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Abstract: For a successful application of subspace migration algorithm to retrieve the exact location
and shape of small anomaly in microwave imaging, one must begin the reconstruction process under
the assumption that complete information about the homogeneous background medium, such as
background permittivity and conductivity, is available. In many studies, the statistical value of the
background medium was adopted, raising the possibility of an incorrect value being applied. Thus,
simulation results have been examined in order to identify cases in which an inaccurate location and
shape of anomaly were retrieved. However, the theory explaining this phenomenon has not been
investigated. In this paper, we apply an alternative wavenumber instead of the true one and identify
the mathematical structure of the subspace migration imaging function for retrieving two-dimensional
small anomaly by establishing a relationship with an infinite series of Bessel functions of the first kind.
The revealed structure explains the reason behind the retrieval of an inaccurate location and shape of
anomaly. The simulation results with synthetic data are presented to support the theoretical result.
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1. Introduction

Generally, one of the purposes of the microwave imaging is to localize or detect unknown
objects from measured electromagnetic waves in the high-frequency regime (between 300 MHz and
300 GHz). Due to this reason, identification of the location and shape of unknown anomaly whose
values of dielectric permittivity and electric conductivity differ from the homogeneous background
medium from scattering parameter data is an important and interesting research topic in microwave
imaging. Many authors have proposed various remarkable algorithms for retrieving information on
anomaly for example, Born iterative method for reconstructing permittivity distribution [13] and
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brain stroke detection [20], level-set method for shape reconstruction of unknown objects [16] and
breast cancer detection [21], distorted iterated virtual experiments scheme for imaging unknown
scatterers [28], conjugate gradient method for breast imaging [11], Levenberg-Marquardt technique
for recovering parameter distribution [17]. We also refer to remarkable mathematical and experimental
studies [1, 3, 12, 15, 26, 45–48]. However, the success of iteration-based algorithms significantly
depends on the priori information and initial guess, which must be close to the unknown anomaly,
refer to [25, 39].

For this reason, various non-iterative schemes in inverse scattering problems without a priori
information about unknown anomaly have also been developed to retrieve the location and
shape, such as a variational algorithm based on the inverse Fourier transform to retrieve small
electromagnetic inhomogeneities [5, 6], direct sampling method for localizing small electromagnetic
inhomogeneities [22,23] and anomaly detection in real-world experiment [43], factorization method for
crack detection [10], shape reconstruction of unknown obstacles [18] and numerical study for anomaly
imaging [33], linear sampling method for imaging of unknown scatters in limited-aperture problem [8]
and crack-like defects [24], MUltiple SIgnal Classification (MUSIC) algorithm for identifying small
anomalies [38], fast imaging of small targets in limited-aperture measurement configuration [35] and
real-world application of anomaly detection [34], orthogonality sampling method for imaging unknown
targets [40], qualitative microwave imaging [2], anomaly detection in microwave imaging [37] and
topological derivative strategy for imaging crack-like defects [31] and retrieving unknown scatterers in
3D [27].

The subspace migration (SM) algorithm is a well-known, non-iterative imaging technique in both
inverse scattering problem and microwave imaging. It has been applied successfully to the various
problems such as localization of small targets [4], identification of extended objects [9], fast imaging
of curve-like cracks [29, 30] and anomaly detection in microwave imaging [32, 36]. Throughout
several studies, it has been confirmed that SM is a fast, robust and effective technique for retrieving
unknown anomaly from scattering parameter data. However, for successful application in microwave
imaging, accurate values of background permittivity and conductivity must be known because the
exact background wavenumber value must be applied. Generally, most researchers have used the
statistical values of the background material instead of the true ones and obtained inaccurate locations
and shapes of anomaly. This can be examined through the results of numerical simulations but no
reliable mathematical theory explaining this phenomenon has yet been developed.

In this paper, we apply the SM to retrieve unknown anomaly from scattering parameter data
without complete information about the background material; that is, inaccurate values of background
permittivity and conductivity are applied. To explain the appearance of an inaccurate location and
shape of an anomaly, we show that the imaging function of the SM can be written as the infinite series
of Bessel function of integer order, antenna arrangement and applied inaccurate values of background
permittivity and conductivity. This enables us to theoretically explain the appearance of an inaccurate
location and shape of an anomaly through the SM. To confirm the theoretical results, simulation results
with inaccurate values of background permittivity and conductivity are also presented.

