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1. Introduction

The variational inequality problem (VIP) was introduced by Stampacchia [1] and provided a very
useful tool for researching a large variety of interesting problems arising in physics, economics,
finance, elasticity, optimization, network analysis, medical images, water resources, and structural
analysis, see for example ( [2–15]) and references therein.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be a
nonempty closed convex subset ofH . Let B : C −→ H be an operator.
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In this article, our study is related to a classical variational inequality problem (VIP) which aims to
find an element x† ∈ C such that

〈Bx†, x − x†〉 ≥ 0, ∀x ∈ C. (1.1)

It is well known that x] ∈ VI(B,C) if and only if x] = PC(x] − ζBx]), where ζ > 0, in other words, the
VIP is equivalent to the fixed point problem (see [16]). Supposing that B is η-strongly monotone and
L-Lipschitz continuous with 0 < ζ < 2η

L2 , the following sequence {xn} of Picard iterates:

xn+1 = PC(xn − ζBxn), (1.2)

converges strongly to a point x† ∈ VI(B,C) due to the fact that PC(I − ζB) is a contraction on
C. However, in general, the algorithm (1.2) fails when B is monotone and L-Lipschitz continuous
(see [17]). In [7], Korpelevich put forward an extragradient method which provided an important idea
for solving monotone variational inequality:

yn = PC(xn − λ f xn),
xn+1 = PC(xn − λ f yn),

(1.3)

where f is monotone, L-Lipschitz continuous in the finite dimensional Euclidean space Rn and λ ∈

(0, 1
L ).
The another motivation of this article is the split common fixed point problem which aims to find a

point u ∈ H1 such that

u ∈ Fix(T ) and Au ∈ Fix(S). (1.4)

The split common fixed point problem can be regarded as a generalization of the split feasibility
problem. Recall that the split feasibility problem is to find a point satisfying

u ∈ C and Au ∈ Q, (1.5)

where C and Q are two nonempty closed convex subsets of real Hilbert spacesH1 andH2, respectively
and A : H1 → H2 is a bounded linear operator. Inverse problems in various disciplines can be
expressed as the split feasibility problem and the split common fixed point problem. Problem (1.4) was
firstly introduced by Censor and Segal [18]. Note that solving (1.4) can be translated to solve the fixed
point equation:

u = S (u − τA∗(I − T )Au), τ > 0.

Whereafter, Censor and Segal proposed an algorithm for directed operators. Since then, there has been
growing interest in the split common fixed point problem (see [19–22]).

Censor et al. [23] first proposed split variational inequality problems by combining the variational
inequality problem and the split feasibility problem. Very recently, in 2017, Tian and Jiang [24]
considered the following split variational inequality problem: finding an element u such that

u ∈ VI(A,C) and Bu ∈ Fix(T ), (1.6)

where T : H2 → H2 is nonexpansive, B : H1 → H2 is a bounded linear operator with its adjoint
B∗, and A : C → H1 is a monotone and L-Lipschitz continuous mapping. Then they presented
the following iteration method by combining the extragradient method with CQ algorithm for solving
the (1.6):
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Algorithm 1.1. Choose an arbitrary initial value x1 ∈ C. Assume xn has been constructed. Compute

yn = PC(xn − τnA
∗(I − T )Axn),

zn = PC(yn − ςnF yn),
xn+1 = PC(yn − ςnF zn).

(1.7)

They proved that the iterative sequence {xn} defined by Eq (1.7) converges weakly to an element
z ∈ Γ, where Γ is the set of solutions of the problem (1.6). However, Algorithm 1.1 fails, in
general, to converge strongly in the setting of infinite-dimensional Hilbert spaces. We also notice
that Algorithm 1.1 is involved with three metric projections in each iteration, which might seriously
affect the efficiency of the method.

