polynomial,
exponential, log, and trigonometric functions. In all these cases, we established similar results to
those detailed in the presented example, thus confirming the summary of our findings in the following
section.

7.3. Summary of our findings

Our investigation has explored various RBF-based methods and their respective properties, focusing
on accuracy, stability, and convergence. Here, we summarize our key findings and the main advantages
as well as limitations of our CPLRBF method:

(1) Enhanced Stability with Perturbation: The CPLRBF method significantly improves stability over
the standard RBF and LRBF collocation methods, largely credited to the use of a perturbed
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Lagrange matrix and the implementation of Cholesky decomposition.
(2) Optimized Performance in the Convergence Region: Operating within the shape parameter

range c0 < C < c1, the MuCPLRBF method showcases its superiority in terms of stability and
condition number. It achieves an EOC that matches C, paralleling the accuracy of traditional
methods, though with augmented efficiency.

(3) Efficiency from Early Stages: From level 3 onwards, the MuCPLRBF method stands out, not
just in terms of matching the accuracy of standard RBF, but also in its computational swiftness,
thereby requiring notably shorter durations to deliver an accurate solution.

(4) Reliability in High C Values: With rising values of C, while many methods falter, the MuCPLRBF
method remains steadfast, delivering solutions with consistent accuracy.

(5) Promising Scalability: While the current focus is on one-dimensional problems, the MuCPLRBF
method is not just a solution for the present; it is a promising avenue for tackling
higher-dimensional challenges in future research, retaining its advantages in stability and
efficiency.

(6) Parameter Interplay Complexity: A deep understanding of the interplay between the shape
parameter, C, and the perturbation parameter, ε, is still elusive. While our findings suggest a
nuanced balance, a comprehensive understanding of their direct relationship might be a
limitation of the current method and certainly serves as an exciting avenue for future research.

8. Conclusions and remarks

In this paper, we have introduced novel numerical methods, the Lagrange collocation method with
radial basis functions (LRBF) and the perturbed version (PLRBF) for solving 1D PDEs. We presented
an in-depth analysis of various RBF-based methods, with a particular emphasis on the introduction
of perturbation and multilevel techniques to address the challenges associated with the standard RBF
collocation method. Our findings not only elucidate the properties of these methods, but also provide
valuable insights for future research and applications.

We found that incorporating perturbation and developing the CPLRBF method significantly
improves stability when applying the Cholesky decomposition compared to standard RBF and LRBF
collocation methods. The choice of the perturbation parameter, ε, shape parameter, C, and level all
play crucial roles in determining stability and convergence. However, a clear relationship between
these parameters is still pending and presents one of the main limitations of our method.

Three distinct regions were identified based on the chosen shape parameter, C, each with different
convergence, accuracy, and stability characteristics. Our numerical experiments in 1D confirmed our
main findings and showcased the potential of our proposed methods, particularly the MuCPLRBF
method, in delivering accurate solutions at an early level, thereby significantly reducing computational
time.

In conclusion, our study highlights the importance of adopting perturbed (thus Cholesky) and
multilevel techniques to address challenges in the standard RBF collocation method.

While this paper has focused on one-dimensional problems, we anticipate that our approach can be
extended to higher dimensionalities, a topic we plan to explore in future work.

We would expect more challenges around choosing the perturbed parameter ε and its dependency
on the shape parameter C. Additionally, while we’ve emphasised the benefits of pre-calculating the
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Lagrange functions, the associated computational overhead, particularly for more extensive and
complex systems in higher dimensions, is a limitation that warrants further investigation. The results
presented in this paper open up new avenues for research and application of RBF-based methods in
solving PDEs, offering improved stability and efficiency while maintaining high accuracy and
convergence level.
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