The rest of this paper is organized as follows. In Section 2, the two-dimensional direct problem
and imaging function of the SM are introduced. The structure of the imaging function with inaccurate
values of background permittivity and conductivity is revealed in Section 3. In Section 4, a set of
numerical simulation results with synthetic data generated by CST STUDIO SUITE is presented.
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Finally, a short conclusion is provided in Section 5.

2. Scattering parameter and imaging function of the subspace migration

Let D be a circle-like anomaly with radius α and center r? that is surrounded by a circular array
of antennas An with location an and |an| = R, n = 1, 2, · · · ,N(> 2). Throughout this paper, we use Ω

to denote a homogeneous domain filled by matching liquid such that D ⊂ Ω and assume that all
materials D and Ω are nonmagnetic and classified by their value of dielectric permittivity and electric
conductivity at a given angular frequency of operation ω, i.e., the value of magnetic permeability is
constant for every r ∈ Ω say, µ(r) ≡ µb = 1.257 × 10−6 H/m, refer to [41]. We use εb and σb to denote
the background permittivity and conductivity, respectively. Analogously, let ε? and σ? be those of D.
Then, we introduce the piecewise constant permittivity ε(r) and conductivity σ(r),

ε(r) =

 ε? for r ∈ D,

εb for r ∈ Ω\D,
and σ(r) =

{
σ? for r ∈ D,
σb for r ∈ Ω\D,

respectively. With this, let kb be the background wavenumber that satisfies

k2
b = ω2µb

(
εb − i

σb

ω

)
,

and further assume that

ωεb � σb and
√
ε?
εb

< 1 +
wavelength

4α
. (2.1)

With this, the time-dependent, homogeneous, linear Maxwell Equations take the form:

curl E(r, t) = −µb
∂H(r, t)

∂t
and curlH(r, t) = σbE(r, t) + εb

∂E(r, t)
∂t

, r ∈ Ω, (2.2)

where E(r, t) ∈ R3 andH(r, t) ∈ R3 are the electric and magnetic fields, respectively. Here, we consider
time-harmonic solutions to the (2.2) such that

E(r, t) = Re
[
E(r)e−iωt] and H(r, t) = Re

[
H(r)e−iωt], r ∈ Ω, t > 0.

Then, E(r) ∈ C3 and H(r) ∈ C3 satisfy

curl E(r) = iωµbH(r) and curl H(r) = (σb − iωεb)E in Ω. (2.3)

For a detailed description, we refer to [7].
Let Einc(kb, r, am) be the incident electric field due to the point current density J at Am. Then, based

on (2.3), it satisfies  curl Einc(kb, r, am) = iωµbHinc(kb, am, r),
curl Hinc(kb, r, am) = (σb − iωεb)Einc(kb, r, am),

Analogously, let Etot(an, r) be the total field measured at An in the presence of D that satisfies curl Etot(kb, an, r) = iωµbHtot(kb, an, r),
curl Htot(kb, an, r) = (σ(r) − iωε(r))Etot(kb, an, r),

with transmission condition on ∂D.
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Let S (n,m) be the S -parameter (or scattering parameter), which is defined as the ratio of the
output voltage (or reflected waves) at the An antenna and the input voltage (or incident waves) at
the Am (see [41] for instance). We use S inc(n,m) and S tot(n,m) to denote the incident and total
field S -parameters, respectively, due to the absence and presence of D. Correspondingly, we let
S scat(n,m) = S tot(n,m) − S inc(n,m) be the scattered field S -parameter. Then, based on [19], S scat(n,m)
can be represented as follows:

S scat(n,m) = −
ik2

0

4ωµb

∫
Ω

(
ε(r′) − εb

εb
+ i

σ(r′) − σb

ωεb

)
Einc(kb, r′, am) · Etot(kb, an, r′)dr′,

where k0 denotes the lossless background wave number that satisfies k2
0 = ω2µbεb.