Motivated and inspired by the above works, in the present paper, we consider variational inequality
problems and split common fixed point problems for finding an element u such that

x̂ ∈ VI(A,C) and Bx̂ ∈
∞⋂

n=1

Fix(Tn), (1.8)

where {Tn}
∞
n=1 : H2 → H2 is an infinite family of nonexpansive mappings, B : H1 → H2 is a bounded

linear operator with its adjoint B∗, and A : H1 → H1 is a monotone and L-Lipschitz continuous
mapping. In contrast to Tian and Jiang [24], we consider the common fixed points of an infinite family
of nonexpansive mappings instead of only the fixed points of a nonexpansive mapping. The efficiency
of the algorithm is also improved by removing the projection operator in the first iteration which might
affect the efficiency of the method to a certain extent. Finally, we present a very simple modification to
extragradient method, which makes our algorithm have the strong convergence. It is well known that
the strong convergence theorem is always more convenient to use.

This paper is organized as follows: In Section 2, we give some definitions and key lemmas which are
used in this paper. Section 3 consists of our algorithms and provides the strong convergence theorems.
In Section 4, numerical examples are provided for illustration. Finally, this paper is concluded in
Section 5.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be a
nonempty closed convex subset of H . Let T : C −→ C be an operator. We use Fix(T ) to denote the
set of fixed points of T , that is, Fix(T ) = {x†|x† = T x†, x† ∈ C}.

First, we give some definitions and lemmas related to the involved operators.

Definition 2.1. An operator T : C −→ C is said to be nonexpansive if ‖Tu − Tv‖ ≤ ‖u − v‖ for all
u, v ∈ C.

Definition 2.2. An operatorA : C −→ H is said to be monotone if 〈Ax−Ay, x−y〉 ≥ 0 for all x, y ∈ C.

A monotone operator R : H ⇒ 2H is called maximal monotone if the graph of R is a maximal
monotone set.

Definition 2.3. An operator T : C −→ H is said to be L-Lipschitzian if there exists L > 0 such that
‖T x − T y‖ ≤ L‖x − y‖ for all x, y ∈ C.
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Usually, the convergence of fixed point algorithms requires some additional smoothness properties
of the mapping T such as demi-closedness.

Definition 2.4. An operator T is said to be demiclosed if, for any sequence {un} which weakly
converges to u∗, and if T un −→ w, then T u∗ = w.

Recall that the (nearest point or metric) projection from H onto C, denoted by PC, assigns to each
u ∈ H , the unique point PCu ∈ C with the property:

‖u−PCu‖ = inf{‖u − v‖ : v ∈ C}.

The metric projection PC ofH onto C is characterized by

〈u − PCu, v − PCu〉 ≤ 0
or ‖u − v‖2 ≥ ‖u − PCu‖2 + ‖v − PCu‖2

(2.1)

for all u ∈ H , v ∈ C. It is well known that the metric projection PC : H → C is firmly nonexpansive,
that is,

〈u − v,PCu − PCv〉 ≥ ‖PCu − PCv‖2

or ‖PCu − PCv‖2 ≤ ‖u − v‖2 − ‖(I − PC)u − (I − PC)v‖2
(2.2)

for all u, v ∈ H . More information on the metric projection can be found, for example, in Section 3 of
the book by Goebel et al. (see [25]).

For all u, v ∈ H, the following conclusions hold:

‖tu + (1 − t)v‖2 = t‖u‖2 + (1 − t)‖v‖2 − t(1 − t)‖u − v‖2, t ∈ [0, 1], (2.3)

‖u + v‖2 = ‖u‖2 + 2〈u, v〉 + ‖v‖2 (2.4)

and

‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉. (2.5)

Let {Tn}
∞
n=1 : H → H be an infinite family of nonexpansive mappings and λ1, λ2, ... be real numbers

such that 0 ≤ λi ≤ 1 for each i ∈ N. For any n ∈ N, define a mappingWn of C intoH as follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1 − λn)I,
Un,n−1 = λn−1Tn−1Un,n + (1 − λn−1)I,
. . .

Un,k = λkTkUn,k+1 + (1 − λk)I,
Un,k−1 = λk−1Tk−1Un,k + (1 − λk−1)I,
. . .

Un,2 = λ2T2Un,3 + (1 − λ2)I,
Wn = Un,1 = λ1T1Un,2 + (1 − λ1)I.