In this paper, we adopt the simulation configuration introduced in [32, 43, 44]. Notice that the
height of microwave machine can be said to be long enough, only the z-component of the incident
and total fields can be handled based on the mathematical treatment of the scattering of time-harmonic
electromagnetic waves from thin infinitely long cylindrical obstacles. Correspondingly, by denoting
E(z)

inc and E(z)
tot as the z-components of the incident and total fields, respectively, S scat(n,m) can be written

as follows:

S scat(n,m) = −
ik2

0

4ωµb

∫
Ω

(
ε(r′) − εb

εb
+ i

σ(r′) − σb

ωεb

)
E(z)

inc(kb, r′, am)E(z)
tot(kb, an, r′)dr′. (2.4)

Unfortunately, exact expression of the field E(z)
tot(kb, an, r′) is unknown thus we cannot design the

imaging function by using S scat(n,m) of (2.4) directly. Since the condition (2.1) holds, we can apply
the Born approximation such that (see [42] for instance)

E(z)
tot(kb, an, r′) = E(z)

inc(kb, an, r′) + o(α2) = −
i
4

H(1)
0 (kb|a − r′|) + o(α2),

where H(1)
0 denotes the Hankel function of order zero of the first kind. Correspondingly, S scat(n,m)

of (2.4) can be written as

S scat(n,m) = −
ik2

0

4ωµb

∫
D

(
ε? − εb

εb
+ i

σ? − σb

ωεb

)
E(z)

inc(kb, r′, am)E(z)
tot(kb, an, r′)dr′ + o(α2k2

0)

=
ik2

0

64ωµb

∫
D

(
ε? − εb

εb
+ i

σ? − σb

ωεb

)
H(1)

0 (kb|am − r′|)H(1)
0 (kb|an − r′|)dr′ + o(α2k2

0).
(2.5)

Now, we introduce the imaging function. To this end, let us generate the scattering matrix K
such that

K =


0 S scat(1, 2) · · · S scat(1,N − 1) S scat(1,N)

S scat(2, 1) 0 · · · S scat(2,N − 1) S scat(2,N)
...

...
. . .

...
...

S scat(N, 1) S scat(N, 2) · · · S scat(N,N − 1) 0

 . (2.6)

See [32] for an explanation of why the diagonal elements of K are set to zero. Since there is a single,
small anomaly, the singular value decomposition (SVD) of K can be written as

K = UDV∗ =

N∑
n=1

τnUnV∗n ≈ τ1U1V∗1, (2.7)
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where ∗ denotes the mark of Hermitian, τn are the singular values and Un and Vn are the left and right
singular vectors of K, respectively. Then, on the basis of (2.5) and (2.7), we define a unit vector: For
each r ∈ Ω,

W(kb, r) =
F(kb, r)
|F(kb, r)|

, F(kb, r) =

[
H(1)

0 (kb|a1 − r|),H(1)
0 (kb|a2 − r|), . . . ,H(1)

0 (kb|aN − r|)
]T

. (2.8)

With this, we introduce the following imaging function of the SM: For each r ∈ Ω,

F(kb, r) =
∣∣∣〈W(kb, r),U1〉〈W(kb, r),V1〉

∣∣∣ , (2.9)

where 〈U,V〉 = U∗V and V1 denotes the complex conjugate of V1. Then, based on [4]

〈W(kb, r),U1〉 ≈ 1 and 〈W(kb, r),V1〉 ≈ 1 when r ∈ D,

and the orthonormal property of singular vectors, the value of F(kb, r) will be close to 1 when r ∈ D
and less than 1 at r ∈ Ω\D, so the location and outline shape of D can be identified through the map
of F(kb, r).

Let us emphasize that, to generate the test vector W(kb, r) of (2.8), the exact value of kb must be
known, i.e., a priori information of the εb and σb must be available. However, because these values are
statistical, the exact value may not be unknown. For this reason, we assume that the exact values of εb

and σb are unknown and apply an alternative value ka instead of the true kb and set a unit test vector
W(ka, r) from (2.8). Then, by using the imaging function F(ka, r) from (2.9), the exact location and
shape of D cannot be retrieved. Fortunately, we can recognize the existence of D and the identified
location is shifted in a specific direction.

3. Analysis of the imaging function

In this section, we explore the structure of the imaging function F(ka, r) to explain that retrieved
location of D is shifted in a specific direction and size is smaller or larger than the true anomaly. To
explain this phenomenon, we explore the structure of the imaging function.

Theorem 3.1. Let θn = an/|an| = (cos θn, sin θn) and kbr′ − kar = |kbr′ − kar|(cos φ, sin φ). If an satisfies
|an − r| � {1/4|ka|, 1/4|kb|} for all n = 1, 2, · · · ,N, then F(r, ka) can be represented as follows:

F(ka, r) =
N

(N − 1) area(D)

∣∣∣∣∣∣
∫

D

(
J0(|kbr′ − kar|) +

Ψ(kb, ka, r)
N

)2

dr′

−
1
N

∫
D

(
J0(2|kbr′ − kar|) +

Ψ(2kb, 2ka, r)
N

)
dr′

∣∣∣∣∣∣ + o(α2k2
0), (3.1)

where Js denotes the Bessel function of order s and

Ψ(kb, ka, r) =

N∑
n=1

∞∑
s=−∞,s,0

isJs(|kbr′ − kar|)eis(θn−φ).
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Proof. Since K ≈ τ1U1V∗1, we can examine that

F(kb, r) =
∣∣∣〈W(ka, r),U1〉〈W(ka, r),V1〉

∣∣∣ =
∣∣∣∣W(ka, r)∗U1V∗1W(ka, r)

∣∣∣∣ ≈ ∣∣∣∣∣ 1
τ1

W(ka, r)∗KW(ka, r)
∣∣∣∣∣ .

Based on the assumption |an−r| � {1/4|ka|, 1/4|kb|} for all n = 1, 2, · · · ,N, the following asymptotic
forms of the Hankel function hold (see [14, Theorem 2.5], for instance)

H(1)
0 (kb|r− r′|) =

(1 − i)e−ikb |r|

√
kbπ|an|

eikbθn·r′ + O(1) and H(1)
0 (ka|r− r′|) =

(1 − i)e−ika |r|

√
kaπ|an|

eikaθn·r′ + O(1). (3.2)

Then, W(ka, r) and K can be represented as

W(ka, r) =
1
√

N


eikaθ1·r + O(1)
eikaθ2·r + O(1)

...

eikaθN ·r + O(1)


and

K = C



0
∫

D
eikb(θ1+θ2)·r′dr′ + o(α2k2

0) · · ·
∫

D
eikb(θ1+θN )·r′dr′ + o(α2k2

0)∫
D

eikb(θ2+θ1)·r′dr′ + o(α2k2
0) 0 · · ·

∫
D

eikb(θ2+θN )·r′dr′ + o(α2k2
0)

...
...

. . .
...∫

D
eikb(θN+θ1)·r′dr′ + o(α2k2

0)
∫

D
eikb(θN+θ2)·r′dr′ + o(α2k2

0) · · · 0


,

respectively. Here the constant C is given by

C =
k2

0e−2ikbR

32kbωµbπR

(
ε? − εb

εb
+ i

σ? − σb

ωεb

)
.

Note that, since the following JacobiAnger expansion formula holds uniformly

eix cos θ =

∞∑
s=−∞

isJs(x)eisθ = J0(x) +

∞∑
s=−∞,s,0

isJs(x)eisθ, (3.3)

we have for n = 1, 2, · · · ,N

N∑
n=1

eiθn·(kbr′−kar) =

N∑
n=1

ei|kbr′−kar| cos(θn−φ) =

N∑
n=1

(
J0(|kbr′ − kar|) +

∞∑
s=−∞,s,0

isJs(|kbr′ − kar|)eis(θn−φ)
)

= NJ0(|kbr′ − kar|) + Ψ(kb, ka, r)
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and correspondingly,

W(ka, r)∗K =
C
√

N



∫
D

eikbθ1·r′
N∑

n=1

(
eiθn(kbr′−kar) − eiθ1(kbr′−kar)

)
dr′ + o(α2k2

0)

∫
D

eikbθ2·r′
N∑

n=1

(
eiθn(kbr′−kar) − eiθ2(kbr′−kar)

)
dr′ + o(α2k2

0)

...∫
D

eikbθ1·r′
N∑

n=1

(
eiθn(kbr′−kar) − eiθN (kbr′−kar)