(2.6)

Such a mappingWn is called theW-mapping generated by T1,T2, ...,Tn and λ1, λ2, ..., λn. We have
the following crucial Lemma concerningWn:
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Lemma 2.1. [26] Let H be a real Hilbert space. Let {Tn}
∞
n=1 : H → H be an infinite family of

nonexpansive mappings such that
⋂∞

n=1 Fix(Tn) , ∅. Let λ1, λ2, ... be real numbers such that 0 ≤ λi ≤

b < 1 for each i ≥ 1. Then we have the following:
(1) For any x ∈ H and k ≥ 1, the limit limn→∞Un,kx exists;
(2) Fix(W) =

⋂∞
n=1 Fix(Tn), whereWx = limn→∞Wnx = limn→∞Un,1x, ∀x ∈ C;

(3) For any bounded sequence {xn} ⊂ H , limn→∞Wxn = limn→∞Wnxn.

Lemma 2.2. [27] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1 − γn)αn + δn, n ∈ N,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(1)
∑∞

n=1 γn = ∞;
(2) lim supn→∞

δn
γn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ αn = 0.

Lemma 2.3. [28] Let {$n} be a sequence of real numbers. Assume there exists at least a subsequence
{$nk} of {$n} such that $nk ≤ $nk+1 for all k ≥ 0. For every n ≥ N0, define an integer sequence {τ(n)}
as:

τ(n) = max{i ≤ n : $ni < $ni+1}.

Then, τ(n)→ ∞ as n→ ∞ and for all n ≥ N0, we have max{$τ(n), $n} ≤ $τ(n)+1.

3. Main results

In this section, we introduce our algorithm and prove its strong convergence. Some assumptions on
the underlying spaces and involved operators are listed below.

(R1)H1 andH2 are two real Hilbert spaces and C ⊂ H1 is a nonempty closed convex subset.
(R2) B : H1 → H2 is a bounded linear operator with its adjoint B∗.
(R3)A : H1 → H1 is a monotone and L-Lipschitz continuous mapping.
(R4) Ω = {x̂|x̂ ∈ VI(A,C) and Bx̂ ∈

⋂∞
n=1 Fix(Tn)}, where Ω is the set of solutions of the

problem (1.8).
Next, we present the following iterative algorithm to find a point x̂ ∈ Ω.

Algorithm 3.1. Choose an arbitrary initial value x1 ∈ H . Assume xn has been constructed. Compute

yn = xn − τnB
∗(I −Wn)Bxn,

zn = PC(yn − ςnAyn),
xn+1 = PC((1 − αn)(yn − ςnAzn)),

(3.1)

where {αn} is a sequence in (0, 1), ςn is a sequence in (0, 1
L ), and τn is a sequence in (0, 1

‖B‖2
).

Theorem 3.1. If Ω , ∅ and the following conditions are satisfied:
(C1) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(C2) 0 < lim infn→∞ ςn ≤ lim supn→∞ ςn <
1
L ;

(C3) 0 < lim infn→∞ τn ≤ lim supn→∞ τn <
1
‖B‖2

.
Then, the iterative sequence {xn} defined by Eq (3.1) strongly converges to the minimum-norm

solution x̂(= PΩθ).
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Proof. Set z = PΩθ. We can obtain that

‖yn − z‖2

= ‖xn − z − τnB
∗(I −Wn)Bxn‖

2

= ‖xn − z‖2 − 2τn〈xn − z,B∗(I −Wn)Bxn〉 + ‖τnB
∗(I −Wn)Bxn‖

2

= ‖xn − z‖2 − 2τn〈Bxn − Bz, (I −Wn)Bxn〉 + ‖τnB
∗(I −Wn)Bxn‖

2

≤ ‖xn − z‖2 − τn‖(I −Wn)Bxn‖
2 + τ2

n‖B‖
2 · ‖(I −Wn)Bxn‖

2

≤ ‖xn − z‖2 − τn(1 − τn‖B‖
2)‖(I −Wn)Bxn‖

2

≤ ‖xn − z‖2.