)
dr′ + o(α2k2

0)



T

=
C
√

N



∫
D

eikbθ1·r′
(
NJ0(|kbr′ − kar|) + Ψ(kb, ka, r) − eiθ1(kbr′−kar)

)
dr′ + o(α2k2

0)∫
D

eikbθ2·r′
(
NJ0(|kbr′ − kar|) + Ψ(kb, ka, r) − eiθ2(kbr′−kar)

)
dr′ + o(α2k2

0)
...∫

D
eikbθ1·r′

(
NJ0(|kbr′ − kar|) + Ψ(kb, ka, r) − eiθN (kbr′−kar)

)
dr′ + o(α2k2

0)



T

.

With this, we can evaluate

W(ka, r)∗KW(ka, r)

=
C
N



∫
D

eikbθ1·r′
(
NJ0(|kbr′ − kar|) + Ψ(kb, ka, r) − eiθ1(kbr′−kar)

)
dr′ + o(α2k2

0)∫
D

eikbθ2·r′
(
NJ0(|kbr′ − kar|) + Ψ(kb, ka, r) − eiθ2(kbr′−kar)

)
dr′ + o(α2k2

0)
...∫

D
eikbθN ·r′

(
NJ0(|kbr′ − kar|) + Ψ(kb, ka, r) − eiθN (kbr′−kar)

)
dr′ + o(α2k2

0)



T


e−ikaθ1·r + O(1)
e−ikaθ2·r + O(1)

...

e−ikaθN ·r + O(1)



=
C
N

∫
D

N∑
n=1

eiθn·(kbr′−kar)
(
NJ0(|kbr′ − kar|) + Ψ(kb, ka, r) − eiθn(kbr′−kar)

)
dr′ + o(α2k2

0)

=
C
N

∫
D

eiθn·(kbr′−kar)
(
NJ0(|kbr′ − kar|) + Ψ(kb, ka, r)

)
dr′ −

C
N

∫
D

N∑
n=1

e2iθn·(kbr′−kar)dr′ + o(α2k2
0)

=
C
N

∫
D

[(
NJ0(|kbr′ − kar|) + Ψ(kb, ka, r)

)2
dr′ −

(
NJ0(2|kbr′ − kar|) + Ψ(2kb, 2ka, r)

)]
dr′ + o(α2k2

0).

Hence,

〈W(ka, r),U1〉〈W(ka, r),V1〉 =
CN
τ1

∫
D

(
J0(|kbr′ − kar|) +

Ψ(kb, ka, r)
N

)2

dr′

−
C
τ1

∫
D

(
J0(2|kbr′ − kar|) +

Ψ(2kb, 2ka, r)
N

)
dr′ + o(α2k2

0).
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Since 〈W(r),U1〉〈W(r),V1〉 = 1, J0(|kbr′ − kar|) = J0(2|kbr′ − kar|) = 1 and Ψ(kb, ka, r) =

Ψ(2kb, 2ka, r) = 0 when kbr′ = kar, we have

CN
τ1

∫
D

dr′ −
C
τ1

∫
D

dr′ + o(α2k2
0) = 1 implies C =

τ1

(N − 1) area(D)
+ o(α2k2

0).

Therefore,

〈W(r),U1〉〈W(r),V1〉 =
N

(N − 1) area(D)

∫
D

(
J0(|kbr′ − kar|) +

Ψ(kb, ka, r)
N

)2

dr′

−
1

(N − 1) area(D)

∫
D

(
J0(2|kbr′ − kar|) +

Ψ(2kb, 2ka, r)
N

)
dr′ + o(α2k2

0).

With this, we can obtain the structure (3.1). �

From the derived structure (3.1), we can observe that since J0(|kbr′ − kar|) = 1 and Ψ(kb, ka, r) = 0
when r = (kb/ka)r′ for r′ ∈ D, an inaccurate location and shape of D must be retrieved through the
map of F(ka, r). This is the theoretical reason why an inaccurate location and shape of the anomaly is
retrieved when inaccurate values of εb and σb were applied. Further properties will be discussed in the
simulation results.

4. Simulation results

Here, we present simulation results to support the result in Theorem 3.1. To this end, a circular
array of N = 16 antennas An is used to transmit and receive signals operated at f = 1.24 GHz. The
location of the antennas was set to

an = 0.09 m(cos θn, sin θn), θn =
2π(n − 1)

N

and the search domain Ω was selected as a square region (−0.1 m, 0.1 m) × (−0.1 m, 0.1 m) with
(εb, σb) = (20ε0, 0.2 S/m). Here, ε0 = 8.854 × 10−12 F/m is the vacuum permittivity. Correspondingly,
the exact value of the background wavenumber is kb = 116.5273+8.4020i. For anomalies, we selected
two small balls D1 and D2 with centers r1 = (0.01 m, 0.03 m) and r2 = (−0.04 m,−0.02 m), same
radii α = 0.01 m and material properties (ε1, σ1) = (55ε0, 1.2 S/m) and (ε2, σ2) = (45ε0, 1.0 S/m).
With these settings, the measurement data S scat(n,m) of (2.6) and the incident field data of (2.8) were
generated by CST STUDIO SUITE.

Example 4.1. (Only exact value of εb is unknown) First, we consider the case where only the exact
value of εb is unknown. Instead, of the application of εb, we applied alternative values εa and
corresponding wavenumber

ka = ω

√
µb

(
εa − i

σb

ω

)
.

Note that we already assumed that ωεb � σb. Thus, if the condition ωεa � σb is satisfied, the
identified location becomes

r =

(
kb

ka

)
r′ =

√
ωεb − iσb

ωεa − iσb
r′ ≈

√
εb

εa
r′ for each r′ ∈ D1. (4.1)
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Hence, identified anomalies will be concentrated at the origin and their retrieved sizes will be
smaller than the true one when εa > εb. Otherwise, identified anomalies will be far from the origin and
their retrieved sizes will be larger than the true one when εa < εb. See Figure 1 for a related illustration.

r′

r′

(kb/ka)r′

(kb/ka)r′

O
case εa > εb

anomaly D

case εa < εb

Figure 1. Description of the simulation result. Yellow-colored circle is the true anomaly
and cyan- and violet-colored circles are retrieved anomalies through the map of F(ka, r).

Figure 2 shows maps of F(ka, r) with various selections of εa in the presence of D1. As we discussed
above, the location of the retrieved anomaly gets closer to the origin and it becomes smaller as the value
of εa increases (here, εa = 3εb, 10εb). Otherwise, as the value of εa decreases (here, εa = 0.5εb), the
identified location becomes far from the origin and the size becomes larger. If εa = 0.01εb i.e., the
value of εa is very small, it is difficult to distinguish the D1 and artifacts.

Notice that since

Js(|kbr′ − kar|) = Js

(
|ka|

∣∣∣∣∣∣
(
kb

ka

)
r′ − r

∣∣∣∣∣∣
)

:= Js(|ka||r′′ − r|),

due to the oscillating property of the Bessel function, several artifacts will be included in the map of
F(ka, r) if |ka| is large, i.e., the value of εa is large enough compared to εb. In contrast, the map of
F(ka, r) will contain no artifacts but the imaging result will be blurred if the value of εa is small enough
compared to εb. This is the reason why several artifacts are included in the map of F(ka, r) when
εa = 10εb and why the obtained image is blurred when εa = 0.1εb and εa = 0.01εb. We can observe
the same phenomenon in the presence of multiple anomalies D1 and D2, as shown in the Figure 3.
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(a) εa = εb (b) εa = 3εb (c) εa = 10εb

(d) εa = 0.5εb (e) εa = 0.1εb (f) εa = 0.01εb

Figure 2. Maps of F(ka, r) at f = 1.24 GHz when σa = σb.

(a) εa = εb (b) εa = 3εb (c) εa = 10εb

(d) εa = 0.5εb (e) εa = 0.1εb (f) εa = 0.01εb

Figure 3. Maps of F(ka, r) at f = 1.24 GHz when εa = εb.
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Example 4.2. (Only exact value of σb is unknown) Next, we consider the case where only the exact
value of σb is unknown and apply an alternative one σa such that

ka = ω

√
µb

(
εb − i

σa

ω

)
.