(3.2)

It follows from (2.1) that

‖xn+1 − z‖2

= ‖PC((1 − αn)(yn − ςnAzn)) − z‖2

≤ ‖(1 − αn)(yn − ςnAzn) − z‖2 − ‖(1 − αn)(yn − ςnAzn) − xn+1‖
2

≤ ‖(1 − αn)(yn − ςnAzn − z) + αn(−z)‖2

− ‖(1 − αn)(yn − ςnAzn − xn+1) + αn(−xn+1)‖2

≤ (1 − αn)‖yn − ςnAzn − z‖2 + αn‖ − z‖2

− (1 − αn)αn‖yn − ςnAzn‖
2

− ((1 − αn)‖yn − ςnAzn − xn+1‖
2 + αn‖ − xn+1‖

2

− (1 − αn)αn‖yn − ςnAzn‖
2)

= (1 − αn)(‖yn − ςnAzn − z‖2 − ‖yn − ςnAzn − xn+1‖
2)

+ αn(‖z‖2 − ‖xn+1‖
2).

(3.3)

We also observe that

‖yn − ςnAzn − z‖2 − ‖yn − ςnAzn − xn+1‖
2

= ‖yn − z‖2 − ‖yn − xn+1‖
2 + 2ςn〈Azn, z − xn+1〉

= ‖yn − z‖2 − ‖yn − xn+1‖
2 + 2ςn〈Azn, z − zn〉 + 2ςn〈Azn, zn − xn+1〉

= ‖yn − z‖2 − ‖yn − xn+1‖
2 + 2ςn〈Azn −Az, z − zn〉

+ 2ςn〈Az, z − zn〉 + 2ςn〈Azn, zn − xn+1〉

≥ ‖yn − z‖2 − ‖yn − xn+1‖
2 + 2ςn〈Azn, zn − xn+1〉

= ‖yn − z‖2 − ‖yn − zn‖
2 − ‖zn − xn+1‖

2

+ 2〈yn − ςnAzn − zn, xn+1 − zn〉.

(3.4)

On the other hand, we have that

〈yn − ςnAzn − zn, xn+1 − zn〉

= 〈yn − ςnAyn − zn, xn+1 − zn〉 + ςn〈Ayn −Azn, xn+1 − zn〉

≤ ςn〈Ayn −Azn, xn+1 − zn〉

≤ ςn‖Ayn −Azn‖ × ‖xn+1 − zn‖

≤ ςnL‖yn − zn‖ × ‖xn+1 − zn‖.

(3.5)
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Hence, we can derive that

‖xn+1 − z‖2 = (1 − αn)(‖yn − ςnAzn − z‖2 − ‖yn − ςnAzn − xn+1‖
2) + αn(‖z‖2 − ‖xn+1‖

2),
(by(3.4)) ≤ (1 − αn)(‖yn − z‖2 − ‖yn − zn‖

2 − ‖zn − xn+1‖
2

+ 2〈yn − ςnAzn − zn, xn+1 − zn〉) + αn(‖z‖2 − ‖xn+1‖
2),

(by(3.5)) ≤ (1 − αn)(‖yn − z‖2 − ‖yn − zn‖
2 − ‖zn − xn+1‖

2

+ 2ςnL‖yn − zn‖ × ‖xn+1 − zn‖) + αn(‖z‖2 − ‖xn+1‖
2)

≤ (1 − αn)(‖yn − z‖2 − ‖yn − zn‖
2 − ‖zn − xn+1‖

2

+ ς2
nL2‖yn − zn‖

2 + ‖xn+1 − zn‖
2) + αn(‖z‖2 − ‖xn+1‖

2)
≤ (1 − αn)(‖yn − z‖2 + (ς2

nL2 − 1)‖yn − zn‖
2) + αn(‖z‖2 − ‖xn+1‖

2),
(by(3.2)) ≤ (1 − αn)(‖xn − z‖2 + (ς2

nL2 − 1)‖yn − zn‖
2) + αn(‖z‖2 − ‖xn+1‖

2).

(3.6)

Owing to the assumption (C2), it follows from (3.6) that

‖xn+1 − z‖2 ≤ (1 − αn)‖yn − z‖2 + αn(‖z‖2 − ‖xn+1‖
2),

(by(3.2)) ≤ (1 − αn)‖xn − z‖2 + αn(‖z‖2 − ‖xn+1‖
2)

≤ (1 − αn)‖xn − z‖2 + αn‖z‖2

≤ max{‖xn − z‖2, ‖z‖2}

(3.7)

and so

‖xn − z‖2 ≤ max{‖x1 − z‖2, ‖z‖2}, (3.8)

which implies that the sequence {xn} is bounded. In view of (3.2) and (3.7), we obtain that

τn(1 − τn‖B‖
2)‖(I −Wn)Bxn‖

2

≤ ‖xn − z‖2 − ‖yn − z‖2

≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + αn(‖z‖2 − ‖xn+1‖
2 − ‖yn − z‖2).