Same as the Example 4.1, if σa satisfies ωεa � σa, the identified location becomes

r =

(
kb

ka

)
r′ =

√
ωεb − iσb

ωεb − iσa
r′ ≈

√
εb

εb
r′ = r′ for each r′ ∈ D1. (4.2)

Hence, it will be possible to retrieve almost accurate shapes and locations of anomalies when σa is
sufficiently small.

Figure 4 shows maps of F(ka, r) with various selections of σa in the presence of D1. In contrast
to the results in Example 4.1, almost the exact location and shape of D1 were retrieved if σa < 3σb,
i.e., when σa was sufficiently small. The location of the retrieved anomaly gets closer to the origin and
its size becomes smaller as the value of εa increases (here, εa = 3εb, 10εb). Unfortunately, it is very
difficult to recognize D1 due to the appearance of a huge artifact with a large magnitude if σa is not
small σa = 10σb = 2 S/m.

We can observe the same phenomenon in the presence of multiple anomalies D1 and D2, as shown
in the Figure 5, and conclude that it will be possible to retrieve the accurate shape and location of
anomalies by choosing a very small (close to zero) value of σa when the exact value of background
permittivity is known.

(a) σa = σb (b) σa = 3σb (c) σa = 10σb

(d) σa = 0.5σb (e) σa = 0.1σb (f) σa = 0.01σb

Figure 4. Maps of F(ka, r) at f = 1.24 GHz.

AIMS Mathematics Volume 8, Issue 11, 27210–27226.



27221

(a) σa = σb (b) σa = 3σb (c) σa = 10σb

(d) σa = 0.5σb (e) σa = 0.1σb (f) σa = 0.01σb

Figure 5. Maps of F(ka, r) at f = 1.24 GHz.

Example 4.3. (Identification of circle and rectangular shaped anomalies) Here, we consider the
imaging of anomalies with different shapes. To this end, we applied f = 1.0 GHz, used N = 36
antennas An, and selected D1 as a ball of Examples 4.1 and 4.3 except (ε1, σ1) = (45ε0, 1.0 S/m), and
D2 as a square with vertices (−0.05,−0.03), (−0.03,−0.03), (−0.03,−0.01) and (−0.05,−0.01) with
(ε2, σ2) = (45ε0, 1.0 S/m). With this configuration, the scattering parameter data were generated by
using the FEKO (Feldberechnung für Körper mit beliebiger Oberfläche).

Figure 6 shows maps of F(ka, r) when εa , εb and σa = σb. Similar to the results in Example 4.1,
identified anomalies are concentrated at the origin and their retrieved sizes are smaller than the true
one when εa > εb. Moreover, identified anomalies located far from the origin and their retrieved
sizes are larger than the true one when εa < εb. However, opposite to the results in Examples 4.1
and 4.3, it is hard to recognize the shape of D1 and D2 due to the appearance of several artifacts in the
neighborhood of anomalies.

Figure 7 shows maps of F(ka, r) when εa = εb and σa , σb. Similar to the results in Example 4.3,
we can examine that it is possible to recognize the outline shape of anomalies by choosing a very small
value of σa. However, exact shape of anomalies cannot be retrieved still.
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(a) εa = εb (b) εa = 3εb (c) εa = 10εb

(d) εa = 0.5εb (e) εa = 0.1εb (f) εa = 0.01εb

Figure 6. Maps of F(ka, r) at f = 1 GHz when σa = σb.

(a) σa = σb (b) σa = 3σb (c) σa = 10σb

(d) σa = 0.5σb (e) σa = 0.1σb (f) σa = 0.01σb

Figure 7. Maps of F(ka, r) at f = 1 GHz.
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5. Conclusions

The structure of the imaging function of SM for retrieving small anomalies from scattering matrix
is revealed when complete information of the background medium is not available. On the basis of its
relationship with the infinite series of Bessel function of the first kind, we have theoretically confirmed
why the accurate shape and location of anomalies cannot be retrieved.

The main subject of this paper is the imaging of small anomaly in two-dimensional microwave
imaging. An extension to multiple, small anomalies will be carried out in forthcoming work. Moreover,
the development of an effective algorithm for retrieving the exact value of background wavenumber
will be an interesting research subject. Finally, we expect that the methodology presented in this paper
could be applied to real-world microwave imaging with inhomogeneous background.
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