(3.9)

CASE I. Suppose that there exists m > 0 such that the sequence {‖xn−z‖} is decreasing when n ≥ m.
Then, limn→∞ ‖xn − z‖ exists. Consequently, according to the assumptions (C1) and (C3), we deduce
that

lim
n→∞
‖(I −Wn)Bxn‖ = 0. (3.10)

In virtue of the boundedness of the sequence {Bxn} and Lemma 2.1, we get that

lim
n→∞
‖WBxn −WnBxn‖ = 0. (3.11)

This together with (3.24) implies that

lim
n→∞
‖(I −W)Bxn‖ = 0. (3.12)
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It follows from (3.6) that

(1 − αn)(1 − ς2
nL2)‖yn − zn‖

2

≤ (1 − αn)‖xn − z‖2 − ‖xn+1 − z‖2

+ αn(‖z‖2 − ‖xn+1‖
2)

≤ ‖xn − z‖2 − ‖xn+1 − z‖2

+ αn(‖z‖2 − ‖xn+1‖
2 − ‖xn − z‖2).

(3.13)

Thanks to the boundedness of the sequence {xn}, we derive that

lim
n→∞
‖yn − zn‖ = 0. (3.14)

In view of (3.30), we can also get that

lim
n→∞
‖yn − xn‖ = lim

n→∞
‖τnB

∗(I −Wn)Bxn‖ = 0(by(3.24)). (3.15)

Combining (3.14) and (3.15), we obtain that

lim
n→∞
‖zn − xn‖ = 0. (3.16)

On the other hand, we get that

‖xn+1 − zn‖ = ‖PC((1 − αn)(yn − ςnAzn)) − PC(yn − ςnAyn)‖
≤ ‖(1 − αn)(yn − ςnAzn) − (yn − ςnAyn)‖
≤ ‖(yn − ςnAzn) − (yn − ςnAyn)‖ + αn‖yn − ςnAzn)‖
≤ ‖ςnAzn − ςnAyn‖ + αn‖yn − ςnAzn‖

≤ ςn‖Azn −Ayn‖ + αn‖yn − ςnAzn‖

≤ ςnL‖zn − yn‖ + αn‖yn − ςnAzn‖.

(3.17)

Hence, by (3.14), it turns out that

lim
n→∞
‖xn+1 − zn‖ = 0 (3.18)

and consequently, according to (3.16), we have that

lim
n→∞
‖xn+1 − xn‖ = 0. (3.19)

Next, we can take a subsequence {ni} such that

lim sup
n→∞

(‖z‖2 − ‖xn+1‖
2) = lim

i→∞
(‖z‖2 − ‖xni+1‖

2). (3.20)

By the boundedness of the real sequence {xni+1}, we may assume that xni+1 ⇀ x†. Since W is
nonexpansive, we can derive that Bx† =WBx†(see Corollary 4.28 in [29]), that is, Bx† ∈ Fix(W) =⋂∞

n=1 Fix(Tn).
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Now, we show that x† ∈ VI(A,C). Let

R(v) =

Av +NC(v), v ∈ C,

∅ v < C,
(3.21)

where NC(v) is the normal cone to C at v. According to Reference [30], we can easily derive that R is
maximal monotone. Let (v,w) ∈ G(R). Since w − Av ∈ NC(v) and xn ∈ C, we have that

〈v − xn,w − Av〉 ≥ 0.

Noting that, due to v ∈ C, we get

〈v − xn+1, xn+1 − (1 − αn)(yn − ςnAzn))〉 ≥ 0.

It follows that
〈v − xn+1,

xn+1 − yn

ςn
+Azn +

αn

ςn
(yn − ςnAzn)〉 ≥ 0.

Thus, we can deduce that

〈v − xni+1,w〉

≥ 〈v − xni+1, Av〉

≥ − 〈v − xni+1,
xni+1 − yni

ςni

+Azni +
αni

ςni

(yni − ςniAzni)〉

+ 〈v − xni+1, Av〉

≥ 〈v − xni+1,Av −Azni〉 − 〈v − xni+1,
xni+1 − yni

ςni

〉

− 〈v − xni+1,
αni

ςni

(yni − ςniAzni)〉

≥ 〈v − xni+1,Av −Axni+1〉 + 〈v − xni+1,Axni+1 −Azni〉

− 〈v − xni+1,
xni+1 − yni

ςni

〉 − 〈v − xni+1,
αni

ςni

(yni − ςniAzni)〉

≥ − 〈v − xni+1,
xni+1 − yni

ςni

〉 − 〈v − xni+1,
αni

ςni

(yni − ςniAzni)〉

+ 〈v − xni+1,Axni+1 −Azni〉.

(3.22)

As i→ ∞, we obtain that
〈v − x†,w〉 ≥ 0.

By the maximal monotonicity of R, we derive that x† ∈ R−10. Hence, x† ∈ VI(A,C). Therefore,
x† ∈ Ω. Since the norm of the Hilbert space H1 is weakly lower semicontinuous(see Lemma 2.42
in [29]), we have the following inequality:

‖x†‖ ≤ lim inf
i→∞

‖xni+1‖

and therefore
−‖x†‖ ≥ lim sup

i→∞
(−‖xni+1‖).
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From (3.7), we observe that

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + αn(‖z‖2 − ‖xn+1‖
2). (3.23)

Thanks to z = PΩθ and x† ∈ Ω, we can deduce that

lim sup
n→∞

(‖z‖2 − ‖xni+1‖
2) = ‖z‖2 + lim sup

n→∞
(−‖xni+1‖

2) ≤ ‖z‖2 − ‖x†‖2 ≤ 0.

Applying Lemma 2.2 to (3.23), we derive that limn→∞ ‖xn − z‖ = 0, which implies that the sequence
{xn} converges strongly to z.

CASE II. For any n0, there exists an integer m ≥ n0 such that ‖xm − z‖ ≤ ‖xm+1 − z‖. At this case, we
set $n = ‖xn − z‖. For n ≥ n0, we define a sequence {τn} by

τ(n) = max{l ∈ N|n0 ≤ l ≤ n, $l ≤ $l+1}.

It is easy to show that τ(n) is a non-decreasing sequence such that

lim
n→∞

τ(n) = +∞

and
$τ(n) ≤ $τ(n)+1.

This together with (3.9) implies that

lim
n→∞
‖(I −Wτ(n))Bxτ(n)‖

2 = 0. (3.24)

Employing techniques similar to CASE I, we have

lim sup
n→∞

(‖z‖2 − ‖xτ(n)+1‖
2) ≤ 0 (3.25)

and

$2
τ(n)+1 ≤ (1 − ατ(n))$2

τ(n) + ατ(n)(‖z‖2 − ‖xτ(n)+1‖
2). (3.26)

Since $τ(n) ≤ $τ(n)+1, we have

$2
τ(n) ≤ ‖z‖

2 − ‖xτ(n)+1‖
2. (3.27)

By (3.25), we obtain that
lim sup

n→∞
$τ(n) ≤ 0

and so

lim
n→∞

$τ(n) = 0. (3.28)

By Eq (3.26), we also obtain
lim sup

n→∞
$τ(n)+1 ≤ lim sup

n→∞
$τ(n).

In the light of the last inequality and Eq (3.28), we derive that

lim
n→∞

$τ(n)+1 = 0.

Applying Lemma 2.3, we obtain
$n ≤ $τ(n)+1.

Therefore, we get that $n → 0, that is, xn → z. This completes the proof. �
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Algorithm 3.2. Choose an arbitrary initial value x1 ∈ C. Assume xn has been constructed. Compute

yn = xn − τnB
∗(I − T )Bxn,

zn = PC(yn − ςnAyn),
xn+1 = PC((1 − αn)(yn − ςnAzn)),

(3.29)

where {αn} is a sequence in (0, 1), ςn is a sequence in (0, 1
L ), and τn is a sequence in (0, 1

‖B‖2
).

Theorem 3.2. If Ω̂ , ∅ and the following conditions are satisfied:
(C1) limn→∞αn = 0 and

∑∞
n=0 αn = ∞;

(C2) 0 < lim infn→∞ ςn ≤ lim supn→∞ ςn <
1
L ;

(C3) 0 < lim infn→∞ τn ≤ lim supn→∞ τn <
1
‖B‖2

.
Then, the iterative sequence {xn} defined by Eq (3.29) strongly converges to the minimum-norm

solution x̂(= PΩ̂θ), where

Ω̂ = {x̂|x̂ ∈ VI(A,C) and Bx̂ ∈ Fix(T )} , ∅.

Algorithm 3.3. Choose an arbitrary initial value x1 ∈ C. Assume xn has been constructed. Compute

zn = PC(xn − ςnAxn),
xn+1 = PC((1 − αn)(xn − ςnAzn)),

(3.30)

where {αn} is a sequence in (0, 1) and ςn is a sequence in (0, 1
L ).

Theorem 3.3. If Ω̂ , ∅ and the following conditions are satisfied:
(C1) limn→∞αn = 0 and

∑∞
n=0 αn = ∞;

(C2) 0 < lim infn→∞ ςn ≤ lim supn→∞ ςn <
1
L ;

Then, the iterative sequence {xn} defined by Eq (3.30) strongly converges to the minimum-norm
solution x̂(= PΩθ), where Ω̂ = {x̂|x̂ ∈ VI(A,C)} , ∅.

4. Numerical illustrations

In this section, we present some numerical examples to illustrate our main results. The MATLAB
codes run in MATLAB version 9.5 (R2018b) on a PC Intel(R) Core(TM)i5-6200 CPU @ 2.30
GHz 2.40 GHz, RAM 8.00 GB. In all examples y-axes shows the value of ‖xn+1 − xn‖ while the x-
axis indicates to the number of iterations.

Example 4.1. LetH1 = H2 = Rn. The feasible set is defined as:

C := {x ∈ Rn : ‖x‖ ≤ 1}.

Let G : Rn → Rn is a linear operator defined by:

Ax := Gx

for all x ∈ Rn, where G = (gi j)1≤i, j≤n is a matrix in Rn×n whose terms are given by:

gi j =


− 1, if j = n + 1 − i and j > i,

1, if j = n + 1 − i and j < i,

0, otherwise.
(4.1)
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It is obvious that A is ‖G‖-Lipschitz continuous. By a direct calculation, we also have that 〈Ax, x〉 =

〈Gx, x〉 = 0 and so,A is monotone. Let B be a matrix in Rn×n which is randomly generated.
Taking cognizance of the difference of the problems handled by Algorithm 3.1 and Algorithm in

Tian and Jiang [24], in order to comparing these two algorithms, we make a very small modification to
the one in [24] such that it can also solve the problem (1.8). The modified algorithm can be written as
follows:

Algorithm 4.1.

yn = xn − τnB
∗(I −Wn)Bxn,

zn = PC(yn − ςnAyn),
xn+1 = PC((1 − αn)(yn − ςnAzn)),

(4.2)

According to the proof of Theorem 3.1, we can easily verify that this modified algorithm works
for solving (1.8). The values of control parameters in these two Algorithms are ςn = 1

2‖G‖ , τn = 1
2‖B‖2 ,

α1 = 1
2 , αn = 1

n (for all n ≥ 2), λn = 1
n+1 and x1 = (1, · · · , 1)T , and the infinite family of nonexpansive

mappings {Tk}
∞
k=1 : Rn → Rn is defined by:

Tkx := Mkx,

for all x ∈ Rn, where {Mk} is a sequence of diagonal matrixes in Rn×n:

Mk =



1 − 1
k+2

1 − 1
k+2

. . .

1 − 1
k+2

1 − 1
k+3


. (4.3)

The numerical results of the Example 4.1 are reported in Table 1 and Figures 1–4 by using the stopping
criterion ‖xn+1 − xn‖ ≤ 10−10.

Example 4.2. LetH1 = H2 = L2([0, 1]) with the inner product:

〈x, y〉 =

∫ 1

0
x(t)y(t)dt

and the induced norm:

‖x‖ := (
∫ 1

0
x2(t)dt)

1
2 .

The feasible set is defined as:
C := {x ∈ Rn : ‖x‖ ≤ 1}.

The mappingA : L2([0, 1])→ L2([0, 1]) is defined by:

Ax(t) := (1 + t) max{0, x(t)} = (1 + t)
x(t) + |x(t)|

2
, x ∈ L2([0, 1]).
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It is easy to see that

〈Ax −Ay, x − y〉 =

∫ 1

0
(Ax(t) −Ay(t))(x(t) − y(t))dt

=

∫ 1

0
(1 + t)

x(t) − y(t) + |x(t)| − |y(t)|
2

(x(t) − y(t))dt

=

∫ 1

0

1
2

(1 + t)((x(t) − y(t))2 + (|x(t)| − |y(t)|)(x(t) − y(t)))dt

≥ 0

(4.4)

and

‖Ax −Ay‖2 =

∫ 1

0
(Ax(t) −Ay(t))2dt

=

∫ 1

0
(1 + t)2 (x(t) − y(t) + |x(t)| − |y(t)|)2

4
dt

=

∫ 1

0
(1 + t)2(x(t) − y(t))2dt

≤ 4‖x − y‖2.

(4.5)

Therefore, the operator A is monotone and 2-Lipschitz continuous. LetWn = I(Identity mapping).
The values of control parameters for Algorithm 4.1 and Algorithm 3.1 are ςn = 1

4 , α1 = 1
2 , αn = 1

n (for
all n ≥ 2), λn = 1

n+1 and x1 = 8t2. It can be seen easily that {xn} strongly converges to the zero vector
θ(∈ L2([0, 1])). The numerical results of the Example 4.2 are reported in Table 2 and Figures 5 by using
the stopping criterion ‖xn+1 − xn‖ ≤ ε = 0.01.

Remark 4.1. The numerical results of Example 4.1 and Example 4.2 show that the performance
of Algorithm 3.1 is better than Algorithm 4.1 both in CPU time and the number of iterations.
Algorithm 3.1 is more effective in both finite and infinite dimensional spaces and especially in
conditions involving complex projection calculations, see Tables 1, 2 and Figures 1–5. In Example 4.1,
we observe that the number of iterations tends to be stable, while the CPU time increases, as n
increasing.

Figure 1. Example 4.1: Comparison of Algorithm 3.1 with Algorithm 4.1 when n = 2.
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Figure 2. Example 4.1: Comparison of Algorithm 3.1 with Algorithm 4.1 when n = 10.

Figure 3. Example 4.1: Comparison of Algorithm 3.1 with Algorithm 4.1 when n = 50.

Figure 4. Example 4.1: Comparison of Algorithm 3.1 with Algorithm 4.1 when n = 100.
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Figure 5. Example 4.2: Comparison of Algorithm 3.1 with Algorithm 4.1 when ε = 0.01.

Table 1. Example 4.1: Comparison of Algorithm 3.1 with Algorithm 4.1.

No. of Iter. Time
n Alg. 3.1 Alg. 4.1 Alg. 3.1 Alg. 4.1
2 120 154 0.288s 1.133s
10 156 201 0.691s 2.516s
50 157 202 4.641s 13.853s
100 157 203 12.333s 53.145s

Table 2. Example 4.2: Comparison of Algorithm 3.1 with Algorithm 4.1 when ε = 0.01.

No. of Iter. Time
ε Alg. 3.1 Alg. 4.1 Alg. 3.1 Alg. 4.1
0.01 8 13 0.678s 79.280s

5. Conclusions

In the present paper, we consider variational inequality problems and split common fixed point
problems. We construct an iterative algorithm for solving Eq (1.8) which can be regard as a
modification and generalization of Algorithm 1.1 with fewer metric projection operators. Under some
mild restrictions, we demonstrate the strong convergence analysis of the presented algorithm. We also
give some numerical examples to illustrate our main results. Noticeably, in our article, A is assumed
to a monotone and L-Lipschitz continuous mapping. A natural question arises: how to weaken this
assumption?
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